JPS6183492A - Vane pump - Google Patents

Vane pump

Info

Publication number
JPS6183492A
JPS6183492A JP20449384A JP20449384A JPS6183492A JP S6183492 A JPS6183492 A JP S6183492A JP 20449384 A JP20449384 A JP 20449384A JP 20449384 A JP20449384 A JP 20449384A JP S6183492 A JPS6183492 A JP S6183492A
Authority
JP
Japan
Prior art keywords
vane
cam ring
inner rotor
ring
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20449384A
Other languages
Japanese (ja)
Inventor
Takeo Hiramatsu
平松 健男
Bonnosuke Takamiya
高宮 梵之助
Yoshimasa Nagayoshi
永吉 由昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP20449384A priority Critical patent/JPS6183492A/en
Publication of JPS6183492A publication Critical patent/JPS6183492A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To stabilize transfer torque, by a method wherein, when a vane is brought into contact with the inner peripheral surface of the small part of a cam ring, a vane push-up member, forced into contact with the under surface of the vane, is located on the one end surface on the inner rotor side, and the vane is forced into reliable slide contact with the ring. CONSTITUTION:A ring 53, being a push-up member, is mounted to the bottom of a vane containing groove 50 on one end surface side of an inner rotor 30, and the bottom surface of a vane 44 is adapted to make slide contact with the ring 53 when the forward end of the vane 44 makes slide contact with the inner peripheral surface of a cam ring 29 at the small part of the cam ring 29. This prevents the vane 44 from being moved further to the inner peripheral side of the inner rotor 30. Thus, even if a pressure difference between the forward end and the bottom part of the vane 44 is produced at the small part of the cam ring 29, since the vane 44 makes contact with the ring 53 and is prevented from being further moved to the inner side of the containing groove 50, the forward end of the vane 44 is always brought into slide contact with the inner peripheral surface, and eliminates a fear of an oil pressure being escaped due to formation of a gap. This enables stable provision of desired torque, and improves reliability of a pump.

Description

【発明の詳細な説明】 く座業上の利用分野〉 本発明は回転速度差により流体圧力を発生させるベーン
ポンプの改良に関し、特に前輪、後輪を同一のエンジン
で駆動する四輪駆動車の動力伝達に用いて好適なもので
ある。
[Detailed Description of the Invention] Field of Use in Automotive Industry> The present invention relates to an improvement of a vane pump that generates fluid pressure by a difference in rotational speed, and is particularly applicable to the power of a four-wheel drive vehicle in which the front and rear wheels are driven by the same engine. It is suitable for use in communication.

〈従来の技術〉 前輪と後輪とを同一の機関で駆動する四輪駆動車におい
ては、前輪タイヤ及び後輪タイヤの有効半径に多少の相
違があると、タイヤがすべりを生じて駆動系に無理な力
が作用する。この不具合は、前輪と後輪との転勤軌跡が
相違する旋回走行時においても同様であり、何らかの対
策を施す必要がある0 このため、二輪駆動形式に移行できないフルタイム四輪
駆動車においては、前輪に駆動力を伝達する回転軸と後
輪に駆動力を伝達する回転軸との間に回転差が発生して
も駆動力が伝達できるように、センタデフと呼称される
第三の差動装置が組み込1れているが、M量や大きさ或
いはコストの点で二輪駆動が可能なパートタイム四輪駆
動車に比べて不利である。しかも、差動回転が可能なこ
とから四輪駆f4h?必要とする際に四輪駆動が達成で
きなくなる場合があり、このためにデフロック機構を組
み込まなければならず、装置全体の複雑化を招いてしま
う欠点があった。
<Prior art> In a four-wheel drive vehicle where the front and rear wheels are driven by the same engine, if there is a slight difference in the effective radius of the front and rear tires, the tires may slip, causing damage to the drive system. Unreasonable force acts. This problem also occurs when turning, where the front and rear wheels have different transfer trajectories, so some kind of countermeasure must be taken.For this reason, in full-time four-wheel drive vehicles that cannot shift to two-wheel drive, A third differential device called a center differential is used to transmit driving force even if a rotational difference occurs between the rotating shaft that transmits driving force to the front wheels and the rotating shaft that transmits driving force to the rear wheels. However, it is disadvantageous compared to part-time four-wheel drive vehicles capable of two-wheel drive in terms of M quantity, size, and cost. Moreover, since differential rotation is possible, the four-wheel drive F4H? There are cases where four-wheel drive cannot be achieved when required, and a differential lock mechanism must be incorporated for this purpose, which has the drawback of complicating the entire device.

一方、上述したパートタイム四輪駆動車においては、タ
イトコーナブレーキング現象等の四@駆動による不具合
が発生する場合、運転者は二輪駆動に切り換えるように
しており、運転操作が煩雑となって一般のユーザでは使
いこなすことが難しい。
On the other hand, in the above-mentioned part-time four-wheel drive vehicles, when a problem occurs due to four-wheel drive such as tight corner braking, the driver is required to switch to two-wheel drive, which makes driving operations complicated and common. It is difficult for users to master it.

そこで、第2図に示すように削剥と後輪との回転差に応
じて自動的に二輪駆動に切り換わるベーンポンプを用い
た動力伝達装置を具え比パートタイム四輪、駆動車が考
えられている。これは、エンジン11に連結され7’(
変速機12の出力軸13から駆動力が取り出され、出力
41113に奴付けられ念ドライブギヤ14からアイド
ルギヤ15を介して両端部にギヤ16.17t−有する
中間伝達軸18に伝達され、この中間伝達軸18から前
輪用差動装置19ft介して前輪20に駆動力が伝達さ
れるようになっている。一方、この前輪20に伝達され
る駆動力はそのままギヤ21を介して前輪用回転軸22
に伝達され、ベーンポンプ23a(i)用いた動力伝達
装置23を経て後輪用回転軸24から回転取出方向変換
用の歯車機構25を介して後輪用差動装置126に伝え
られ、後輪27が駆動される。
Therefore, as shown in Figure 2, a part-time four-wheel drive vehicle is being considered, equipped with a power transmission device using a vane pump that automatically switches to two-wheel drive according to the rotational difference between the scraping and rear wheels. . This is connected to the engine 11 and 7'(
Driving force is taken out from the output shaft 13 of the transmission 12, is attached to the output 41113, and is transmitted from the mental drive gear 14 via the idle gear 15 to the intermediate transmission shaft 18 having gears 16.17t at both ends, and this intermediate Driving force is transmitted from the transmission shaft 18 to the front wheels 20 via a front wheel differential 19ft. On the other hand, the driving force transmitted to the front wheel 20 is directly transmitted to the front wheel rotating shaft 22 via the gear 21.
The power is transmitted to the rear wheel differential device 126 via the power transmission device 23 using the vane pump 23a(i) from the rear wheel rotating shaft 24 through the gear mechanism 25 for changing the direction of rotation. is driven.

動力伝達装置23の断面構造を表す第3図に示すように
、ベーンポンプ23aはカムIJ 7グ29と、このカ
ムリング29内に回転自在に収容され九円形のインナロ
ータ30と、インナロータ30の外周部に径方向に形成
された複数の溝にそれぞれ移動自在に取付けられ先端が
カムリング29の内周面に摺接する複数のベーン44と
からなり、楕円形の油室28を有するカムリング29に
は後輪用回転軸24が一体的に連結されており、この油
室28内に回転自在に収納された円形のインナロータ3
0には、前輪用回転軸22が一体的に連結されている。
As shown in FIG. 3, which shows the cross-sectional structure of the power transmission device 23, the vane pump 23a includes a cam IJ 7 ring 29, a nine-circular inner rotor 30 that is rotatably housed within the cam ring 29, and a nine-circular inner rotor 30 on the outer periphery of the inner rotor 30. The cam ring 29 is made up of a plurality of vanes 44 that are movably attached to a plurality of grooves formed in the radial direction, and whose tips slide against the inner circumferential surface of the cam ring 29, and the cam ring 29 has an oval oil chamber 28. A circular inner rotor 3 is integrally connected to a rotating shaft 24 and is rotatably housed within this oil chamber 28.
0 is integrally connected with a front wheel rotating shaft 22.

カムリング29には油室28内にそれぞれ連通する四個
のポート31 、3.2 、33.’ 34が形成され
ており、インナロータ30を挾んで対向するポート31
.33は第一油路35tl−介して連結され、同様にポ
ート32.34は第二油路36を介して連結されている
。これら第一油路35及び第二油路36には、それぞれ
逆止弁37,38t−介して油溜め39が連通しており
、第一油路35と第二油路36とはリリーフ弁4off
−介して油溜め39に連通し得る一対の逆止弁41 、
42を介して接続されている。IJ IJ−フ弁40に
はこのリリーフ弁40の開弁圧力を設定するスプリング
43が組み込まれ、第一油路35或いは第二油路36内
が一定圧以上となった場合に開いて圧油を油溜め39側
へ戻すようになっている。つまり、カムリング29とイ
ンナロータ30との間に相対回転が生じないとカムリン
グ29は単に遊転して二輪λ児勅状態となるが、これら
に相対回転が生ずると油圧が発生し、リリーフ弁40に
より油の流れが阻止されている之めにカムリング29と
インナロータ30とがこの圧油の静圧により一体的に回
転して四輪駆動状態となる。
The cam ring 29 has four ports 31 , 3.2 , 33 . that communicate with the oil chamber 28 , respectively. ' 34 is formed, and the ports 31 are opposite to each other with the inner rotor 30 in between.
.. 33 are connected via a first oil passage 35tl-, and similarly ports 32.34 are connected via a second oil passage 36. An oil reservoir 39 communicates with the first oil passage 35 and the second oil passage 36 via check valves 37 and 38t, respectively.
- a pair of check valves 41 that can communicate with the oil sump 39 through the
42. A spring 43 that sets the opening pressure of the relief valve 40 is incorporated in the IJ IJ-fu valve 40, and opens when the pressure inside the first oil passage 35 or the second oil passage 36 exceeds a certain level to release pressure oil. is returned to the oil sump 39 side. In other words, if there is no relative rotation between the cam ring 29 and the inner rotor 30, the cam ring 29 will simply rotate freely, resulting in a two-wheeled state. However, when relative rotation occurs between them, hydraulic pressure is generated, and the relief valve 40 Since the flow of oil is blocked, the cam ring 29 and the inner rotor 30 rotate together due to the static pressure of this pressure oil, resulting in a four-wheel drive state.

例えば、通常の直進状態では前輪20と後輪27のタイ
ヤの有効半径が同一でこれらのスリップ回転速度が少な
いことから、 動力伝達装置23の前輪用回転軸22と
後輪用回転m24との間に回転速度差が生じない。従っ
てベーンポンプ2jaによる油圧の発生はなく、後輪2
7に駆動力が伝達されずに前輪20のみによる二輪駆動
となる。
For example, in a normal straight-ahead state, the effective radius of the front wheel 20 and rear wheel 27 tires are the same and their slip rotational speed is small, so that There is no difference in rotational speed. Therefore, no oil pressure is generated by the vane pump 2ja, and the rear wheel 2
No driving force is transmitted to the wheels 7, resulting in two-wheel drive using only the front wheels 20.

しかし、直進状態でも加速時のように通常、前輪20が
約1%以下でスリップする場合、これによる回転速度差
が前輪用回転軸22と後輪用回転軸24との曲に生じる
と、この回転差に応じた油圧が発生し、インナロータ3
0とカムリング29とが一体となって回転し、この油圧
とベーン44の受圧面績とに対応したKfh力が後輪2
7に伝達されて四輪駆動状態となる。この場合、相対的
にインナロータ30が回転することとなり、ボート32
.34が吸込口となって逆上弁38を介して油溜め39
から油が吸込まれる一方、ボー)31.33が吐出口と
なって逆止弁37.42i閉じると同時に逆止弁41を
介してリリーフ弁40に導びかれる。
However, when the front wheels 20 normally slip at a rate of about 1% or less during acceleration even when driving straight, if a rotational speed difference due to this occurs in the curve between the front wheel rotation shaft 22 and the rear wheel rotation shaft 24, this Hydraulic pressure is generated according to the rotation difference, and the inner rotor 3
0 and the cam ring 29 rotate together, and a Kfh force corresponding to this oil pressure and the pressure receiving surface of the vane 44 is applied to the rear wheel 2.
7 and enters four-wheel drive mode. In this case, the inner rotor 30 rotates relatively, and the boat 32
.. 34 serves as a suction port, and an oil sump 39 is supplied via a reverse valve 38.
While oil is sucked in from the valve 31.33 as a discharge port, it is guided to the relief valve 40 via the check valve 41 at the same time as the check valve 37.42i closes.

次に、後輪27の回転速度に比べ前輪20の回転速度が
非常に大きくなる場合、例えば雪路での前輪20のスリ
ップ時や急加速時あるいはブレーキ時の後′輪27がロ
ック気味となる場合には、動力伝達装置23の前輪用回
転軸22と後輪用回転軸24との間の回転差が非常に大
きくなって大きな油圧が発生するが、この油圧が所定値
を越えると、リリーフ弁40がスプリング43に抗して
開き、吐出圧がほぼ一定に制御されて後輪27に一定の
吐出圧に対応した一定の駆動力が伝達された四輪駆動状
態となる。この結果、前輪20の回転速度が減少すると
共に後輪27の回転速度がQIJ大することとなり、回
転差全縮少する(ノンスリップデフと則−機能)ように
作用して前輪20のスリップ状態では後輪27への、駆
動トルクが増大されて走行不能となることを回避でき、
後輪27がロック気味の場合には前輪20のブレーキト
ルクを増大して後輪27のロックを防止する。
Next, when the rotational speed of the front wheels 20 becomes much larger than the rotational speed of the rear wheels 27, for example, when the front wheels 20 slip on a snowy road, when accelerating suddenly, or when braking, the rear wheels 27 tend to lock up. In this case, the difference in rotation between the front wheel rotating shaft 22 and the rear wheel rotating shaft 24 of the power transmission device 23 becomes very large, generating a large oil pressure. If this oil pressure exceeds a predetermined value, the relief The valve 40 opens against the spring 43, the discharge pressure is controlled to be substantially constant, and a four-wheel drive state is established in which a constant driving force corresponding to the constant discharge pressure is transmitted to the rear wheels 27. As a result, the rotational speed of the front wheels 20 decreases and the rotational speed of the rear wheels 27 increases by QIJ, which acts to completely reduce the rotational difference (non-slip differential function) and when the front wheels 20 are in a slip state. It is possible to avoid an increase in the driving torque to the rear wheels 27, which makes it impossible to drive.
When the rear wheels 27 are a little locked, the brake torque of the front wheels 20 is increased to prevent the rear wheels 27 from locking.

一方、前輪20の回転速度に比べ後輪27の回転速度が
非常に大きくなる場合、例えば前輪20のブレーキ状態
でロック気味となる場合では、動力伝達装置23の前輪
用回転軸22と後輪用回転軸24との間に上述したのと
逆方向に非常に大きな回転差が生じ、ポー)31.33
が吸込口となり、逆上弁37を介して油溜め39から油
が吸込まれる一方、ボート32.34が吐出口となり、
第二油路36t−経て逆止弁38゜41を閉じ、逆止弁
42からリリーフ弁40に導びかれてここに大きな油圧
が作用するが、この油圧もリリーフ弁40により一定に
保持され、一定の駆動力が後輪27に伝達されて四輪駆
動状態となる。この結果、後輪27へのブレーキトルク
を増大して前輪20のロックを防止する。
On the other hand, when the rotational speed of the rear wheels 27 becomes very large compared to the rotational speed of the front wheels 20, for example, when the front wheels 20 are slightly locked in the braking state, the front wheel rotation shaft 22 of the power transmission device 23 and the rear wheel A very large rotational difference occurs between the rotary shaft 24 in the opposite direction to that described above, and the
serves as a suction port, and oil is sucked in from the oil sump 39 via the reverse valve 37, while the boat 32.34 serves as a discharge port.
The check valve 38° 41 is closed via the second oil passage 36t, and a large oil pressure is guided from the check valve 42 to the relief valve 40 and acts there, but this oil pressure is also kept constant by the relief valve 40. A constant driving force is transmitted to the rear wheels 27, resulting in a four-wheel drive state. As a result, the brake torque to the rear wheels 27 is increased to prevent the front wheels 20 from locking.

又、−通常の旋回走行時には、前輪20の回転速度が後
輪27の回転速度よりわずかに大きく、前輪20にブレ
ーキトルクが作用し、後輪27にノ収動トルクが作用し
た四輪駆動状態となって旋回走行がなされる。
- During normal cornering, the rotational speed of the front wheels 20 is slightly higher than the rotational speed of the rear wheels 27, and a four-wheel drive state in which brake torque is applied to the front wheels 20 and retraction torque is applied to the rear wheels 27. As a result, turning movement is performed.

このようなベーンポンプ23a’i正確に働かせて信頼
性全確保するためには、インナーロータ30に放射状に
取付けられたベーン44の先端が常にカムリング29の
内周面に当接して油室28内に所望の静圧を発生させら
れるようにすることfr、第一に考慮する必要がある。
In order to operate the vane pump 23a'i accurately and to ensure full reliability, the tips of the vanes 44 radially attached to the inner rotor 30 must always come into contact with the inner peripheral surface of the cam ring 29 and enter the oil chamber 28. The first consideration is to be able to generate a desired static pressure.

〈発明が解決し、ようとする問題点〉 ところが特に、カムリング29の短径部においては、r
出室28内の圧力が高圧力となり、ベーン44底部が一
時的に低圧状態となってべ一744が内側に移動してし
まい、カムリング29の1勺周面に当接すべきベーン4
4が確実に当接しないことがあり、この隙間を通って吐
出ポートから吸入ポートに直接油が流れてしまい、油圧
が下がってトルク変動が生じ所望の伝達トルクを発生し
得ないという問題がある。これは遠心力によるベーン4
4の押上刃が十分に得られないインナーロータ30の低
回転域において顕著である。この問題を解決するため、
油圧差に抗する力でペー744をバネ等でインナーロー
タ30の径方向に押し上げることが考えられるが、油圧
差に抗するためにはパネカのかなり強いバネを用いる必
要がありスペース的に問題があり実現しにくいものであ
る。
<Problems to be solved by the invention> However, especially in the short diameter portion of the cam ring 29, r
The pressure inside the outlet chamber 28 becomes high, and the bottom of the vane 44 temporarily becomes a low pressure state, causing the bezel 744 to move inward, causing the vane 4 that should be in contact with the circumferential surface of the cam ring 29 to
4 may not come into contact with each other reliably, causing oil to flow directly from the discharge port to the suction port through this gap, resulting in a drop in oil pressure and torque fluctuations, resulting in the inability to generate the desired transmitted torque. . This is due to centrifugal force vane 4
This is noticeable in the low rotation range of the inner rotor 30 where the push-up blade of No. 4 cannot be sufficiently obtained. To solve this problem,
It is conceivable to use a spring or the like to push up the page 744 in the radial direction of the inner rotor 30 using a force that resists the oil pressure difference, but in order to resist the oil pressure difference, it is necessary to use a fairly strong spring made of paneka, which poses a problem in terms of space. This is difficult to achieve.

本発明は上記状況にかんがみてなされ念もので、インナ
ーロータに取付けられ念ベーンが、このベーンの先端部
と底部で圧力差が生じやすいカムリングの短径部であっ
ても、ベーン先端を常にカムリング内周面に押し当てる
ことのできるベーンポンプを提供し、もってベーンポン
プの信頼性向上を図ることを目的とする〇〈問題点を解
決する几めの手段・作用〉この目的を達成する念めの本
発明の構成は、内周面がカム形状をなすカムリング内に
インナーロータを相対回転自在に収納し、該インナーロ
ータの径方向に移動自在で先端が前記カムリングの内周
面に摺接するベーンを前記インナーロータ外周部に多数
装着し、前記インナーロータと前記カムリングの相対回
転により該インナーロータ、該カムリング及び前記ベー
ンによって囲まれる空間の容積ヲ変化させてそこに流体
圧を発生させるベーンポンプにおいて、前記ベーンが前
記カムリング短径部の内周面に当接している時該ベーン
の底面に当接するベーン押上げ部材を前記インナーロー
タもしくは前記カムリング側の少なくとも片側端面に設
けたことを特徴とするものであり、カムリングの短径部
においてベーンが必要以上に内側に移動しないようにし
て、ベーンをカムリングの内周面に確実に摺接させるよ
うにしたものである。
The present invention was developed in view of the above situation, and even if the vane is attached to the inner rotor and the vane is located at the short diameter part of the cam ring where a pressure difference is likely to occur between the tip and bottom of the vane, the tip of the vane is always kept in contact with the cam ring. The purpose of this book is to provide a vane pump that can be pressed against the inner circumferential surface, thereby improving the reliability of the vane pump. The structure of the invention is such that an inner rotor is relatively rotatably housed in a cam ring whose inner circumferential surface has a cam shape, and a vane that is movable in the radial direction of the inner rotor and whose tip is in sliding contact with the inner circumferential surface of the cam ring is provided. In the vane pump, a large number of vanes are attached to the outer periphery of an inner rotor, and the volume of a space surrounded by the inner rotor, the cam ring, and the vane is changed by relative rotation of the inner rotor and the cam ring, thereby generating fluid pressure therein. A vane pushing member that comes into contact with the bottom surface of the vane when the vane is in contact with the inner circumferential surface of the short diameter portion of the cam ring is provided on at least one end surface of the inner rotor or the cam ring. , the vane is prevented from moving inward more than necessary in the short diameter portion of the cam ring, and the vane is securely brought into sliding contact with the inner circumferential surface of the cam ring.

〈実施例〉 第1図は本発明の一実施例に係るベーンポンプ全表し、
第1図(a)にはその断面側面、第1図(b)にはその
カバーを外した状態の正面を示しである。尚、本実施例
は第2図及び第3図に示した四輪駆動車の駆llh機構
の 動力伝達装置に応用したものであり、同一部材には
同一符号?付して詳細な説明は省略する。
<Example> FIG. 1 is a complete representation of a vane pump according to an example of the present invention,
FIG. 1(a) shows a cross-sectional side view, and FIG. 1(b) shows a front view with the cover removed. This embodiment is applied to the power transmission device of the drive mechanism of a four-wheel drive vehicle shown in Figs. 2 and 3, and the same members are denoted by the same reference numerals. A detailed explanation will be omitted.

前輪用回転軸24の歯車が噛み合う入力歯車29aが外
周に形成されたカムリング29の一側面にはボルト45
によりカバー7ランジ46が取付けられ、他側面にはボ
ルト45によりブツシャリテーナ47f、介してアウト
プット7ランジ48が取付けられている。このカバー7
2ンジ46及びブツシャリテーナ47によってカムリン
グ29に形成される惰円形の油室28には、後輪用回転
軸22がブツシュ49とインナーロータ30に形成され
たスプライン30a’i介して一体的に連結され九円形
のインナーロータ30が回転自在に収納されており、こ
のインナーロータ30には、板状をなすベーン44を半
径方向に摺動自在に保持するベーン収納溝5゜が放射状
に形成されている。また、カバー7ランジ46には油室
28内に連通ずる四個のボート31,32,33.34
に連通ずる油路51が設けられ、ブツシャリテーナ47
に−はインナーロータ30に形成され念凹部30bに連
通してベーン押上げ用の油圧を供給するための油路52
が設けられている。インナーロータ3oの一端面側にお
けるベーン収納溝5o底部にはベーン押上部材であるリ
ング53が装着され、このリング53にはカムリング2
9の短径部でベー744の先端がカムリング29内周面
に摺接している時にベーン44の底面が当接するように
なっている。つまりカムリング29の短径部におけるベ
ーン44底面は、先端がカムリング29内周面【摺接し
ている状態でリング53に当接しており、ベーン44は
これ以上インナーロータ30の内周側には移動しないの
である。
A bolt 45 is attached to one side of the cam ring 29, which has an input gear 29a formed on the outer periphery with which the gear of the front wheel rotating shaft 24 meshes.
The cover 7 flange 46 is attached to the other side, and the output 7 lange 48 is attached to the other side via a bushing retainer 47f with bolts 45. This cover 7
The rear wheel rotating shaft 22 is integrally connected to the oil chamber 28 formed in the cam ring 29 by the second hinge 46 and the bushing retainer 47 via the bushing 49 and a spline 30a'i formed in the inner rotor 30. A connected nine-circular inner rotor 30 is rotatably housed in the inner rotor 30, and a vane storage groove 5° for holding a plate-shaped vane 44 slidably in the radial direction is formed in a radial manner. ing. Additionally, four boats 31, 32, 33.
An oil passage 51 communicating with the bush retainer 47 is provided.
An oil passage 52 is formed in the inner rotor 30 and communicates with the recess 30b to supply hydraulic pressure for pushing up the vane.
is provided. A ring 53, which is a vane pushing member, is attached to the bottom of the vane storage groove 5o on one end surface side of the inner rotor 3o, and the cam ring 2
When the tip of the vane 744 is in sliding contact with the inner peripheral surface of the cam ring 29 at the short diameter portion of the vane 9, the bottom surface of the vane 44 comes into contact. In other words, the bottom surface of the vane 44 at the short diameter portion of the cam ring 29 is in contact with the ring 53 with the tip thereof in sliding contact with the inner circumferential surface of the cam ring 29, and the vane 44 can no longer move toward the inner circumferential side of the inner rotor 30. I don't.

従って、カムリング29の短径部においてベーン44先
端部とベーン44底部に圧力差が生じても、ベーン44
はリング53に当接してそれ以上収納溝5oの内側には
移動しないので、常にベーン44先端部はカムリング2
9内周面に摺接し、隙間が生じて油圧が抜ける虞はなく
なる。
Therefore, even if a pressure difference occurs between the tip of the vane 44 and the bottom of the vane 44 at the short diameter portion of the cam ring 29, the vane 44
Since the vane 44 contacts the ring 53 and does not move further inside the storage groove 5o, the tip of the vane 44 always touches the cam ring 2.
9. Sliding contact with the inner circumferential surface eliminates the risk of hydraulic pressure leaking due to gaps.

用途は上記実施例に限らず各種機械等の流体圧用ポンプ
として広く用いることが可能である。
The application is not limited to the above embodiments, but can be widely used as a fluid pressure pump for various machines.

また、本実施例ではリング53をインナーロータ30に
設けたが、カムリング29と一体的なカバー等に設ける
ようにしても良い。
Furthermore, although the ring 53 is provided on the inner rotor 30 in this embodiment, it may be provided on a cover or the like that is integrated with the cam ring 29.

〈発明の効果〉 本発明によれば、ベーン先端部と底部に圧力差が生じや
すいカムリングの短径部においてもベーンの先端は常に
カムリング円周面に千4接する乏め、ベーン先端部とカ
ムリング内周面に隙間が生じることはなく、この隙間を
通って吐出ボートから吸入ポートに直接油が流れること
はなくなる。この結果、油圧が下がってトルク変効が生
じることがなくなり所屋の伝達トルクが安定して得られ
、ベーンポンプの(s 照性向上を図ることができる。
<Effects of the Invention> According to the present invention, even in the short diameter portion of the cam ring where a pressure difference is likely to occur between the vane tip and the bottom, the vane tip is always in contact with the cam ring circumferential surface. No gap is created on the inner peripheral surface, and oil does not flow directly from the discharge boat to the suction port through this gap. As a result, the oil pressure decreases and the torque effect does not occur, and the transmitted torque can be stably obtained, making it possible to improve the illumination of the vane pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るベーンボンプを表し、
第1図(a)はその断面側面図、第1図(b)はそのカ
バー金外した状態の正面図、第2図は本発明の対象とな
ったパートタイム四輪駆動車の駆動機構を表す機構概念
図、第3図はその動力伝達装置の構造を表す断面図であ
る。 図  面  中 28は油室、 29はカムリング、 30はインナーロータ、 44はベーン、 50はベーン収納溝、 53はリングでるる。 特許出願人  三菱自動車工業株式会社代理人 弁理士
  光石士部(他1名)第1図(0)
FIG. 1 shows a vane bomb according to an embodiment of the present invention,
Figure 1(a) is a cross-sectional side view, Figure 1(b) is a front view with the cover removed, and Figure 2 shows the drive mechanism of the part-time four-wheel drive vehicle that is the subject of the present invention. FIG. 3 is a sectional view showing the structure of the power transmission device. In the drawing, 28 is an oil chamber, 29 is a cam ring, 30 is an inner rotor, 44 is a vane, 50 is a vane storage groove, and 53 is a ring exit. Patent applicant Mitsubishi Motors Corporation agent Patent attorney Shibu Mitsuishi (and 1 other person) Figure 1 (0)

Claims (1)

【特許請求の範囲】[Claims]  内周面がカム形状をなすカムリング内にインナーロー
タを相対回転自在に収納し、該インナーロータの径方向
に移動自在で先端が前記カムリングの内周面に摺接する
ベーンを前記インナーロータ外周部に多数装着し、前記
インナーロータと前記カムリングの相対回転により該イ
ンナーロータ、該カムリング及び前記ベーンによって囲
まれる空間の容積を変化させてそこに流体圧を発生させ
るベーンポンプにおいて、前記ベーンが前記カムリング
短径部の内周面に当接している時該ベーンの底面に当接
するベーン押上げ部材を前記インナーロータもしくは前
記カムリング側の少なくとも片側端面に設けたことを特
徴とするベーンポンプ。
An inner rotor is relatively rotatably housed in a cam ring whose inner circumferential surface has a cam shape, and a vane that is movable in the radial direction of the inner rotor and whose tip is in sliding contact with the inner circumferential surface of the cam ring is provided on the outer circumference of the inner rotor. In a vane pump in which a large number of vanes are installed and the relative rotation of the inner rotor and the cam ring changes the volume of a space surrounded by the inner rotor, the cam ring, and the vane to generate fluid pressure therein, the vane has a short diameter of the cam ring. 1. A vane pump characterized in that a vane pushing member is provided on at least one end surface of the inner rotor or the cam ring, the vane pushing member contacting the bottom surface of the vane when the vane is in contact with the inner circumferential surface of the vane.
JP20449384A 1984-09-29 1984-09-29 Vane pump Pending JPS6183492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20449384A JPS6183492A (en) 1984-09-29 1984-09-29 Vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20449384A JPS6183492A (en) 1984-09-29 1984-09-29 Vane pump

Publications (1)

Publication Number Publication Date
JPS6183492A true JPS6183492A (en) 1986-04-28

Family

ID=16491438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20449384A Pending JPS6183492A (en) 1984-09-29 1984-09-29 Vane pump

Country Status (1)

Country Link
JP (1) JPS6183492A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240167A (en) * 1992-02-28 1993-09-17 Fusetora Kinzoku Kogyo Kk Vane pump
US5328337A (en) * 1990-08-17 1994-07-12 Kunta Norbert J Guided vanes hydraulic power system
US6412280B1 (en) 2000-05-11 2002-07-02 Thermal Dynamics, Inc. Fluid motor
US6616433B1 (en) 2001-12-06 2003-09-09 Thermal Dynamics, Inc. Fluid pump
US6688869B1 (en) 2002-09-11 2004-02-10 Thermal Dynamics, Inc. Extensible vane motor
US6784559B1 (en) 2002-02-28 2004-08-31 Thermal Dynamics, Inc. Fluid pressure regulator assembly with dual axis electrical generator
US6843436B1 (en) 2002-09-11 2005-01-18 Thermal Dynamics, Inc. Chopper pump
US6905322B1 (en) 2002-09-24 2005-06-14 Thermal Dynamics, Inc. Cam pump

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5328337A (en) * 1990-08-17 1994-07-12 Kunta Norbert J Guided vanes hydraulic power system
US5573035A (en) * 1990-08-17 1996-11-12 Kunta; Norbert J. Guided vanes hydraulic power system
JPH05240167A (en) * 1992-02-28 1993-09-17 Fusetora Kinzoku Kogyo Kk Vane pump
US6412280B1 (en) 2000-05-11 2002-07-02 Thermal Dynamics, Inc. Fluid motor
US6616433B1 (en) 2001-12-06 2003-09-09 Thermal Dynamics, Inc. Fluid pump
US6784559B1 (en) 2002-02-28 2004-08-31 Thermal Dynamics, Inc. Fluid pressure regulator assembly with dual axis electrical generator
US6688869B1 (en) 2002-09-11 2004-02-10 Thermal Dynamics, Inc. Extensible vane motor
US6843436B1 (en) 2002-09-11 2005-01-18 Thermal Dynamics, Inc. Chopper pump
US6905322B1 (en) 2002-09-24 2005-06-14 Thermal Dynamics, Inc. Cam pump

Similar Documents

Publication Publication Date Title
US6213241B1 (en) Power transmitting system in four-wheel drive vehicle
US3015970A (en) Fluid lock for differential
JPS6183492A (en) Vane pump
JPH01250625A (en) Driving coupler
JP3828782B2 (en) Torque cam mechanism
JP3676583B2 (en) Power transmission device for four-wheel drive vehicle
EP0337356B1 (en) Viscous coupling
JPS60227022A (en) Drive coupling device for 4 wheel drive
JPH0324903Y2 (en)
JPS6183493A (en) Vane pump
US4881626A (en) Power transmission apparatus for vehicle of four-wheel drive type
JPH0324904Y2 (en)
JPH0118418Y2 (en)
JPS6183494A (en) Vane pump
JPH0139623Y2 (en)
JPH0512093Y2 (en)
JPH0511060Y2 (en)
JPH07108839A (en) Power transmission for sour-wheel drive vehicle
JPS60176825A (en) Drive coupling device for four wheels drive vehicle
JPH059221Y2 (en)
JPH0440976Y2 (en)
JPH029210B2 (en)
JPH0512092Y2 (en)
JPH0215699Y2 (en)
JP4511759B2 (en) Power transmission device for four-wheel drive vehicle