JPS6183429A - Refrigerant temperature controller in evaporative cooling device for internal-combustion engine - Google Patents

Refrigerant temperature controller in evaporative cooling device for internal-combustion engine

Info

Publication number
JPS6183429A
JPS6183429A JP20295384A JP20295384A JPS6183429A JP S6183429 A JPS6183429 A JP S6183429A JP 20295384 A JP20295384 A JP 20295384A JP 20295384 A JP20295384 A JP 20295384A JP S6183429 A JPS6183429 A JP S6183429A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
condenser
liquid level
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20295384A
Other languages
Japanese (ja)
Inventor
Takao Kubotsuka
窪塚 孝夫
Yoshinori Hirano
芳則 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP20295384A priority Critical patent/JPS6183429A/en
Publication of JPS6183429A publication Critical patent/JPS6183429A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make refrigerant temperature controllable at will, by detecting liquid phase refrigerant temperature inside a refrigerant circulation closed circuit, while selectively operating a valve and an auxiliary refrigerant feeding device lying between a reservoir tank and a condenser lower part. CONSTITUTION:Liquid phase refrigerant temperature inside a refrigerant circulation closed circuit D is detected by a detecting device K, and when a value below a first setting temperature is detected, there is provided with a condenser inner liquid level upping control device L which operates a solenoid valve F, interconnecting a reservoir tank E and the lower part of a condenser B, and an auxiliary refrigerant feeding device H in a selective manner. With this constitution, a radiating area of the condenser B is varied to some extent whereby radiating efficiency is adjusted for increase or decrease, thus refrigerant temperature is controllable at will.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は冷却ジャケット内に液相冷媒を貯留しておき、
その沸賊気化により内燃機関の冷却を行うとともに、発
生した冷媒蒸気をコンデンサにより凝縮して再利用する
ようにした内燃機関の沸騰冷却装置の冷媒温度制御装置
に関し詳しくはコンデンサ内冷媒液位上昇制御を行って
冷媒温度の過冷却を防止する装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention stores a liquid phase refrigerant in a cooling jacket,
The internal combustion engine is cooled by vaporization of the boiling point, and the generated refrigerant vapor is condensed in a condenser and reused.For details, please refer to the refrigerant temperature control device for the boiling cooling system of the internal combustion engine. The present invention relates to a device for preventing overcooling of refrigerant temperature.

〈従来の技術〉 内燃機関の温度は周知のように機関の熱効率や充填効率
或いは耐ノツク性能等に直接に影響する他、油粘性によ
る摩擦損失等に影響し、機関の燃料消費率や最大出力、
或いは騒音の大小等を左右する要因となる。しかし従来
の一般的な水冷式冷却装置にあっては、サーモスタット
にて流路を切り換えることによりY!を機時の過度の冷
却を防゛止している程度に過ぎず、温度制御はなされて
いないに等しい。
<Prior art> As is well known, the temperature of an internal combustion engine not only directly affects the engine's thermal efficiency, charging efficiency, and anti-knock performance, but also affects friction loss due to oil viscosity, and affects the engine's fuel consumption rate and maximum output. ,
Alternatively, it becomes a factor that influences the level of noise. However, in conventional general water-cooled cooling devices, Y! It merely prevents excessive cooling during operation, and it is as if there is no temperature control.

また、電動ファンのオンオフにより温度制御を行おうと
しても冷却系内に多量の冷却水が循環しており、その全
体の温度変化を待たなければならないので、負荷や回転
速度等、運転条件に応じて可変的に設定した目標温度に
応答性良(追従させることは全(不可能であり、上述し
た熱効率等を考慮した高精度な温度制御は到底実現でき
ないものである。
In addition, even if you try to control the temperature by turning the electric fan on and off, a large amount of cooling water is circulating in the cooling system, and you have to wait for the overall temperature to change. It is impossible to follow the target temperature variably set with good responsiveness, and highly accurate temperature control that takes into account the above-mentioned thermal efficiency and the like cannot be achieved at all.

一方、上記のような冷却水の単純な温度変化を利用した
冷却装置に対し、冷媒(冷却水)の液相−気相の相変化
を利用した冷却装置も種々提案されている(例えば特公
昭57−57608号公報1、特開昭57−62912
号公報等)。
On the other hand, in contrast to the above-mentioned cooling devices that utilize simple temperature changes in cooling water, various cooling devices that utilize phase changes between liquid and gas phases of refrigerant (cooling water) have also been proposed (for example, the Publication No. 57-57608 1, JP 57-62912
Publications, etc.).

これは基本的には冷却ジャケット内で貯留状態にある液
相冷媒を沸騰させ、その発生蒸気を外部のコンデンサ(
ラジェータ)に導いて、放熱液化させた後に再度冷却ジ
ャケット内に循環供給する構成であって、冷却ジャケッ
ト内の各部の温度を冷媒沸点に均一に維持できると共に
、コンデンサにおける熱交換効率を凝縮潜熱を利用して
飛躍的に向上させ得る利点が指摘されている。
This basically boils the liquid phase refrigerant stored in the cooling jacket and transfers the generated vapor to the external condenser (
radiator), the heat is radiated and liquefied, and then the heat is liquefied and then circulated and supplied again into the cooling jacket.The temperature of each part in the cooling jacket can be uniformly maintained at the boiling point of the refrigerant, and the heat exchange efficiency in the condenser can be improved by reducing the latent heat of condensation. It has been pointed out that there are advantages that can be dramatically improved by using it.

そしてこのように相変化を利用する場合には、冷却ジャ
ケット内の圧力を可変制御することにより、液相冷媒の
沸点を任意にかつ速やかに変化させるので、運転条件に
応じた応答性の良い温度制御を実現し得る可能性がある
When utilizing phase change in this way, the boiling point of the liquid refrigerant can be arbitrarily and rapidly changed by variable control of the pressure inside the cooling jacket, so the temperature can be adjusted with good responsiveness according to the operating conditions. There is a possibility that control can be realized.

〈発明が解決しようとする問題点〉 しかし従来この種冷却装置においては、上記のように系
内圧力に応じて温度が直ちに変動するということは、む
しろこの種冷却装置の実用化を困難にする大きな欠点で
あると考えられていた。即ち冷却ジャケットやコンデン
サ等からなる冷却系内を密閉した構成では、例えば自動
車用機関に適用した場合に機関発熱量が広範に変化し、
しかも効率の良いコンデンサの放熱能力が車両走行風の
大小に殆ど支配されてしまうことから、両者の平衡がく
ずれ易くなり、これが直ちに温度変化として現れてしま
うので、コンデンサに対する冷°却ファンの送風量を多
少変化させた程度では到底制御することができないので
ある。
<Problems to be solved by the invention> However, in conventional cooling devices of this type, the fact that the temperature immediately changes depending on the system pressure as described above actually makes it difficult to put this type of cooling device into practical use. This was considered a major drawback. In other words, in a configuration in which the inside of the cooling system consisting of a cooling jacket, condenser, etc. is sealed, the amount of heat generated by the engine changes over a wide range when applied to an automobile engine, for example.
Moreover, since the heat dissipation capacity of an efficient capacitor is almost entirely controlled by the magnitude of the vehicle running wind, the balance between the two is easily disrupted, and this immediately appears as a temperature change. It is impossible to control it by changing it slightly.

それ故、上記の先行文献゛にみられるように従来装置で
は冷却系内を大気に一部で連通させて実質的に非密閉構
造とし、大気圧下での冷媒沸点に固定的に維持するよう
に構成しており、結局上述したような運転条件に応じた
温度制御は実現されていない。
Therefore, as seen in the above-mentioned prior document, in conventional devices, a part of the cooling system is communicated with the atmosphere to create a substantially non-sealed structure, and the boiling point of the refrigerant is fixedly maintained at atmospheric pressure. As a result, temperature control according to the operating conditions as described above has not been realized.

しかしながら、やはり沸騰冷却装置を密閉構造即ち閉回
路で構成し、上記の如(系内圧力を変化させて冷媒沸点
を上下させ、機関運転状態に応じて機関温度を自由に制
御したいものであることはいうまでもない。
However, it is still desirable to configure the boiling cooling system with a closed structure, that is, a closed circuit, and to freely control the engine temperature according to the engine operating state by changing the system pressure to raise or lower the refrigerant boiling point. Needless to say.

、そこで本発明者らは通常運転領域で冷媒循環閉回路を
構成することが可能な沸騰冷却装置を提供し、特に冷媒
沸点温度が低下し過ぎないようにして冷媒温度を自由に
制御可能にすることを目的とする。
Therefore, the present inventors have provided a boiling cooling device that can configure a closed refrigerant circulation circuit in a normal operating region, and in particular, allows the refrigerant temperature to be freely controlled by preventing the refrigerant boiling point temperature from decreasing too much. The purpose is to

〈問題点を解決するための手段) そのために本発明では第1図に示すように、液相冷媒が
貯留される内燃機関の冷却ジャケラ)Aと、気相冷媒が
凝縮され該凝縮された液相冷媒が下部に貯留されるコン
デンサBと、液相冷媒循環手段Cと、を介装し、冷却ジ
ャケットAで吸熱し蒸発した気相冷媒の潜熱をコンデン
サBにおいて放熱する冷媒循環閉口路りを備えると共に
、前記冷媒循環閉回路り外に設けられ予備液相冷媒が貯
留されるリザーバタンクEと、S亥すザーバタンクEと
前記コンデンサB下部とを電磁弁Fを介して連通ずる第
1補助冷媒通路Gと、前記リザーバタンクEと前記コン
デンサB下部とを補助冷媒供給手段Hを介して連通ずる
第2補助冷媒通路Iと、前記冷媒循環閉回路り内の圧力
を検出する圧力検出手段Jと、前記冷媒循環閉回路り内
の液相冷媒′温度を検出する温度検出手段にと、該温度
検出手段Kが第1の設定温度T1以下を検出した時に前
記電磁弁F及び補助冷媒供給手段Hを選択的に作動させ
るコンデンサ内液位上昇制御手段りと、を備え、該コン
デンサ内液位上昇制御手段りは、前記温度条件を満足す
ると共に、前記圧力検出手段Jが所定値P、を下まわる
圧力を検出したときに前記電磁弁Fを開弁作動させる第
1の制御手段L+と、前記圧力検出手段Jが所定値P、
以上の正圧を検出したとき及び前記圧力検出手段Jが所
定値P、を下まわる圧力を検出しかつ前記温度検出手段
Kが前記第1の設定温度T1より低い第2の設定温度T
2以下を検出したときに前記補助冷媒供給手段Hを作動
させる第2の制御手段L2と、を備える。
<Means for Solving the Problems> To this end, in the present invention, as shown in FIG. A closed refrigerant circulation path is provided in which a condenser B in which a phase refrigerant is stored in the lower part and a liquid phase refrigerant circulation means C are interposed, and the latent heat of the vapor phase refrigerant absorbed by the cooling jacket A and evaporated is radiated in the condenser B. and a first auxiliary refrigerant that communicates between the reservoir tank E and the lower part of the condenser B via a solenoid valve F. A passage G, a second auxiliary refrigerant passage I that communicates the reservoir tank E and the lower part of the condenser B via an auxiliary refrigerant supply means H, and a pressure detection means J that detects the pressure in the closed refrigerant circulation circuit. , temperature detection means for detecting the temperature of the liquid phase refrigerant in the refrigerant circulation closed circuit, and when the temperature detection means K detects a temperature equal to or lower than the first set temperature T1, the electromagnetic valve F and the auxiliary refrigerant supply means H a liquid level rise control means in the capacitor that selectively operates the liquid level rise control means in the capacitor, the liquid level rise control means in the capacitor satisfies the temperature condition and the pressure detection means J falls below a predetermined value P. a first control means L+ that opens the electromagnetic valve F when detecting a rotating pressure;
When the above positive pressure is detected, and the pressure detection means J detects a pressure lower than the predetermined value P, and the temperature detection means K detects a second set temperature T lower than the first set temperature T1.
2 or less, the second control means L2 operates the auxiliary refrigerant supply means H when the refrigerant supply means H is detected.

く作用〉 従ってかかる構成によると、冷媒温度が第1設定温度T
、以下に低下した場合には、冷媒循環閉1回路り内の圧
力をモニターし、該圧力が所定値P1以下の圧力であれ
ば第1の制御手段り、により電磁弁Fを開弁して、差圧
によりリザーバタンクE内の予備液相冷媒をコンデンサ
B内に補給しコンデンサB内の冷媒液面を上昇させる。
Therefore, according to this configuration, the refrigerant temperature is equal to the first set temperature T.
, if the pressure has decreased below a predetermined value P1, the pressure within the refrigerant circulation closed circuit is monitored, and if the pressure is below a predetermined value P1, the first control means opens the solenoid valve F. , the reserve liquid phase refrigerant in the reservoir tank E is replenished into the condenser B by the differential pressure, and the refrigerant liquid level in the condenser B is raised.

しかし検出圧力の誤動作等により前記差圧が小さいため
或いは電磁弁Fの故障・目詰まり等により上記冷媒補給
が充分になされず冷媒温度が低下し第2設定温度T2以
下に低下するような場合には、第2の制御手段り、によ
り補助冷媒供給手段Hを作動させて強制的にリザーバタ
ンクE内の予備液相冷媒をコンデンサB内に補給してコ
ンデンサB内の冷媒液面を更に上昇させる。まん前記圧
力が所定値21以上の正圧であれば電磁弁Fを開弁じて
もコンデンサB内の液相冷媒がリザーバタンクEに逆流
するだけであるので、電磁弁Fを閉弁し第2の制御手段
L2により補助冷媒供給手段Hを作動させて強制的に補
助冷媒をコンデンサB内に補充する。
However, if the differential pressure is small due to a malfunction of the detected pressure, or if the refrigerant is not replenished sufficiently due to a failure or clogging of the solenoid valve F, the refrigerant temperature drops below the second set temperature T2. The second control means operates the auxiliary refrigerant supply means H to forcibly replenish the preliminary liquid phase refrigerant in the reservoir tank E into the condenser B to further raise the refrigerant liquid level in the condenser B. . If the pressure is a positive pressure equal to or higher than the predetermined value 21, opening the solenoid valve F will only cause the liquid phase refrigerant in the condenser B to flow back into the reservoir tank E. Therefore, the solenoid valve F is closed and the second The control means L2 operates the auxiliary refrigerant supply means H to forcibly replenish the auxiliary refrigerant into the condenser B.

補助冷媒供給手段Hの作動はエネルギ的にロスし易いの
で単に電磁弁を開くだけで差圧により冷媒補給できる第
1補助冷媒通路Gを可及的に使用したいが、その不都合
発生時及び使用不能時には第2補助冷媒通路Iを使用す
るのである。このようにコンデンサ内における液相冷媒
の液面レベルを上昇制御することによりコンデンサの放
熱面積を変化して放熱効率を増減し、もって閉回路の系
内圧力を変化させて冷媒沸点の過度の低下を防止し所望
の冷媒温度を得るのである。これにより冷媒温度制御特
に過度の低温防止制御は、コンデンサの下部に貯留され
る液相冷媒の液面上昇制御によっても行うことができる
ようになり、走行風量変化による悪影響を充分に補償で
きるようになって、冷媒循環回路を閉回路に構成し、機
関発熱量が広範に変化する自動車用内燃機関の冷媒温度
の過度の低下を防止する。
Since the operation of the auxiliary refrigerant supply means H is likely to result in energy loss, we would like to use the first auxiliary refrigerant passage G, which can replenish refrigerant by differential pressure simply by opening the solenoid valve, as much as possible, but when such inconvenience occurs or the first auxiliary refrigerant passage G becomes unavailable. Sometimes the second auxiliary refrigerant passage I is used. In this way, by controlling the level of liquid refrigerant in the condenser to increase, the heat dissipation area of the condenser is changed to increase or decrease the heat dissipation efficiency, thereby changing the system pressure of the closed circuit and causing an excessive drop in the boiling point of the refrigerant. This prevents this and obtains the desired refrigerant temperature. As a result, refrigerant temperature control, especially control to prevent excessive low temperatures, can also be performed by controlling the rise in the liquid level of the liquid phase refrigerant stored at the bottom of the condenser, making it possible to sufficiently compensate for the adverse effects of changes in running air volume. Therefore, the refrigerant circulation circuit is configured as a closed circuit to prevent an excessive drop in the refrigerant temperature of an automobile internal combustion engine in which the engine heat value varies over a wide range.

〈実施例〉 以下に本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第2図は本発明の1実施例の構成を示し、内燃機関1は
運転中所定量の液相冷媒で満たされる冷却ジャケット2
を備えて、該冷却ジャケット2と気相冷媒を凝縮するた
めのコンデンサ3と、電動式の冷媒循環ポンプ4とを接
続して冷媒循環閉回路を構成している。
FIG. 2 shows the configuration of one embodiment of the present invention, in which an internal combustion engine 1 has a cooling jacket 2 which is filled with a predetermined amount of liquid phase refrigerant during operation.
The cooling jacket 2, a condenser 3 for condensing a gas phase refrigerant, and an electric refrigerant circulation pump 4 are connected to form a refrigerant circulation closed circuit.

冷却ジャケット2は、内燃機関1のシリンダ及び燃焼室
の外周部を包囲するようにシリンダブロック5及びシリ
ンダヘッド6の両者にわたって形成されたもので、通常
気相空間となる上部が各気筒、を通じて連通していると
共に、その上部の適宜な位置に蒸気比ロアが設けられて
いる。蒸気比ロアは接続管8及び蒸気通路9を介してコ
ンデンサ3の上部入口に連通している。接続管8には冷
媒循環系の最上部となる排出管取付部8aが上方に立ち
上がった形で形成されて、おり、その上端開口をキャッ
プが密閉している。
The cooling jacket 2 is formed over both the cylinder block 5 and the cylinder head 6 so as to surround the outer periphery of the cylinder and combustion chamber of the internal combustion engine 1, and the upper part, which is normally a gas phase space, communicates through each cylinder. At the same time, a steam ratio lower is provided at an appropriate position above it. The steam ratio lower communicates with the upper inlet of the condenser 3 via a connecting pipe 8 and a steam passage 9. The connecting pipe 8 is formed with a discharge pipe mounting part 8a which is the uppermost part of the refrigerant circulation system and stands upwardly, and the upper end opening thereof is sealed by a cap.

コンデンサ3は前記入口を有するアッパタンク11と上
下方向の微細なチューブを主体としたコア部12と、こ
のコア部12で凝縮された液化冷媒を一時貯留するロア
タンク13とから構成されたもので、例えば車両前部等
の車両走行風を受は得る位置に設置され、更にその前面
或いは背面に強制冷却用の電動式冷却ファン14を備え
ている。
The condenser 3 is composed of an upper tank 11 having the above-mentioned inlet, a core section 12 mainly consisting of fine vertical tubes, and a lower tank 13 that temporarily stores the liquefied refrigerant condensed in the core section 12. The cooling fan 14 is installed at a position such as the front of the vehicle that receives wind from the vehicle running, and is further provided with an electric cooling fan 14 for forced cooling on the front or back side.

また、前記ロアタンク13はその比較的下部に冷媒循環
通路15の一端が接続されていると共に、これより上部
に第1補助冷媒通路16の一端が接続されている。前記
冷媒!環通路15はその他端が冷却ジャケット2のシリ
ンダヘッド6側に設けた冷媒人口2aに接続されたもの
で、中間部に三方型の第2電磁弁17を備え、かつ該第
2電磁弁17とロアタンク13との間に冷媒循環ポンプ
4が介装されている。以上の冷却ジャケット2.コンデ
ンサ3゜冷媒循環ポンプ4.冷却ジャケット2の経路に
よって構成された冷媒循環閉回路により通常運転時には
、例えば水に若干の添加物を加えた冷媒が沸騰・凝縮を
繰り返しながら循環することになる。
Further, the lower tank 13 is connected to one end of a refrigerant circulation passage 15 at a relatively lower portion thereof, and one end of a first auxiliary refrigerant passage 16 is connected to an upper portion thereof. Said refrigerant! The other end of the ring passage 15 is connected to the refrigerant port 2a provided on the cylinder head 6 side of the cooling jacket 2, and the ring passage 15 is equipped with a three-way type second solenoid valve 17 in the middle part, and is connected to the second solenoid valve 17. A refrigerant circulation pump 4 is interposed between the lower tank 13 and the lower tank 13 . Above cooling jacket 2. Condenser 3° Refrigerant circulation pump 4. During normal operation, the refrigerant circulation circuit formed by the path of the cooling jacket 2 causes a refrigerant, for example, water with some additives added, to circulate while repeatedly boiling and condensing.

この循環閉回路の系外に設けられて、予備液相冷媒を貯
留するリザーバタンク21は通気機能を有するキャップ
22を介して大気に開放されていると共に、前記冷却ジ
ャケット2と略等しい高さ位置に設置され、かつその底
部に上記の第1補助冷媒通路16と、第2補助冷媒通路
23とが接続されている。そして第1補助冷媒通路16
の通路中には、常開型の第3電磁弁24が介装されてい
る。また、前記第2補助冷媒通路23は第2電磁弁17
を介して冷媒循環通路15に接続されている。第2電磁
弁17は非励磁状態では、冷媒循環通路15を遮断して
リザーバタンク21とロアタンク13との間を連通状態
としく流路A)、励磁されると第2補助冷媒通路23を
遮断して冷媒循環通路15を連通状態(流路B)とする
ものである。
A reservoir tank 21, which is provided outside the closed circulation circuit and stores a preliminary liquid phase refrigerant, is open to the atmosphere through a cap 22 having a ventilation function, and is located at approximately the same height as the cooling jacket 2. The first auxiliary refrigerant passage 16 and the second auxiliary refrigerant passage 23 are connected to the bottom thereof. and the first auxiliary refrigerant passage 16
A normally open third solenoid valve 24 is interposed in the passage. Further, the second auxiliary refrigerant passage 23 is connected to the second solenoid valve 17.
It is connected to the refrigerant circulation passage 15 via. When the second solenoid valve 17 is not energized, it blocks the refrigerant circulation passage 15 and establishes communication between the reservoir tank 21 and the lower tank 13 (flow path A), and when it is energized, it blocks the second auxiliary refrigerant passage 23. The refrigerant circulation passage 15 is placed in a communicating state (flow path B).

前記冷媒循環ポンプ4としては、正逆両方向に液相冷媒
を圧送できるものが用いられており、上記の流路Aの状
態で冷媒循環ポンプ4を正方向に駆動すれば、ロアタン
ク13からリザーバタンク21へ液相冷媒を強制排出で
き、また逆方向に駆動すればリザーバタンク21からロ
アタンク13へ液相冷媒を強制導入できる。従って第2
電磁弁17が流路Aを採った場合には冷媒循環ポンプ4
の逆転作用及び第2電磁弁17は補助冷媒供給手段とし
て機能する。また、流路Bの状態では冷媒循環ポンプ4
を正方向に駆動すれば、ロアタンク13から冷却ジャケ
ット2へ液相冷媒を循環供給する液相冷媒循環手段とし
て機能する。これら液相冷媒循環手段及び補助冷媒供給
手段は夫々別系統にして設けてもよい。
The refrigerant circulation pump 4 is one that can pump the liquid phase refrigerant in both forward and reverse directions.If the refrigerant circulation pump 4 is driven in the forward direction in the state of the flow path A described above, the refrigerant is pumped from the lower tank 13 to the reservoir tank. The liquid phase refrigerant can be forcibly discharged to the reservoir tank 21, and the liquid phase refrigerant can be forcibly introduced from the reservoir tank 21 to the lower tank 13 by driving in the opposite direction. Therefore, the second
When the solenoid valve 17 takes the flow path A, the refrigerant circulation pump 4
The reversing action of and the second solenoid valve 17 function as auxiliary refrigerant supply means. In addition, in the state of flow path B, the refrigerant circulation pump 4
When driven in the forward direction, it functions as a liquid phase refrigerant circulation means that circulates and supplies liquid phase refrigerant from the lower tank 13 to the cooling jacket 2. These liquid phase refrigerant circulation means and auxiliary refrigerant supply means may be provided in separate systems.

一方、上記した冷媒循環閉回路の最上部となる排出管取
付部8aには系内の空気を排出するための空気排出通路
25が接続されており、空気排出時に該空気排出通路2
5から同時に溢れ出た液相冷媒を回収するために、該空
気排出通路25の先端部をリザーバタンク21内に開口
している。この空気排出通路25には、常閉型の第1電
磁弁26が介装される。
On the other hand, an air discharge passage 25 for discharging air in the system is connected to the discharge pipe attachment part 8a which is the top of the refrigerant circulation closed circuit described above, and when air is discharged, the air discharge passage 25
In order to recover the liquid phase refrigerant simultaneously overflowing from the air discharge passage 25, the tip of the air discharge passage 25 is opened into the reservoir tank 21. A normally closed first solenoid valve 26 is interposed in the air exhaust passage 25 .

前記各電磁弁26.17.24と冷媒循環ポンプ4及び
冷却ファン14は、いわゆるマイクロコンピュータシス
テムを用いた制御装置31(後述する第1及び第2制御
手段を有するコンデンサ内液位上昇制御手段を含む)に
よって駆動制御されるもので、具体的には冷却シャケ、
ソト2に設けた第1液面センサ32.温度センサ33、
ロアタンク13に設けた第2液面センサ34及び循環回
路最上部に設けた圧力センサ35の各検出信号に基づい
て後述する制御が行われる。
The electromagnetic valves 26, 17, 24, the refrigerant circulation pump 4, and the cooling fan 14 are controlled by a control device 31 using a so-called microcomputer system (condenser liquid level rise control means having first and second control means to be described later). (including), specifically the cooling rack,
The first liquid level sensor 32 provided in the soto 2. temperature sensor 33,
Control described later is performed based on detection signals from a second liquid level sensor 34 provided in the lower tank 13 and a pressure sensor 35 provided at the top of the circulation circuit.

ここで、前記第1.第2液面センサ32.34は例えば
リードスイッチを利用したフロート式センサ等が用いら
れ、冷媒液面が設定レベルに達しているか否かをオンオ
フ的に検出するものであって、第1液面センサ32はそ
の検出レベルがシリンダヘッド6の略中間程度の高さ位
置に設定され、かつ第2液面センサ34はその検出レベ
ルが第1補助冷媒通路16の開口よりもわずかに上方の
高さ位置に設定されている。また、液相冷媒温度の検出
手段として機能する温度センサ33は、例えばサーミス
タからなり、前記第1液面センサ32の若干下方位置、
つまり通常液相冷媒内に没入する位置に設けられて、冷
却ジャケット2内の液相冷媒温度を検出している。また
圧力センサ35は、大気と冷媒循環系内圧力との差圧に
応動するダイヤフラムを用いたもので、高地、低地等に
係わらず、使用環境下における大気圧に対し、系内が所
定値P、以上の正圧であるか否かを検出する冷媒循環閉
回路の圧力検出手段を構成している。前記所定値P1は
大気圧近傍の値であって実際には正圧か負圧かを検出す
るといってもよい。尚その他の機関運転状態検出手段と
しての各種センサ、例えば機関回転センサ、機関吸入負
圧センサ等については図示していない。
Here, the above-mentioned 1. The second liquid level sensor 32,34 is a float type sensor using a reed switch, for example, and detects whether or not the refrigerant liquid level has reached a set level in an on/off manner. The detection level of the sensor 32 is set at a height approximately in the middle of the cylinder head 6, and the detection level of the second liquid level sensor 34 is set at a height slightly above the opening of the first auxiliary refrigerant passage 16. set in position. Further, the temperature sensor 33 that functions as a liquid phase refrigerant temperature detection means is made of, for example, a thermistor, and is located slightly below the first liquid level sensor 32;
That is, it is usually provided at a position immersed in the liquid phase refrigerant, and detects the temperature of the liquid phase refrigerant inside the cooling jacket 2. The pressure sensor 35 uses a diaphragm that responds to the differential pressure between the atmosphere and the internal pressure of the refrigerant circulation system, and the pressure sensor 35 uses a diaphragm that responds to the pressure difference between the atmosphere and the internal pressure of the refrigerant circulation system. , constitutes a pressure detection means of the refrigerant circulation closed circuit that detects whether or not the positive pressure is above. The predetermined value P1 is a value near atmospheric pressure, and it may be said that it actually detects whether the pressure is positive or negative. Other various sensors as means for detecting the engine operating state, such as an engine rotation sensor and an engine suction negative pressure sensor, are not shown.

第3図〜第12図は上記制御装置31において°実行さ
れる制御の内容を示すフローチャートであって、以下機
関の始動から停止までの流れに沿ってこれを説明する。
3 to 12 are flowcharts showing the details of the control executed by the control device 31, which will be explained below along the flow from starting to stopping the engine.

尚図中第1〜第3電磁弁26.17.24を夫々「電磁
弁■」、「電磁弁■」・・・のように略記してあり、ま
た冷却ジャケット2内液面をrC/H内液面」と略記し
である。
In the figure, the first to third solenoid valves 26, 17, and 24 are abbreviated as "Solenoid valve ■", "Solenoid valve ■", etc., respectively, and the liquid level inside the cooling jacket 2 is expressed as rC/H. It is abbreviated as "internal fluid level".

第3図は制御の概要を示すフローチャートであって、機
関の始動(イグニッションキーオン)により制御が開始
すると、Slのイニシャライズ処か再始動であるかを判
断する。具体的にはS2において温度センサ33による
検出温度が所定温度(例えば45℃)より高いか否かを
判断する。ここで所定温度以下、つまり冷機状態の初期
始動であればS3の空気排出制御を経てからS4の暖機
制御へ進み、暖機が完了した段階で35の温度制御に入
る。この場合S6において冷却ジャケット2内で冷媒液
面レベルが設定値以上にあるか否かを判断し、S7で第
2.第3電磁弁17.24の切換制御を行って88の冷
却ジャケット2内冷媒液面レベル制御を行う。S9にお
いては冷媒温度を判断し、S5で行う冷却ファン制御に
よる温度制御と共にSIO,S11. 512において
コンデンサ内の液面レベルを増減制御する。
FIG. 3 is a flowchart showing an outline of the control. When the control starts when the engine is started (ignition key turned on), it is determined whether to initialize the SL or to restart the engine. Specifically, in S2, it is determined whether the temperature detected by the temperature sensor 33 is higher than a predetermined temperature (for example, 45° C.). Here, if the temperature is below a predetermined temperature, that is, the initial start is in a cold state, the process goes through the air discharge control in S3 and then the warm-up control in S4, and when the warm-up is completed, the temperature control in step 35 is entered. In this case, in S6, it is determined whether the refrigerant liquid level in the cooling jacket 2 is higher than a set value, and in S7, the second. The third electromagnetic valve 17.24 is switched and controlled to control the refrigerant level 88 in the cooling jacket 2. In S9, the refrigerant temperature is determined, and along with the temperature control by cooling fan control performed in S5, SIO, S11. At 512, the liquid level in the capacitor is controlled to increase or decrease.

次に313において冷媒温度が異常高温にあり、かつ冷
却系内が21以上であることを判断した場合に、S14
において高温回避制御を行う。これら85〜S14の制
御ループをイグニッションキーオフ時まで繰り返し行う
Next, if it is determined in step 313 that the refrigerant temperature is abnormally high and that the temperature inside the cooling system is 21 or higher, step S14
High temperature avoidance control is performed at These control loops from 85 to S14 are repeated until the ignition key is turned off.

一方、S2で冷媒温度が所定温度以上の場合には再始動
時であると判断し、この場合には冷却系内に経時的な空
気の侵入が考えられないので、S3の空気排出制御は省
略する。
On the other hand, if the refrigerant temperature is higher than the predetermined temperature in S2, it is determined that it is time to restart, and in this case, it is unlikely that air will enter the cooling system over time, so the air exhaust control in S3 will be omitted. do.

またこの制御中にキーオフの信号が入力されると、第4
図に示す割り込み制御ルーチンが実行される。該割り込
み制御ルーチンについては後述する。
Also, if a key-off signal is input during this control, the fourth
The interrupt control routine shown in the figure is executed. The interrupt control routine will be described later.

庄りJし旧匪匪 第5図はS3の空気排出制御のフローチャートを示すも
のである。尚この機関始動の際に、通常系内は液相冷媒
(例えば水と不凍液の混合液)でほとんど満たされた状
態にあり、またリザーバタンク21には系内を完全に満
たし得る以上の液相冷媒が貯留されている。空気排出制
御はこの状態から更に系内を完全に満水状態とすること
によって空気を排出するものであり、まずS31で第1
電磁弁26を開、第2電磁弁17を流路A、第3電磁弁
24を閉と夫々制御し、S32で冷媒循環ポンプ4を逆
方向へ駆動開始する。
Figure 5 shows a flowchart of air exhaust control in S3. When the engine is started, the system is usually almost filled with liquid phase refrigerant (for example, a mixture of water and antifreeze), and the reservoir tank 21 has more liquid phase than can completely fill the system. Refrigerant is stored. Air discharge control is to discharge air by further filling the system completely with water from this state. First, in S31, the first
The solenoid valve 26 is opened, the second solenoid valve 17 is controlled to be in the flow path A, and the third solenoid valve 24 is to be closed, respectively, and the refrigerant circulation pump 4 is started to be driven in the reverse direction in S32.

これによりリザーバタンク21内の液相冷媒が第2補助
冷媒通路23を介して系内に導入される。これはS33
で所定時間、具体的には系内を満水にするに十分なよう
に予めプログラムタイマ■に設定された数秒ないし数十
秒程度の間、m続される。
Thereby, the liquid phase refrigerant in the reservoir tank 21 is introduced into the system via the second auxiliary refrigerant passage 23. This is S33
This continues for a predetermined period of time, specifically for a period of several seconds to several tens of seconds, which is set in advance on the program timer (2), which is sufficient to fill the system with water.

従って、系内に残存していた空気は系上部に集められた
後、空気排出通路25を介して系外のりザーバタンク2
1に強制的に排出される。そして所定時間経過した時点
で334において冷媒循環ポンプ4をオフにすると共に
、プログラムタイマ■を335でクリアし、第6図に示
す暖機制御(S5)へ進む。
Therefore, the air remaining in the system is collected in the upper part of the system and then passed through the air exhaust passage 25 to the reservoir tank 2 outside the system.
1 is forcibly ejected. When a predetermined period of time has elapsed, the refrigerant circulation pump 4 is turned off at 334, the program timer (3) is cleared at 335, and the process proceeds to warm-up control (S5) shown in FIG.

里1311鰻 暖機制御においてはコンデンサ3内は当然液相冷媒で満
たされた状態にあるから、コンデンサ3の放熱能力は極
めて低く抑制され、その結果冷却ジャケット2内の冷媒
温度が速やかに上昇してやがて沸騰が始まる。
In Sato 1311 eel warm-up control, the inside of the condenser 3 is naturally filled with liquid phase refrigerant, so the heat dissipation capacity of the condenser 3 is suppressed to an extremely low level, and as a result, the refrigerant temperature inside the cooling jacket 2 rises quickly. It will soon begin to boil.

暖機制御は基本的には冷却ジャケット2内の冷媒温度が
目標温度(設定値)に上昇するまでロアタンク13とリ
ザーバタンク21とを連通状態に保ったまま待機するも
のであり、従って341では第1電磁弁26を閉とし、
第2電磁弁17をB流路とし、第3電磁弁24を開とし
た状態で待機するものである。
The warm-up control is basically to wait while keeping the lower tank 13 and the reservoir tank 21 in communication until the refrigerant temperature in the cooling jacket 2 rises to the target temperature (set value). 1 Close the solenoid valve 26,
The second solenoid valve 17 is used as the B flow path, and the third solenoid valve 24 is kept open.

343では温度センサ33で検出した実際の検出温度と
342で設定された設定温度との比較を行い、検出温度
が「設定温度+2.0℃(=α3)」となったときに3
45で第3電磁弁24を閉じて系内を密閉状態とし、そ
の制御を終了する。
At 343, the actual detected temperature detected by the temperature sensor 33 is compared with the set temperature set at 342, and when the detected temperature becomes "set temperature + 2.0 degrees Celsius (=α3)", 3
At step 45, the third solenoid valve 24 is closed to seal the system, and the control ends.

一方、この暖機制御の間、系内は大気圧下比開放されて
いるため、設定温度が略100℃を越える場合等では、
発生蒸気圧によって系内の液相冷媒がリザーバタンク2
1に押し出される結果、冷媒温度が設定温度に達する前
に冷却ジャケット2内の液面やロアタンク13内の液面
が過度に低下する。
On the other hand, during this warm-up control, the inside of the system is released to atmospheric pressure, so if the set temperature exceeds approximately 100°C,
Due to the generated vapor pressure, the liquid phase refrigerant in the system is transferred to the reservoir tank 2.
As a result, the liquid level in the cooling jacket 2 and the liquid level in the lower tank 13 decrease excessively before the refrigerant temperature reaches the set temperature.

これに対処するため、いずれか一方の液面が第1液面セ
ンサ32或いは第2液面センサ34の設定レベルを下回
ったとき、即ちS44においてNOのときには直ちに3
45で系内を密閉してこの制御を終了する。
To deal with this, when the liquid level of either one falls below the set level of the first liquid level sensor 32 or the second liquid level sensor 34, that is, when the answer is NO in S44, the
At step 45, the system is sealed and this control is completed.

盈呈星皮圀囮 暖機制御の終了後は、前述したように85〜S14の制
御ループが繰り返されることになるが、この制御ループ
は冷却ファン14のオンオフにより微細な温度制御を行
うS5の第7図に示すファン制御と液相冷媒の循環供給
により、冷却シャケ7)2内の液面を設定レベル以上に
保つ第3図88の液面制御(シリンダヘッド内液−位低
下異常チェック制御を含む)(第8図)と、検出温度が
目標とする設定温度から比較的大きく離れた場合に実質
的放熱面積の拡大、或いは縮小を行う第3図512のコ
ンデンサ内液位低下制御(第10図)及び第3図512
の本発明に係るコンデンサ内液位上昇制御(第11図)
とに大別される。
After the warm-up control is completed, the control loop from 85 to S14 is repeated as described above. By controlling the fan shown in Fig. 7 and circulating supply of liquid phase refrigerant, the liquid level in the cooling basin 7) 2 is maintained at a set level or higher.Liquid level control shown in Fig. 3 88 (Cylinder head liquid level drop abnormality check control ) (Fig. 8) and the capacitor liquid level lowering control (Fig. Figure 10) and Figure 3 512
Liquid level rise control in the capacitor according to the present invention (Fig. 11)
It is broadly divided into.

まず前述したように第6図に示す暖機制御において検出
温度が「設定温度+2.0℃(=α、)」となった状態
でこの制御ループに進んできた場合について説明すると
、第7図の352.  S53で冷却ファン14をオン
とすると共に、既にS9における上限温度「設定温度+
2.0℃(=α3)」を越えているので、直ちに第10
図のコンデン内液位低下制御に入る。
First, as mentioned above, in the warm-up control shown in Fig. 6, we will explain the case where the detected temperature is "set temperature + 2.0°C (=α,)" and the control loop is started. 352. In S53, the cooling fan 14 is turned on, and the upper limit temperature "set temperature +
2.0℃ (= α3)'', so immediately
Enter the condenser liquid level lowering control as shown in the figure.

(コンデンサ内液位低下制御) このコンデンサ内液位低下制御はコンデンサ3内の液相
冷媒を冷媒循環ポンプ4によりリザーバタンク21へ強
制的に排出しくS61. 562) 、コンデンサ3内
の液面を低下させてコンデンサ3の放熱面積を拡大し、
放熱能力を高めるものであり、その排出は検出温度が「
設定温度+1.0℃(=α、)」の温度に低下するまで
継続され(S68. 569)、最後に系内を570で
密閉して終了する。上記の終了温度は冷却ファン14の
みに依存する条件であるS9の上限温度「設定温度+2
.0℃(=α3)」と下限温度「設定温度−4,0°c
 (=α4)」の範囲内でかつ設定温度より若干高温側
に設定しであるが、これは液面の下降に対する温度変化
の応答性を考慮したものである。
(Condenser internal liquid level lowering control) This condenser internal liquid level lowering control is performed by forcibly discharging the liquid phase refrigerant in the condenser 3 to the reservoir tank 21 by the refrigerant circulation pump 4 in S61. 562), lowering the liquid level in the capacitor 3 to expand the heat dissipation area of the capacitor 3,
It increases the heat dissipation ability, and its discharge is when the detected temperature is "
The process continues until the temperature drops to the set temperature + 1.0°C (=α,) (S68. 569), and finally the system is sealed at 570 and the process ends. The above end temperature is the upper limit temperature of S9 "set temperature + 2" which is a condition that depends only on the cooling fan 14.
.. 0℃ (=α3)" and the lower limit temperature "Set temperature -4.0℃
(=α4)" and slightly higher than the set temperature, this is done in consideration of the responsiveness of temperature change to a drop in the liquid level.

液相冷媒の設定温度(設定値)は機関回転速度と負荷と
の関係において随時機械的に設定される(電子燃料噴射
式内燃機関の場合は負荷は噴射パルス幅等を検出する)
The set temperature (set value) of the liquid phase refrigerant is mechanically set at any time based on the relationship between the engine rotation speed and the load (in the case of an electronic fuel injection internal combustion engine, the load is detected by the injection pulse width, etc.)
.

(冷却ジャケット内冷媒液面低下異常チェック制御) 一方、上記コンデンサ3内の冷媒をリザーバタンク21
内へ排出する間にも冷却ジャケット2内では冷媒が沸騰
し続けるので、徐々にその液面が低下していく。この冷
却ジャケット2側液面が設定レベル以下となった場合に
は、これを第8図の355で判断し、358の冷却ジャ
ケット2内冷媒液面低下異常チェック制wJ(第9図)
を行う。
(Abnormality check control for low refrigerant liquid level in cooling jacket) On the other hand, the refrigerant in the condenser 3 is transferred to the reservoir tank 21.
Since the refrigerant continues to boil within the cooling jacket 2 even while being discharged into the cooling jacket 2, its liquid level gradually decreases. If the liquid level on the cooling jacket 2 side falls below the set level, this is judged at 355 in Fig. 8, and the abnormality check system wJ for lowering the refrigerant liquid level in the cooling jacket 2 at 358 (Fig. 9) is performed.
I do.

即ち、冷却ジャケット2内液位低下が871でプログラ
ムタイマ■により所定時間例えば10秒以内である場合
にはS72に進んで冷媒循環ポンプ4を正転させて、第
2電磁弁17を流路B、第3電磁弁24を閉として、一
時コンデンサ3から冷却ジャケット2へ液相冷媒の補給
を行って、第1液面センサ32の設定レベルに冷却ジャ
ケット内液位制御を行う。
That is, if the liquid level in the cooling jacket 2 has decreased within a predetermined time, for example, 10 seconds according to the program timer (871), the process proceeds to S72, where the refrigerant circulation pump 4 is rotated in the forward direction, and the second solenoid valve 17 is closed to the flow path B. , the third electromagnetic valve 24 is closed, liquid phase refrigerant is temporarily replenished from the condenser 3 to the cooling jacket 2, and the liquid level in the cooling jacket is controlled to the level set by the first liquid level sensor 32.

若し371で冷却ジャケット内の冷媒液面低下が10〜
20秒以上継続したことがわかった場合には異常である
と判断し、コンデンサ3のロアタンク13に冷媒を補給
制御しつつ冷却ジャケット2にロアタンク13内の冷媒
供給を行う。即ちS73で圧力センサ35により系内が
所定値20以上の正圧を下まわるか否か判断する。下ま
わる(実質的に負圧)場合にはS75で第2電磁弁17
をB流路、冷媒循環ポンプ4を正転のまま第3電磁弁2
4を開とすれば、リザーバタンク21内の予備液相冷媒
は圧力差によりコンデンサ3のロアタンク13内に導入
されるから、コンデンサ3内の液相冷媒はその液面レベ
ル低下が防止されつつ同時にロアタンク13から冷却ジ
ャケット2内へ補給され冷却ジャケット2内の冷媒液面
を上昇させて第1液面センサ32の設定レベルへ復帰さ
せる。
If 371, the refrigerant liquid level in the cooling jacket decreases by 10~
If it is found that it has continued for 20 seconds or more, it is determined that there is an abnormality, and the refrigerant in the lower tank 13 of the condenser 3 is controlled to be supplied with the refrigerant, and the refrigerant in the lower tank 13 is supplied to the cooling jacket 2. That is, in S73, it is determined by the pressure sensor 35 whether the pressure inside the system has fallen below a predetermined positive pressure of 20 or more. If the pressure decreases (substantially negative pressure), the second solenoid valve 17 is activated in S75.
B flow path, the third solenoid valve 2 with the refrigerant circulation pump 4 in normal rotation.
4 is opened, the preliminary liquid phase refrigerant in the reservoir tank 21 is introduced into the lower tank 13 of the condenser 3 due to the pressure difference, so that the liquid level of the liquid phase refrigerant in the condenser 3 is prevented from decreasing and at the same time. The refrigerant is replenished from the lower tank 13 into the cooling jacket 2, raising the refrigerant liquid level in the cooling jacket 2 and returning it to the level set by the first liquid level sensor 32.

S73で系内が21以上であることがわかった場合には
、S74でプログラムタイマ■が10〜20秒の範囲で
液面レベルが継続して異常低下していれば、第2電磁弁
17をA流路に切り換えかつ第3電磁弁24を閉じた状
態で冷媒循環ポンプ4を逆転させる。
If it is found in S73 that the temperature in the system is 21 or higher, then in S74 the program timer ② indicates that if the liquid level continues to be abnormally low within the range of 10 to 20 seconds, the second solenoid valve 17 is activated. The refrigerant circulation pump 4 is reversed while switching to the A flow path and closing the third solenoid valve 24.

これによりリザーバタンク21内の予備液相冷媒は冷媒
循環ポンプ4により強制的にコンデンサ3内に圧送補給
され、ロアタンク13内の冷媒液面レベルを上昇する。
As a result, the reserve liquid phase refrigerant in the reservoir tank 21 is forcibly pumped and replenished into the condenser 3 by the refrigerant circulation pump 4, and the refrigerant liquid level in the lower tank 13 is raised.

次に21以上にある冷却ジャケット2内の冷媒液面が所
定レベルより低下してから10〜20秒間の上記コンデ
ンサ内冷媒液面上昇制御が行われた後でも未だ冷却ジャ
ケット2内の液面レベルが設定値以下の場合にはS76
に進んでプログラムタイマ■をクリアし、再び371に
戻ってその後10秒以内は再びS72に進みコンデンサ
のロアタンク13から補給した冷媒を冷却ジャケット2
内に供給する。
Next, even after the refrigerant liquid level in the cooling jacket 2 which is at 21 or higher falls below a predetermined level and the above-mentioned refrigerant liquid level increase control in the condenser is performed for 10 to 20 seconds, the liquid level in the cooling jacket 2 still remains. is less than the set value, S76
Proceed to S72 to clear the program timer ■, return to 371, and then proceed to S72 again within 10 seconds to transfer the refrigerant supplied from the lower tank 13 of the condenser to the cooling jacket 2.
supply within.

これらの繰り返し作用により、冷却ジャケット2内の液
面レベル異常低下防止と同時にコンデンサ内の冷媒液面
レベルの異常低下防止を図る。
These repeated actions prevent an abnormal drop in the liquid level in the cooling jacket 2 and at the same time prevent an abnormal drop in the refrigerant liquid level in the condenser.

このようにして冷却ジャケット2内に比較約6たい冷媒
が補給される結果、冷媒液面異常低下が防止され、沸騰
冷却が継続されて燃焼室壁のオーバーヒートが防止され
ると共に冷却ジャケット2内の冷媒温度が低下し蒸気圧
が低下するから系内圧力が低下して液相冷媒過少による
冷媒沸点上昇が抑制され、キャビテーションの発生を未
然に防止する。
As a result of replenishing the cooling jacket 2 with approximately 60% of the refrigerant in this way, an abnormal drop in the refrigerant liquid level is prevented, boiling cooling is continued, and overheating of the combustion chamber wall is prevented, and the inside of the cooling jacket 2 is prevented from overheating. Since the refrigerant temperature is lowered and the vapor pressure is lowered, the internal pressure of the system is lowered, and an increase in the boiling point of the refrigerant due to insufficient liquid phase refrigerant is suppressed, thereby preventing the occurrence of cavitation.

向上記コンデンサ内液面低下制御を行うにあたり万一コ
ンデンサ3内の液面を最大限に低下させても、放熱能力
不足が回避できずに第2液面センサ34による設定レベ
ルにまで液面が下降してしまった場合には、系内の蒸気
がリザーバタンク21内へ流出するのを防止するために
367でこれを判断し、S70において第2電磁弁17
をB流路とし、上記コンデンサ3内の冷媒液面低下制御
を解除す゛る。
In carrying out the liquid level reduction control in the capacitor mentioned above, even if the liquid level in the capacitor 3 is lowered to the maximum, insufficient heat dissipation capacity cannot be avoided and the liquid level will reach the level set by the second liquid level sensor 34. If it has fallen, this is determined in step 367 in order to prevent the steam in the system from flowing into the reservoir tank 21, and in step S70 the second solenoid valve 17 is
is designated as the B flow path, and the control for lowering the refrigerant liquid level in the condenser 3 is canceled.

また、同様の理由から第3図SIOでコンデンサ3内の
液面が第2液面センサ34の設定レベル以下である場合
にも上記コンデンサ3内水位低下制御を行わない。
Furthermore, for the same reason, even when the liquid level in the condenser 3 is below the set level of the second liquid level sensor 34 in SIO of FIG. 3, the water level reduction control in the condenser 3 is not performed.

一方、上記のようにコンデンサ3内の液面が適、宜に制
御されて機関発熱量とコンデンサ3の放熱量とがその沸
点のもとで略平衡し、系内が密閉された後は、第3図3
5で示すファン制御による冷媒温産制′4′B(第7図
)と、S8に示す冷媒循環ポンプ4による液面制御に基
づく冷媒温度制御(第8図)とを繰り返し行う。
On the other hand, after the liquid level in the condenser 3 is appropriately controlled as described above, the amount of heat generated by the engine and the amount of heat dissipated from the condenser 3 are approximately balanced at their boiling point, and the system is sealed. Figure 3 3
The refrigerant temperature production control '4'B (FIG. 7) by fan control shown in S8 and the refrigerant temperature control based on liquid level control by the refrigerant circulation pump 4 (FIG. 8) shown in S8 are repeatedly performed.

(ファン制御による冷媒温度制御) 第7図に示すファン制御においては、系内温度を更に高
精度に、具体的には「設定温度+0.5℃(=α1)」
と「設定温度−0,5℃(=α2)」との間(S52)
に維持するように冷却ファン14のみをオンオフ制御(
S53. 554)する。
(Refrigerant temperature control by fan control) In the fan control shown in Fig. 7, the system temperature can be controlled with even higher accuracy, specifically, "set temperature + 0.5°C (=α1)"
and “set temperature -0.5℃ (=α2)” (S52)
ON/OFF control of only the cooling fan 14 so as to maintain the cooling fan 14 (
S53. 554) Do.

(ポンプ制御による液面制御) また、液面制御においては第8図に示すように冷却ジャ
ケット2内の液面が設定レベル以下となった場合に、こ
れを555で判断し、コンデンサ3側から冷却ジャケッ
ト2へと液相冷媒を供給し、その液面を設定レベルに保
持する(S56. 557)。
(Liquid level control by pump control) In addition, in liquid level control, as shown in FIG. A liquid phase refrigerant is supplied to the cooling jacket 2, and the liquid level is maintained at a set level (S56.557).

冷却ジャケット2内液面が設定レベル以下の場合には、
358で示すように冷却ジャケット2内液位低下異常チ
ェック制御を行う。これは、既に第9図において説明し
た。
If the liquid level inside cooling jacket 2 is below the set level,
As shown at 358, an abnormality check control for a drop in the liquid level in the cooling jacket 2 is performed. This has already been explained in FIG.

(コンデンサ内液位上昇制御) また、車両走行風の増大等の外乱や運転条件の変化に伴
う設定温度自体の変化によって系内温度が39の下限温
度(第1設定温度)T、=r設定温度−4,0℃(=α
4)」を下回った場合には、第11図に示す本発明に係
るコンデンサ3内液位上昇制御を開始する。これは、リ
ザーバタンク21内の液相冷媒をコンデンサ3側に導入
して、コンデンサ3内の液面を上昇させることにより放
熱能力を抑制する制御である。具体的には液相冷媒の導
入に際して系内外の圧力差を利用した冷媒導入(第1制
御手段)と冷媒循環ポンプ4の逆方向駆動による強制導
入(第2制御手段)と、を併用し゛ている。即ち、圧力
センサ35の信号により系内が381でP、を下まわる
(実質的には負圧)状態にある場合には、制御装置31
の第1制御手段によりS82で第3電磁弁24を開とし
、第2電磁弁17をB流路にして第1補助冷媒通路16
を介し、系内外の圧力差を利用した冷媒導入を行う。こ
の冷媒導入は検出温度が「設定温度−3,0“C(=α
k)」の温度に上昇するまで継続され(S84. 58
5) 、最後に系内を586において密閉して終了する
(Liquid level rise control in the capacitor) In addition, due to disturbances such as an increase in vehicle running wind or changes in the set temperature itself due to changes in operating conditions, the system internal temperature may be lowered to 39 lower limit temperature (first set temperature) T, = r setting Temperature -4.0℃ (=α
4), the liquid level increase control in the capacitor 3 according to the present invention shown in FIG. 11 is started. This is a control in which the liquid phase refrigerant in the reservoir tank 21 is introduced into the condenser 3 side to raise the liquid level in the condenser 3, thereby suppressing the heat dissipation ability. Specifically, when introducing the liquid phase refrigerant, a combination of refrigerant introduction using the pressure difference inside and outside the system (first control means) and forced introduction by driving the refrigerant circulation pump 4 in the opposite direction (second control means) are used. There is. That is, when the signal from the pressure sensor 35 indicates that the pressure inside the system is below 381P (substantially negative pressure), the control device 31
The third solenoid valve 24 is opened in S82 by the first control means of
The refrigerant is introduced using the pressure difference inside and outside the system. When this refrigerant is introduced, the detected temperature is "set temperature - 3.0"C (=α
k)' (S84.58
5) Finally, the inside of the system is sealed at 586 to complete the process.

上記の終了温度は、やはり液面の上昇に対する温度変化
の応答性を考慮したものである。またこの冷媒導入中に
冷却ジャケット2内の液相冷媒が不足した場合には、冷
媒循環ポンプ4による冷媒補給を383で行う。これは
第8図において説明した。
The above-mentioned end temperature also takes into account the responsiveness of temperature change to the rise in the liquid level. If the liquid phase refrigerant in the cooling jacket 2 becomes insufficient during this refrigerant introduction, the refrigerant is replenished by the refrigerant circulation pump 4 in step 383. This was explained in FIG.

系内が21以上にある場合、或いは上述の冷媒導入中に
21以上となった場合には、制御装置31の第2制御手
段がa能してS87に進み第3電磁弁24を閉とし、冷
媒循環ポンプ4の逆方向駆動によりリザーバダンク21
からコンデンサ3内へ液相冷媒を強制導入する(S89
. 590)。この強制導入の場合も検出温度が「設定
温度−3,0℃(−α、)」の温度に上昇するまで継続
される(384. 385)。
If the temperature in the system is 21 or more, or if it becomes 21 or more during the above-mentioned refrigerant introduction, the second control means of the control device 31 is activated and the process proceeds to S87 to close the third solenoid valve 24, The reservoir dunk 21 is driven in the reverse direction of the refrigerant circulation pump 4.
The liquid phase refrigerant is forcibly introduced into the condenser 3 (S89
.. 590). This forced introduction also continues until the detected temperature rises to "set temperature -3.0°C (-α,)" (384, 385).

また、この冷媒導入中に388により冷却ジャケット2
内の液相冷媒が不足したことを知った場合には、第2電
磁弁17を流路Bに切換えて冷媒循環ポンプ4を正方向
に駆動し、冷媒の補給を行う (588、S91. 5
92)。
Also, during this refrigerant introduction, the cooling jacket 2 is
If it is determined that there is a shortage of liquid phase refrigerant in the refrigerant, the second solenoid valve 17 is switched to flow path B and the refrigerant circulation pump 4 is driven in the forward direction to replenish the refrigerant (588, S91.5
92).

ところで381〜S85のフローを第1制御手段によっ
て行っても冷媒温度が低下し〔設定値−110’C(=
α7)〕=第2設定温度T2以下となった場合には、第
3電磁弁24を開弁じて差圧によりリザーバタンク21
内の予備液相冷媒をコンデンサ3に導入してもコンデン
サ内冷媒液位が要求量だけ上昇せず、コンデンサ3の放
熱量が勝って冷媒温度が低下したと判断する。その原因
としては圧力センサ35が検出するPlに該センサ35
の故障等により狂いが生じる等してコンデンサ3とリザ
ーバタンク21との間の差圧が充分でなくなったこと、
第3電磁弁24が故障し或いは詰まりを生じて゛第1補
助冷媒通路16の通路面積が絞られ若しくは遮断され冷
媒導入が円滑になされなくなったこと、更にはリザーバ
タンク21内の予備液相冷媒が不足したこと等が考えら
れる。このような場合には393で警報器37を作動さ
せることにより異常警告を行って故障の発見、修復を促
すと同時に第2制御手段の作用により前記した388〜
392に基づき冷媒循環ポンプ4を作動させて第2補助
冷媒通路23を介しリザーバタンク21内の予備液相冷
媒を強制的にコンデンサ3に補給し、コンデンサ3内の
冷媒液面レベルを上昇させてコンデンサ3の放熱面積を
縮小し、放熱量を低減して冷媒温度を上昇させる。
By the way, even if the flow from 381 to S85 is performed by the first control means, the refrigerant temperature decreases [set value -110'C (=
α7)] = If the temperature is lower than the second set temperature T2, the third solenoid valve 24 is opened and the differential pressure is used to cool the reservoir tank 21.
Even if the preliminary liquid phase refrigerant inside the capacitor is introduced into the condenser 3, the refrigerant liquid level in the condenser does not rise by the required amount, and it is determined that the amount of heat dissipated from the condenser 3 is superior and the refrigerant temperature has decreased. The cause of this is that Pl detected by the pressure sensor 35 is
The differential pressure between the capacitor 3 and the reservoir tank 21 is no longer sufficient due to a malfunction or the like.
The third solenoid valve 24 has failed or become clogged, and the passage area of the first auxiliary refrigerant passage 16 has been constricted or blocked, making it impossible to smoothly introduce the refrigerant. It is possible that there was a shortage. In such a case, the alarm 37 is activated in step 393 to issue an abnormality warning to urge discovery and repair of the malfunction, and at the same time, the second control means operates to activate the alarm 37 as described in steps 388 to 393.
392, the refrigerant circulation pump 4 is operated to forcibly replenish the reserve liquid phase refrigerant in the reservoir tank 21 to the condenser 3 via the second auxiliary refrigerant passage 23, thereby raising the refrigerant liquid level in the condenser 3. The heat radiation area of the capacitor 3 is reduced, the amount of heat radiation is reduced, and the refrigerant temperature is increased.

尚、上記シリンダヘッド内の冷媒液面制御は本発明の対
象とするものではない。
Note that the control of the refrigerant liquid level in the cylinder head is not a subject of the present invention.

上記のコンデンサ内液位上昇制御の結果、系内温度がS
85で〔設定値−α4℃)=T、以下〔設定値−α6℃
〕以上に導かれた後は、386に進みやはり前述した冷
却ファン14のみによる第7図に示す温度制御が行われ
る。
As a result of the above liquid level rise control in the capacitor, the system temperature is S
At 85, [setting value - α4℃) = T, below [setting value - α6℃
] After being guided above, the process proceeds to 386, where the temperature control shown in FIG. 7 is performed using only the cooling fan 14 described above.

このようにコンデンサ3内の液面制御は系内温度を常に
「設定温度+2.0°C」と「設定温度−4,0℃」の
範囲内に導くように89で行われるものであり、例えば
運転条件の急変により設定温度が大きく変化した場合に
も、コンデンサ3の放熱能力を広範囲にかつ速やかに変
化させ得ると共に、これによる凝縮量変化が直ちに冷却
ジャケット2側冷媒の沸騰の抑制、促進として影響を及
ぼすので、極めて良好に設定温度に追従させることがで
きる。
In this way, the liquid level inside the capacitor 3 is controlled at 89 so that the system temperature is always kept within the range of "set temperature +2.0°C" and "set temperature -4.0°C". For example, even if the set temperature changes significantly due to a sudden change in operating conditions, the heat dissipation capacity of the condenser 3 can be changed quickly and widely, and the resulting change in the amount of condensation immediately suppresses and promotes boiling of the refrigerant on the cooling jacket 2 side. Therefore, it is possible to follow the set temperature extremely well.

そして冷却ファン14の制御は系内温度を更に「設定温
度±0.5 c Jの範囲内(S52)に導くように行
われ、これによって一層高精度でかつ応答性の良い温度
制御が達成されるものである。
The cooling fan 14 is then controlled to further bring the temperature within the system within the set temperature range of ±0.5 cJ (S52), thereby achieving temperature control with even higher precision and better responsiveness. It is something that

次に第4図及び第12図に基づき、機関のイグニッショ
ンキーがオフ操作された場合に割り込み処理されるキー
オフ制御について説明する。
Next, based on FIGS. 4 and 12, a description will be given of key-off control that is interrupted when the ignition key of the engine is turned off.

これはまず設定温度を3102で80℃に設定すること
により前述したコンデンサ3内液位低下制御を行わせ、
コンデンサ3の放熱能力を最大限に利用すると共に、5
103で設定された最大10秒゛程度に冷却ファン14
を駆動して強制冷却(3103、5104、553) 
L、系内が十分低い温度(例えば80℃)になる(SI
OI )か、或いは一定時間(例えば60sec)経過
したこと(S106)を条件として電源をオフ(S10
7)とする。この電源オフにより常閉型電磁弁である第
1電磁弁26は閉に、常開型電磁弁である第3電磁弁2
4は開となるため、系内の温度低下、つまり圧力低下に
伴ってリザーバタンク21から第1補助冷媒通路16を
介して液相冷媒が自然に忠犬され、最終的には系全体が
液相冷媒で満たされた状態になって次の始動に備えるこ
とになる。
This is done by first setting the set temperature to 80°C at 3102 to perform the above-mentioned liquid level reduction control in the condenser 3,
In addition to making maximum use of the heat dissipation capacity of capacitor 3,
Cooling fan 14 for a maximum of 10 seconds set in 103
Forced cooling by driving (3103, 5104, 553)
L, the temperature inside the system becomes sufficiently low (e.g. 80°C) (SI
OI) or after a certain period of time (for example, 60 seconds) has passed (S106), the power is turned off (S10).
7). By turning off the power, the first solenoid valve 26, which is a normally closed solenoid valve, is closed, and the third solenoid valve 2, which is a normally open solenoid valve, is closed.
4 is open, liquid-phase refrigerant is naturally drawn from the reservoir tank 21 through the first auxiliary refrigerant passage 16 as the temperature in the system decreases, that is, the pressure decreases, and eventually the entire system becomes liquid. It will be filled with phase refrigerant and ready for the next start.

また上記の液相冷媒の導入の際には、コンデンサ3を経
由して系内に流入するので、運転中に何らかの原因でわ
ずかに空気が侵入し、微細なコンデンサチューブ内に付
着した場合でも、系上方へ確実な排出が行われる。
Furthermore, when introducing the liquid phase refrigerant, it flows into the system via the condenser 3, so even if a small amount of air enters for some reason during operation and adheres to the inside of the condenser tube, Reliable discharge to the upper part of the system is performed.

一方、上記のキーオフ制御中に再度イグニッションキー
がオン操作される場合もあるが、この場合には第4図に
おけるS16の判断でS18〜S21へ進み、予めS1
5で退避させた情報に基づいて冷却ファン14及び設定
温度を復帰させると共に、5103゜3106のプログ
ラムタイマ■、■を518でクリアし、キーオフ前に進
行していた制御状態に戻すのである。
On the other hand, the ignition key may be turned on again during the key-off control described above, but in this case, the process proceeds to S18 to S21 based on the determination in S16 in FIG.
The cooling fan 14 and the set temperature are restored based on the information saved in step 5, and the program timers (5103 and 3106) are cleared in step 518 to return to the control state that was in progress before the key was turned off.

向上記実施例において、冷媒の温度制御を温度センサに
より実際の冷媒温度を検出してこれをフィードバックす
るようにしたが、本発明では必ずしもフィードバック制
御をすることは要件でなく、オーブン市111卸するよ
うにしてもよいものである。
In the embodiment described above, the temperature of the refrigerant is controlled by detecting the actual refrigerant temperature using a temperature sensor and feeding it back. However, in the present invention, it is not necessarily a requirement to perform feedback control. It may be done as follows.

〈発明の効果〉 以上述べたように本発明によると、通常運転領域で冷媒
循環閉回路を構成し、コンデンサ内冷媒液位上昇制御を
行うようにしたから、走行風量変化等の外乱による冷媒
温度の過度の低下を防止でき、系内温度を設定温度に速
やかに追従させることが可能となる。
<Effects of the Invention> As described above, according to the present invention, a refrigerant circulation closed circuit is configured in the normal operating range and control is performed to increase the refrigerant liquid level in the condenser, so that the refrigerant temperature due to external disturbances such as changes in running air volume is reduced. It is possible to prevent the temperature from decreasing excessively and to quickly make the system temperature follow the set temperature.

また上記コンデンサ内冷媒液位王昇制御は、リザーバタ
ンク内に貯留した予備液相冷媒を系内外の差圧によるコ
ンデンサ内への導入と補助冷媒供給手段による強制導入
との併用とし、系内外の差圧を利用した場合に補助冷媒
供給手段の作動によるエネルギロスを低減する一方、系
内外の差圧利用による補助冷媒導入量が何らかの原因で
不足し又は導入不能となって冷媒温度が低下した場合に
は補助冷媒供給手段に切り換えて補助冷媒の補給を行う
ようにしたので、確実に冷媒温度の過度の低下を防止で
きる。
In addition, the above-mentioned refrigerant liquid level raising control in the condenser uses both the introduction of the preliminary liquid phase refrigerant stored in the reservoir tank into the condenser by the differential pressure between the inside and outside of the system and the forced introduction by the auxiliary refrigerant supply means. While energy loss due to the operation of the auxiliary refrigerant supply means is reduced when differential pressure is used, if the amount of auxiliary refrigerant introduced by using the differential pressure inside and outside the system is insufficient or cannot be introduced for some reason, and the refrigerant temperature drops. Since the auxiliary refrigerant supply means is switched to replenish the auxiliary refrigerant, an excessive drop in refrigerant temperature can be reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成をブロックで示す概念図、
第2図は本発明の1実施例を示す構成説明図、第3図〜
第12図は夫々本実施例における制御の内容を示すフロ
ーチャートである。 1・・・内燃機関  2.A・・・冷却ジャケット3、
C・・・コンデンサ  4・・・冷媒循環ポンプ14.
8・・・冷却ファン  15・・・冷媒循環通路16、
G・・・第1補助冷媒通B   17・・・第2電磁弁
(電磁弁F)   21.E・・・リザーバタンク23
、■・・・第2補助冷媒通路  24・・・第3電磁弁
31・・・制御装置  33・・・温度センサ(温度検
出手段K)35・−・圧力センサ(圧力検出手段J)3
7・・・警報器  D・・・液相冷媒循環手段  H・
・・補助冷媒供給手段  L・・・コンデンサ内液位上
昇制御手段  L、・・・第1制御手段  L2・・・
第2制御手段 特許出願人  日産自動車株式会社 代理人 弁理士 笹 島  冨二雄 第6図 第7図 第8図
FIG. 1 is a conceptual diagram showing the basic configuration of the present invention in blocks;
FIG. 2 is a configuration explanatory diagram showing one embodiment of the present invention, and FIGS.
FIG. 12 is a flowchart showing the details of control in this embodiment. 1... Internal combustion engine 2. A...cooling jacket 3,
C... Condenser 4... Refrigerant circulation pump 14.
8... Cooling fan 15... Refrigerant circulation passage 16,
G...First auxiliary refrigerant passage B 17...Second solenoid valve (Solenoid valve F) 21. E...Reservoir tank 23
, ■... Second auxiliary refrigerant passage 24... Third solenoid valve 31... Control device 33... Temperature sensor (temperature detection means K) 35... Pressure sensor (pressure detection means J) 3
7...Alarm device D...Liquid phase refrigerant circulation means H.
...Auxiliary refrigerant supply means L...Liquid level rise control means in the condenser L,...First control means L2...
Second control means patent applicant: Nissan Motor Co., Ltd. Agent Patent attorney Fujio SasashimaFigure 6Figure 7Figure 8

Claims (1)

【特許請求の範囲】[Claims] 液相冷媒が貯留される内燃機関の冷却ジャケットと、気
相冷媒が凝縮され該凝縮された液相冷媒が下部に貯留さ
れるコンデンサと、液相冷媒循環手段と、を介装し、冷
却ジャケットで吸熱し蒸発した気相冷媒の潜熱をコンデ
ンサにおいて放熱する冷媒循環閉回路を備えると共に、
前記冷媒循環閉回路外に設けられ予備液相冷媒が貯留さ
れるリザーバタンクと、該リザーバタンクと前記コンデ
ンサ下部とを電磁弁を介して連通する第1補助冷媒通路
と、前記リザーバタンクと前記コンデンサ下部とを補助
冷媒供給手段を介して連通する第2補助冷媒通路と、前
記冷媒循環閉回路内の圧力を検出する圧力検出手段と、
前記冷媒循環閉回路内の液相冷媒温度を検出する温度検
出手段と、該温度検出手段が第1の設定温度T_1以下
を検出した時に前記電磁弁及び補助冷媒供給手段を選択
的に作動させるコンデンサ内液位上昇制御手段と、を備
え、該コンデンサ内液位上昇制御手段は、前記温度条件
を満足すると共に、前記圧力検出手段が所定値P_1を
下まわる圧力を検出したときに前記電磁弁を開弁作動さ
せる第1の制御手段と、前記圧力検出手段が所定値P_
1以上の正圧を検出したとき及び前記圧力検出手段が所
定値P_1を下まわる圧力を検出しかつ前記温度検出手
段が前記第1の設定温度T_1より低い第2の設定温度
T_2以下を検出したときに前記補助冷媒供給手段を作
動させる第2の制御手段と、を備えたことを特徴とする
内燃機関の沸騰冷却装置における冷媒温度制御装置。
A cooling jacket for an internal combustion engine in which a liquid-phase refrigerant is stored, a condenser in which a gas-phase refrigerant is condensed and the condensed liquid-phase refrigerant is stored in the lower part, and a liquid-phase refrigerant circulation means. It is equipped with a refrigerant circulation closed circuit that radiates the latent heat of the vapor phase refrigerant absorbed and evaporated in the condenser, and
a reservoir tank provided outside the refrigerant circulation closed circuit and storing a preliminary liquid phase refrigerant; a first auxiliary refrigerant passage communicating the reservoir tank and the lower part of the condenser via a solenoid valve; and the reservoir tank and the condenser. a second auxiliary refrigerant passage communicating with the lower part via an auxiliary refrigerant supply means, and a pressure detection means for detecting the pressure within the refrigerant circulation closed circuit;
Temperature detection means for detecting the liquid phase refrigerant temperature in the refrigerant circulation closed circuit, and a capacitor that selectively operates the electromagnetic valve and the auxiliary refrigerant supply means when the temperature detection means detects a first set temperature T_1 or lower. an internal liquid level rise control means, the condenser internal liquid level rise control means operates the solenoid valve when the temperature condition is satisfied and the pressure detection means detects a pressure below a predetermined value P_1. The first control means for opening the valve and the pressure detection means operate at a predetermined value P_
1 or more positive pressure is detected, the pressure detection means detects a pressure below a predetermined value P_1, and the temperature detection means detects a second set temperature T_2 or lower which is lower than the first set temperature T_1. A refrigerant temperature control device in an evaporative cooling device for an internal combustion engine, comprising: a second control device that sometimes operates the auxiliary refrigerant supply device.
JP20295384A 1984-09-29 1984-09-29 Refrigerant temperature controller in evaporative cooling device for internal-combustion engine Pending JPS6183429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20295384A JPS6183429A (en) 1984-09-29 1984-09-29 Refrigerant temperature controller in evaporative cooling device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20295384A JPS6183429A (en) 1984-09-29 1984-09-29 Refrigerant temperature controller in evaporative cooling device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6183429A true JPS6183429A (en) 1986-04-28

Family

ID=16465896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20295384A Pending JPS6183429A (en) 1984-09-29 1984-09-29 Refrigerant temperature controller in evaporative cooling device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6183429A (en)

Similar Documents

Publication Publication Date Title
JPS6183413A (en) High-temperature anomaly avoiding controller in evaporative cooling apparatus of internal-combustion engine
JPS61247819A (en) Evaporative cooling device for internal-combustion engine
JPH0692730B2 (en) Boiling cooling device for internal combustion engine for vehicles
JPH0475369B2 (en)
JPS6183410A (en) Coolant-temperature controller in evaporative cooling apparatus of internal-combustion engine
JPS60122223A (en) Evaporative cooler of internal-combustion engine
JPS6183429A (en) Refrigerant temperature controller in evaporative cooling device for internal-combustion engine
JPH0447226B2 (en)
JPS6183427A (en) Anomaly diagnosing apparatus in evaporative cooling apparatus for internal-combustion engine
JPS6183414A (en) Air-discharge controller for evaporative cooling apparatus
JPS6183430A (en) Self-diagnoser in evaporative cooling device for internal-combustion engine
JPS6183433A (en) Refrigerant liquid level controller inside cooling jacket in evaporative cooling device for internal-combustion engine
JPS6183412A (en) Controller for coolant liquid level of cooling jacket in evaporative cooling apparatus for internal-combustion engine
JPH0452430Y2 (en)
JPS6183411A (en) Air-discharge controller of evaporative cooling apparatus of internal-combustion engine
JPH0324828Y2 (en)
JPS61129417A (en) Evaporative cooling apparatus of internal-combustion engine
JPS6181515A (en) Evaporative cooling device for internal-combustion engine
JPS6181517A (en) Evaporative cooling device for internal-combustion engine
JPS6183431A (en) Anomaly-diagnosing device in evaporative cooling device for internal-combustion engine
JPS6183432A (en) Refrigerant liquid level controller inside cooling jacket in evaporative cooling device for internal-combustion engine
JPS61201815A (en) Evaporative cooling device for internal-combustion engine
JPS63134811A (en) Cooling device of internal combustion engine
JPH0422708A (en) Fluidized evaporative cooling device of engine
JPS6183428A (en) Anomaly diagnosing apparatus in evaporative cooling apparatus for internal-combustion engine