JPS61129417A - Evaporative cooling apparatus of internal-combustion engine - Google Patents

Evaporative cooling apparatus of internal-combustion engine

Info

Publication number
JPS61129417A
JPS61129417A JP25267384A JP25267384A JPS61129417A JP S61129417 A JPS61129417 A JP S61129417A JP 25267384 A JP25267384 A JP 25267384A JP 25267384 A JP25267384 A JP 25267384A JP S61129417 A JPS61129417 A JP S61129417A
Authority
JP
Japan
Prior art keywords
refrigerant
water jacket
temperature
condenser
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25267384A
Other languages
Japanese (ja)
Inventor
Yoshinori Hirano
芳則 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25267384A priority Critical patent/JPS61129417A/en
Priority to US06/802,358 priority patent/US4646688A/en
Publication of JPS61129417A publication Critical patent/JPS61129417A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2285Closed cycles with condenser and feed pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/18Indicating devices; Other safety devices concerning coolant pressure, coolant flow, or liquid-coolant level

Abstract

PURPOSE:To enable an in-system temperature to be promptly controlled in a follow-up manner to the target temperature with no influence by a disturbance of vehicle ran air or the like, by forcedly lifting a level of coolant fluid in a condenser, in the case of an apparatus cooling an engine by evaporation of a liquid phase coolant. CONSTITUTION:An internal-combustion engine 1 constitutes a coolant circulating system by connecting a water jacket 2, condenser 3 condensing coolant vapor generated by heating in this water jacket 2 and a supply coolant pump 4 through a coolant circulating passage 15 or the like into a closed circuit. A portion in the downstream side of the pump 4 in the above described coolant circulating passage 15 connects a reservoir tank 21 through a three-way type solenoid valve 16 and an auxiliary coolant passage 23. While the uppermost part of the coolant circulating system is connected with a bottom part of the reservoir tank 21 by an air discharge passage 24 interposing a normally open type solenoid valve 25. And each solenoid valve 16, 25 and the pump 4 are controlled through a control device 31 in accordance with an output of a liquid level sensor 32 and a temperature sensor 33 additionally provided in the water jacket 2.

Description

【発明の詳細な説明】 産業上の利用分野 この発明け、ウォータジャケット内に液相冷媒を貯留し
ておき、その沸騰気化により内燃機関の冷却?行うとと
もに、発生した冷媒蒸気をコンデンサにより凝縮して再
利用するようにした内燃機関の沸騰冷却装薫に関する、 従来の技術 内燃機関の温度は、周知のように機関の熱効率や充填効
率あるいけ耐ノツク性能などに直接に影響するほか、油
粘性による摩擦損失などに影響し、機関の燃料消費率や
最大出力あるいけ騒音の大小などを左右する要因となる
。しかし、従来の一般的な水冷式冷却偏置にあっては、
サーモスタットにて流1i!を切換えることにより暖機
時の過度の冷却を防止している程度に過ぎず、温度制御
はなされていないに等しいっまt1電勅ファンの0N−
OFFにより温度別(11を行おうとしても、冷却系内
に多量の冷却水が循環しており、その全体の温度変化を
時定なければならないので、負荷や回転速度等運転条件
に応じて可変的に設定し九目標温度に応答性良く追従さ
せることは全く不可能であり、上述しt熱効率等を考慮
しt高精度な温度別aは到底実現できない。
[Detailed Description of the Invention] Industrial Application Field This invention stores a liquid phase refrigerant in a water jacket and cools an internal combustion engine by boiling and vaporizing the liquid phase refrigerant. Conventional technology related to boiling cooling systems for internal combustion engines, in which the generated refrigerant vapor is condensed in a condenser and reused In addition to directly affecting knock performance, it also affects friction loss due to oil viscosity, and is a factor that affects the engine's fuel consumption rate, maximum output, and noise level. However, in the conventional general water-cooled cooling system,
Flow 1i with thermostat! This only prevents excessive cooling during warm-up by switching the 0N-
Temperature-dependent by OFF It is completely impossible to set the target temperature accurately and follow the target temperature with good response, and considering the above-mentioned thermal efficiency and the like, it is impossible to realize a highly accurate temperature classification a.

一部、上記のような冷却水の単純な温度変化を利用し念
冷却装着に対し、冷媒(冷却水)の液相−気相の相変化
を利用した冷却!、曖も種々提案されている(例えば特
公昭57−57608号公報。
In contrast to the above-mentioned deep cooling system that utilizes simple temperature changes in the cooling water, cooling that utilizes the phase change between the liquid phase and gas phase of the refrigerant (cooling water)! Various types of ambiguity have also been proposed (for example, Japanese Patent Publication No. 57-57608).

特開昭57−62912号公報等)っこれは基本的には
、ウォータジャケット内で貯留状懇にある液相冷媒を沸
騰させ、その発生蒸気を外部のコンデンサ(ラジェータ
)に導いて放熱液化させた後に、再度ウォータジャケッ
ト内に循環供給する構成であって、ウォータジャケット
内の各部の温度全冷媒線点に均一に維持でさるとともに
、コンデンサにおける熱交換効率を飛躍的に同上させ得
る利点が指摘されている。そして、このように相変化を
利用する場合にげ、ウォータジャケット内の圧力?可変
制御することにより液相確媒の沸点を任意にかつ速やか
に変化させ得るので、運転条件に応じt応答性の良い温
度別−を実現し得るoT能性がある。
(Japanese Unexamined Patent Publication No. 57-62912, etc.) This basically involves boiling the liquid phase refrigerant stored in the water jacket, and guiding the generated vapor to an external condenser (radiator) to liquefy the heat. After that, the refrigerant is circulated and supplied again into the water jacket, which has the advantage of maintaining the temperature uniformly at all refrigerant line points in each part of the water jacket, and dramatically increasing the heat exchange efficiency in the condenser. has been done. And if you use phase change like this, what about the pressure inside the water jacket? Since the boiling point of the liquid phase solid medium can be arbitrarily and quickly changed by variable control, there is an OT capability that can realize temperature-specific temperature response with good response depending on the operating conditions.

発明が解決しようとする問題点 しかし、従来このa冷却装4Rにおいては、上記のよう
に系内圧力に応じて温度が直ちに変動するということに
、むしろこの種冷却装置の実用化を困難にする大きな欠
点であると考えられていtつすなわち、ウォータジャケ
ットやコンデンサ等からなる冷却系内を密閉し之構成で
は、例えば自動雇用機関に適用しt場合に、機関発熱量
が広範に変化し、しη為も効率の良いコンデンサの放熱
能力が1自走行風の大小に殆ど支配されてしまうことか
ら、両者の平衡が崩れ易いとともに、これが直ちに温度
変化として現われてしまい、コンデンサに対する冷却フ
ァンの送風tを多少変化させ九程度でに到底制倒するこ
とができないのである。
Problems to be Solved by the Invention However, in the conventional A cooling system 4R, the temperature immediately changes depending on the system pressure as described above, which actually makes it difficult to put this type of cooling system into practical use. One of the major drawbacks is that the configuration in which the cooling system consisting of water jackets, condensers, etc. is hermetically sealed causes engine heat generation to vary widely when applied to, for example, automatic employment agencies. η Also, since the heat dissipation capacity of an efficient capacitor is mostly controlled by the size of the self-propelled wind, the equilibrium between the two is easily disrupted, and this immediately appears as a temperature change, causing the cooling fan's air flow to the capacitor to be reduced. It is impossible to bring it down by changing it to some extent and changing it to around 9.

それ故、上記の特公昭57−57608号公報や%開開
57−62912号公報に見られるように、従来装置で
に、冷却系内を大気に一部で連通させて実質的に非密閉
構造とし、大気圧下での冷媒沸点に固定的に維持するよ
うに構成しており、結局、上述しtような運転条件に応
じ定温度制御は実現されていない。
Therefore, as seen in the above-mentioned Japanese Patent Publication No. 57-57608 and Japanese Patent Application Publication No. 57-62912, conventional devices have a substantially non-sealed structure by partially communicating the inside of the cooling system with the atmosphere. The boiling point of the refrigerant is fixedly maintained at atmospheric pressure, and as a result, constant temperature control according to the operating conditions as described above has not been realized.

teウォータジャケット等からなる冷却系内全密閉構造
とする場合には、系内から不凝縮気体である空気全十分
に除去する必要があり、仮に系内IC空気が残存しt状
態で冷却系を密閉し九とすると、コンデンサの放熱能力
を著しく低下させてしまい、異常高温を招来する虞れが
ある。
If the cooling system is completely sealed with a water jacket, etc., it is necessary to thoroughly remove all the air, which is a non-condensable gas, from the system. If the capacitor is sealed tightly, the heat dissipation ability of the capacitor will be significantly reduced, which may lead to abnormally high temperatures.

この発明框上記のような技術的背景の下になされたもの
であって、その目的とするところは、密閉した冷却系内
刃為ら空気を確実に除去することができ、かつ自動亘用
機関のように機関発熱量や冷却に供される車両走行風量
が広範に変化するような場合でめっても、機関温度t−
機関運転条件等に応じて確実にかつ応答性良く制御し得
る沸騰冷却装fit?提供することにある。また気に他
の目的框、冷媒通路等の構成を極力簡素化し、かつポン
プ等の制到丁べ1!機MR部品が少ない構成とすること
にある。
This invention was made against the above-mentioned technical background, and its purpose is to be able to reliably remove air from the inner blades of a sealed cooling system, and to be able to use an automatic passing mechanism. In cases where the amount of heat generated by the engine and the amount of air flowing through the vehicle used for cooling vary widely, the engine temperature t-
A boiling cooling system that can be controlled reliably and with good responsiveness according to engine operating conditions, etc.? It is about providing. In addition, we have simplified the configuration of other purpose frames, refrigerant passages, etc. as much as possible, and we have also made sure to keep the pumps etc. in one place! The purpose is to have a configuration with fewer MR parts.

問題点全解決するtめの手段 この発明に係る内燃機関のS#冷却装置tは、液相冷媒
が貯留されるウォータジャケットと、このウォータジャ
ケットで発生しfta媒蒸気が導入され、かつ下部に凝
縮し九液相冷媒が貯留されるコンデンサと、上記コンデ
ンサの下部と上記クォータジャケットとを連通し之冷媒
循環通路とを備えており、これらによって構成きれる密
閉しt冷媒循環系に対し、その外部にリザーバタンクが
設けられている。補助冷媒通路に、一端が上記乍媒循環
通路に接続され、かつ他端が上記リザーバタンクに接続
てれている。上記冷媒循環通路のコンデンサと補助冷媒
通路接続部との間には、正逆両方向へ送給可能vc構成
されt冷媒供給ポンプが介装されており、かつ上記接続
部vcに、上記冷媒供給ボン1を上記ウォータジャケッ
トあるいは上記リザーバタンクに選択的に連通させる流
路切換機構が設けられろうこの流路切換機構は、例えば
三方型を磁弁あるいは複数の開閉型電磁弁などにて構成
されるO te上記冷媒循環系の最上部に空気排出通路の一端が接
続されている。この空気排出通路は、開閉弁を有し、か
つ他端に上記リザーバタンク内などにおいて大気開放さ
れている。壕tウォータジャケット内の液相冷媒の液面
位置を検出する液面検出手段と、ウォータジャケット内
の冷媒温Vt−直接あるいは間接に検出でる温度検出手
段とを有しており、更に上記冷媒供給ポンプ、流路切換
機mおよび開閉弁を所定のプログラムに従って制御する
制@装置を備えている。
Means for Solving All Problems The S# cooling device for an internal combustion engine according to the present invention includes a water jacket in which a liquid phase refrigerant is stored, a fta vapor generated in the water jacket is introduced, and a It is equipped with a condenser in which condensed liquid-phase refrigerant is stored, and a refrigerant circulation passage that communicates the lower part of the condenser with the quarter jacket. A reservoir tank is provided. One end of the auxiliary refrigerant passage is connected to the above-mentioned refrigerant circulation passage, and the other end is connected to the above-mentioned reservoir tank. Between the condenser of the refrigerant circulation passage and the auxiliary refrigerant passage connection part, a refrigerant supply pump configured to be able to feed in both forward and reverse directions is interposed, and the refrigerant supply pump is connected to the connection part VC. A flow path switching mechanism is provided for selectively communicating O 1 with the water jacket or the reservoir tank. One end of an air exhaust passage is connected to the top of the refrigerant circulation system. This air discharge passage has an on-off valve, and the other end is opened to the atmosphere within the reservoir tank or the like. It has a liquid level detection means for detecting the liquid level position of the liquid phase refrigerant in the water jacket, and a temperature detection means for directly or indirectly detecting the refrigerant temperature Vt in the water jacket, and further includes a temperature detection means for detecting the refrigerant temperature Vt in the water jacket directly or indirectly. It is equipped with a control device that controls the pump, flow path switching device m, and on-off valve according to a predetermined program.

作用 J:記のような構成において、通常の運転状態では、冷
媒循環系が密閉状態に保たれ、その内部で冷媒の沸S@
凝縮のサイクルが繰り返される。すなわち、クォータジ
ャケットにり適宜なレベルまで液相冷媒が貯留され、沸
騰によって液面が低下すると冷媒供給ボン1によってコ
ンデンサから凝縮回収し之液相冷媒が補給されろう ここでコンデンサの熱交換効率に、コンデンサ内部が液
相冷媒である場合と気相冷媒である場合とで著しく変化
し、上方に気相冷媒が、下方に液相冷媒が夫々共存する
状態では、気相冷媒の領域のみが実質的な放熱面積とな
る。使って、その液面の高さを制御することにより、放
熱能力を任意に、かつ広範囲に制御することができる。
Effect J: In the configuration described above, under normal operating conditions, the refrigerant circulation system is kept in a closed state, and the refrigerant boils inside the system.
The cycle of condensation is repeated. That is, the liquid phase refrigerant is stored in the quarter jacket to an appropriate level, and when the liquid level drops due to boiling, the liquid phase refrigerant is condensed and recovered from the condenser by the refrigerant supply bomb 1, and the liquid phase refrigerant is replenished. , there is a significant difference between when the inside of the condenser is liquid-phase refrigerant and when it is gas-phase refrigerant, and when gas-phase refrigerant coexists in the upper part and liquid-phase refrigerant in the lower part, only the gas-phase refrigerant area is substantially This is the heat dissipation area. By controlling the height of the liquid level using the liquid, the heat dissipation capacity can be controlled arbitrarily and over a wide range.

このコンデンサの液面制御は、流路切換機構の切換と冷
媒供給ポンプの送給方向の切換とによって、リザーバタ
ンクとの間で液相冷媒を強制的vc移@爆ぜることによ
り実現されるつ そして、上述し九ようにウォータジャケット等からなる
冷媒循環系は密閉状態にあるから、コンデンサの放#1
能力に二って定まる冷媒の凝縮量と、ウォータジャケッ
ト側での発熱量に応じeM気発生量との釣り合いが崩れ
ると、直ちに内部圧力が変動し、冷媒沸点の変化金来比
して、ウォータジャケット内の温度が速やかに上昇ある
いは下降する。これにより高精度かつ応答性の良い温度
制御全実現でき、しかもその側倒可能な温度範囲も、コ
ンデンサ全体を気相領域とし定場合と液相領域とし念場
合の放熱能力の差が極めて大きいことから、相当に広範
囲な温度側?illを行い得る。
This condenser liquid level control is realized by forcibly transferring the liquid phase refrigerant between the reservoir tank and the reservoir tank by switching the flow path switching mechanism and switching the feeding direction of the refrigerant supply pump. , As mentioned above, since the refrigerant circulation system consisting of the water jacket etc. is in a sealed state, the condenser discharge #1
If the balance between the amount of refrigerant condensation, which is determined by the capacity, and the amount of eM gas generated according to the amount of heat generated on the water jacket side is lost, the internal pressure will immediately fluctuate, and the water The temperature inside the jacket rises or falls quickly. This makes it possible to achieve temperature control with high precision and good responsiveness, and the temperature range that can be turned over is extremely large. From there, a fairly wide range of temperatures? ill.

−万、上記のように冷媒循環系を密閉状態として運転す
るには、系内刃1ら不凝縮気体である空気を除去する必
要があるが、これは例えば始動時などに、系内金液相冷
媒で完全に満tし、同時に空気排出通路を開路して空気
を押し出すことによって実現される。系内金液相冷媒で
満たすには、やはり冷媒供給ボン1によってリザーバタ
ンクから液相I?媒が強制的に導入される。
- In order to operate the refrigerant circulation system in a sealed state as described above, it is necessary to remove air, which is a non-condensable gas, from the blade 1 in the system. This is achieved by completely filling the phase refrigerant and at the same time opening the air exhaust passage to push out the air. To fill the system with gold liquid phase refrigerant, the liquid phase I? medium is forcibly introduced.

゛実施例1 筆1図はこの発明に係る沸騰冷却装置の一実施例?示す
もので、同図において、1rtウオータジヤケツト2を
備えてなる内燃機関、3は気相冷媒を凝縮するtめのコ
ンデンサ、4は電動式の冷媒供給ボy 7 f夫々示し
ている。
゛Example 1 Is Figure 1 an example of the boiling cooling device according to the present invention? In the same figure, an internal combustion engine is provided with a 1rt water jacket 2, 3 is a t-th condenser for condensing a vapor phase refrigerant, and 4 is an electric refrigerant supply boy 7f.

上記ウォータジャケット2げ、内燃機関lのシリンダお
よび燃焼室の外周部を包囲するようにシリンダブロック
5およびシリンダヘッド60両者に亘って形収されtも
ので、通常気相空間となる上部が各気筒で互いに連通し
ているとともに その上部の適宜な位置に蒸気量ロアが
設けられている。この蒸気量ロアは、接続管8および蒸
気通路9ケ介してコンデンサ3の上部人口3aに連通し
ており、かつ上記接続管8にげ、冷媒循環系の最上部と
なる排出管取付部8aが上方に立ち上かつ定形で形成さ
れているとともに、その上部開口をキャップ10が密閉
している。
The water jacket 2 is fitted over both the cylinder block 5 and the cylinder head 60 so as to surround the outer periphery of the cylinder and combustion chamber of the internal combustion engine 1, and the upper part, which is normally a gas phase space, is for each cylinder. They are in communication with each other, and a steam volume lower is provided at an appropriate position above them. This steam volume lower communicates with the upper part 3a of the condenser 3 via a connecting pipe 8 and nine steam passages, and a discharge pipe attachment part 8a which is the top of the refrigerant circulation system is connected to the connecting pipe 8. It is formed upwardly and in a regular shape, and its upper opening is sealed by a cap 10.

上記コンデンサ3ζ、上記人口3ae有するアッパタン
ク11と、上下方向の微細なチューブを主体としたコア
s12と、このコア邪12で凝縮された液化冷媒を一時
貯留するロアタンク13とから構成されたもので、例え
ば亘両前部など車両走行1戦を受は得る位置に設問され
、更にその前面あるいは背面に、強制冷却用の′電動式
冷却ファン14t−備えているっまt上記aアタンク1
3の底部に1?媒循環通iff!−15の一端が接続さ
れており、かつこの冷媒循環通路15の他端が上記ウォ
ータジャケット2の7リンダヘツド6側に設けt冷媒人
口2aに接続されている。そして、上記冷媒循環通路1
5の中間部には、流路切換機構となる三方型の第2電磁
弁16が介装されているとともに、この筆2区磁弁16
とaアタンク13との間に冷媒供給ポンプ4が介装され
ている。
It is composed of an upper tank 11 having the above-mentioned condenser 3ζ and the above-mentioned population 3ae, a core s12 mainly consisting of fine tubes in the vertical direction, and a lower tank 13 that temporarily stores the liquefied refrigerant condensed in this core 12, For example, it is placed in a position such as the front of both cars that is suitable for one round of vehicle running, and is also equipped with an electric cooling fan 14t for forced cooling on the front or back side.
1 at the bottom of 3? Medium circulation if! -15 is connected, and the other end of this refrigerant circulation passage 15 is provided on the 7-cylinder head 6 side of the water jacket 2 and connected to the refrigerant port 2a. And the refrigerant circulation passage 1
A three-way type second solenoid valve 16 serving as a flow path switching mechanism is interposed in the middle part of the brush 5, and this brush second section solenoid valve 16
A refrigerant supply pump 4 is interposed between the a-tank 13 and the a-tank 13 .

21ハ、上4己ウォータジャケット2やコンデンサ3f
c主体としt全課循環系の外部に設けられ1p リザー
バタンクであって、これrjil!気機能を有するヤヤ
ツ122を介して大気に開放されているとともに、上記
ウォータジャケット2と略等しい高畜位t’Wt′に設
−され、かつその底部に補助冷媒通路23が接続されて
いる、この補助冷媒通路23の先端は上記第21!磁弁
16全介して冷媒循環通路15に接続されている。
21c, upper 4 water jacket 2 and capacitor 3f
C is the main body and t is a 1p reservoir tank installed outside the circulation system, which is rjil! It is open to the atmosphere via a pipe 122 having an air function, and is installed at a height t'Wt' that is approximately the same as the water jacket 2, and an auxiliary refrigerant passage 23 is connected to the bottom thereof. The tip of this auxiliary refrigerant passage 23 is the 21st! The magnetic valve 16 is connected to the refrigerant circulation passage 15 through the entire magnetic valve 16 .

上記第2を磁4P16ば、励磁状帽では冷媒1膚環通路
15t−遮断してリザーバタンク21とロアタンク13
との間を連通状態としく流路A)、非励磁状態でげ補助
冷媒通路23を遮断して冷媒循環通路15yr:連通状
態(流路B)とする構成になっている。そして、上記冷
媒供給ポンプ4としては、正逆両方向に液相冷媒を圧送
できるものが用いられており、上記の流路Aの状態で冷
媒供給ポンプ4を正方向に駆動すればロアタンク13か
らリザーバタンク21へ液相冷媒を強制排出でき、逆方
向に駆動すればリザーバタンク21からロアタンク13
へ液相冷g?強制導入でき、更に流路Bの状態で冷媒供
給ポンプ4f正方向に駆動すればロアタンク13乃為ら
ウォータジャケット2へ液相冷媒を循環供給することが
できるワ 一部、上述しt密閉系の最上部となる排出管取付部8B
VC框、系内の空気を排出する乏めの空気排出通路24
が接続されており、かつ空気排出時に同時[iれ小吏液
相冷媒を回収する之めに、上記空気排出通路24の先端
部がIlリザーバンク21内の比較的下部に開口してい
る。そして、上記空気排出通路24にζ、常開型の第1
?lE磁弁25が介装されている。
If the above-mentioned second magnet 4P16 is used, the refrigerant 1 skin ring passage 15t is blocked off in the excitation cap, and the reservoir tank 21 and the lower tank 13 are
In the non-excited state, the auxiliary refrigerant passage 23 is closed and the refrigerant circulation passage 15yr is in communication (flow path B). The refrigerant supply pump 4 is one that can pump the liquid phase refrigerant in both forward and reverse directions.If the refrigerant supply pump 4 is driven in the forward direction in the state of the flow path A, the refrigerant is transferred from the lower tank 13 to the reservoir. The liquid phase refrigerant can be forcibly discharged to the tank 21, and if driven in the opposite direction, the liquid phase refrigerant can be discharged from the reservoir tank 21 to the lower tank 13.
Liquid phase cooling g? In addition, if the refrigerant supply pump 4f is driven in the forward direction in the state of the flow path B, the liquid phase refrigerant can be circulated and supplied from the lower tank 13 to the water jacket 2. Discharge pipe attachment part 8B at the top
VC frame, a small air exhaust passage 24 that exhausts the air in the system
The distal end of the air discharge passage 24 opens at a relatively lower portion of the reservoir bank 21 in order to simultaneously recover the liquid phase refrigerant during air discharge. The air discharge passage 24 is provided with a normally open first
? An 1E magnetic valve 25 is interposed.

上記各Kla弁25 、16と冷媒供給ポンプ4お:び
冷却7 Tン14i、所謂マイクロコンピュータシステ
ムを用いt制rMI @ # 31によって駆動側倒さ
れるもので、具体的にはウォータジャケット2に設けた
l:1f面センサ32.温度センサ33.ロアタンク1
3に設けた第2液面センサ34および循環系最上部に設
けた負圧スイッチ35の各検出信号に基づいて後述する
側倒が行われるワ ここで上記iE1 、第2f面センサ32.34d例え
ば11−ドスイノチを利用したフロート式センサ等が用
いられ、冷媒液面が設定レベルに達しているか否かケオ
ン・オフ的に検出するものであって、第1液而センサ3
2げその検出レベルがプリンダヘッド6の路中[…8度
の高さ位置に設定され、かつ第2液面センサ34ぼその
検出レベルが冷媒循環通路15の開口エリも上方の高ざ
位置に設定されているっまた丁l情度センサ33げ例え
ばサーミスタ等からなり、通常液相冷媒内に没入する位
置あるいに気相冷媒領域となる位置に設けられて、ウォ
ータジャケット2内の冷媒温度を検出している。また負
圧スイッチ35は、大気圧と系内圧力との差圧に応動す
るダイヤフラムを用い7tもので、高地、低地等に拘ら
ず使用環境下における大気圧に対し系内が負圧であるか
否かを検出して2す、具体的にば一30mHg〜−50
mk程度に作動圧を設定しである。
Each of the Kla valves 25 and 16, the refrigerant supply pump 4 and the cooling 7 Tn 14i are turned over on the driving side by the T control rMI@#31 using a so-called microcomputer system, and specifically, they are installed in the water jacket 2. T: 1f surface sensor 32. Temperature sensor 33. Lower tank 1
3, and the negative pressure switch 35 provided at the top of the circulation system. 11-A float type sensor using a dosinoch is used to detect whether the refrigerant liquid level has reached a set level in a Keon-Off manner, and the first liquid sensor 3
The detection level of the second liquid level sensor 34 is set at a height position of 8 degrees in the path of the printer head 6, and the detection level of the second liquid level sensor 34 is set at a height position above the opening area of the refrigerant circulation passage 15. The temperature sensor 33 is configured to be, for example, a thermistor, and is usually installed at a position where it is immersed in the liquid phase refrigerant or at a position where it is a gas phase refrigerant region, and is set to the position where the refrigerant in the water jacket 2 is in contact with the refrigerant. Detecting temperature. In addition, the negative pressure switch 35 is a 7-ton diaphragm that responds to the differential pressure between atmospheric pressure and system pressure, and is designed to ensure that the system is under negative pressure relative to the atmospheric pressure in the usage environment, regardless of whether it is used in highlands or lowlands. Detect whether or not, specifically, -30 mHg to -50
The operating pressure is set to about mk.

尚、その他機関連転条件を検出する之めの各欅センサに
ついては勿示していな論。
Of course, the keyaki sensors that detect other machine-related turning conditions are not mentioned.

次に第21図〜第11図げ、を記制御@ # 31によ
って実行ブれる’full mの内容を示す70−チャ
ートであって、以下、機関の始動から停止までの流れに
沿ってこれを説明する。尚、図中早1 、@2を磁弁2
5 、16を「電磁弁■」、「電磁弁■」と略記し、ま
定ウォータジャケット2円の液面をrC/HC/間」と
略記しである。
Next, Figures 21 to 11 are 70-charts showing the contents of 'full m' executed by control @ # 31, which will be explained below along the flow from engine start to stop. explain. In addition, Haya 1 and @2 in the figure are magnetic valve 2.
5 and 16 are abbreviated as ``electromagnetic valve ■'' and ``electromagnetic valve ■'', and the liquid level of the fixed water jacket 2 yen is abbreviated as ``rC/HC/''.

第2図は側倒のA既要金示すメインフローチャートであ
って、機関の始動(イグニッションキーON)により側
副が開始すると、ステップ1のイニゾヤライズ処理(第
4図参照)を行つ7を後に、先ずその始動が初期始動で
あるか再始動でろるカ為、具体的vcは温度センサ33
による検出温度が所定温度(例えば45℃)エリ高いか
否かを判断する(ステップ2)ワ所定温度以下つまり未
暖機状帖の初期始動であればステップ3の空気排出制−
ヶ経てからステップ4の暖機開側へ進み、以後は温度制
御。
Fig. 2 is a main flowchart showing the A required amount for side overturning, and when the side overturning is started by starting the engine (ignition key ON), initialization processing in step 1 (see Fig. 4) is performed after step 7. , first of all, since the start is an initial start or a restart is not possible, the specific VC is the temperature sensor 33.
Determine whether the detected temperature is higher than a predetermined temperature (for example, 45 degrees Celsius) (step 2). If the temperature is below the predetermined temperature, that is, the initial startup is not warmed up, step 3, the air exhaust control is performed.
After that, proceed to step 4, warm-up and open, and then control the temperature.

液面側倒等のステップ5〜ステツプ10の制御ループを
キーOFF時まで繰り返し行う。まtステップ2で所定
温度以上の場合、つまり再始動時&Ci経時的な空気の
侵入が考えられないので空気排出制御(ステップ3)は
省略する0 一方、筆3図に示す割込み処理ルーチンが一足時間毎に
実行され、ここでキーON状すであるが否か(ステップ
11)全判断している0キーOFF信丹が入力され定場
合にd1第11図に詳示しtギーOF F If 薗(
ステップ12)による一定の処理?経た後に電源がOF
Fとなって一連の制御が終了するワ第5図げ始動直後に
実行されるステップ3の空気排出制御のプローチャート
を示しているっ尚、この機関始動の際には、通常は系内
が液相冷媒(例えば水と不凍液の混合液)で殆ど満tさ
れt状態にあり、またリザーバタンク21にぼ適当竜の
液相冷媒が貯留されている0空気排出制@は、この状態
から更に系内を完全に液相冷媒で満たすことによって空
気全排出するものであり、第1[磁弁25を「開」、槙
2電磁弁16を「流路A」としくステラ731)、かつ
冷媒供給ポンプ4fr逆方向へ駆動(ステップ32)す
るうこれにより、リザーノ(タンク21内の液相冷媒が
補助冷媒通路23全介して系内に強制的に導入される。
The control loop of steps 5 to 10, such as turning the liquid level to its side, is repeated until the key is turned off. If the temperature is higher than the predetermined temperature in step 2, that is, when restarting & air intrusion over time is not considered, so air exhaust control (step 3) is omitted.On the other hand, the interrupt processing routine shown in Figure 3 is correct. It is executed every time, and here it is judged whether the key is ON or not (step 11).If 0 key OFF is input, and if it is, d1 is detailed in Fig. 11. (
Certain processing according to step 12)? The power turns off after
F and the series of controls ends. 5th figure shows a flowchart of the air exhaust control in step 3, which is executed immediately after starting the engine. Note that when starting this engine, normally the system is The 0 air discharge system, which is almost filled with liquid phase refrigerant (for example, a mixture of water and antifreeze) and is in the t state, and the reservoir tank 21 has approximately the appropriate amount of liquid phase refrigerant stored, is further removed from this state. All air is discharged by completely filling the system with liquid phase refrigerant. By driving the supply pump 4fr in the opposite direction (step 32), the liquid phase refrigerant in the tank 21 is forcibly introduced into the system through the entire auxiliary refrigerant passage 23.

これば、ステップ33で所定時間、具体的には系内を満
水にするに十分なように予めソフトウェアタイマ■に設
定されt数秒ないし数十秒程度の間継続されるワ従って
、系内に残存してい7を空気に、系上部に巣められt優
、空気排出通路24全介して系外のりザーノくタンク2
1内に強制的に排出される。そして、所定時間経過し7
を時点で冷媒供給ポンプ4 ? OFF (ステラ13
4)とし、第6囚に示す暖機側a(ステップ4)へ進む
0 暖機開側に進んで来を時点では、コンデンサ3内は液相
冷媒で満tされt状態にあるηλら、コンデンサ3の放
熱能力框極めて低く抑制され、その結果、ウォータジャ
ケット2内の冷媒温度が速やかに上昇して、やがて沸騰
が始まる。暖機側′fIIJは、第1[磁弁25を「閉
」、第2電磁弁16を「流路A」(ステップ41)とし
、系内全液相冷媒で満之しt状態の1まウォータジャケ
ット2内の冷媒温度が目標温度に上昇するまで待機する
ものであり、ステップ42で実際の検出温度と設定温度
(制剖目凛隼度)との比較全行い、検出温度が「設定m
度十鵠℃(α曹)」となったときに系内金完全に密閉状
態(ステップ44)として、この制@全終了する。上記
の設定温度は、例えば80〜110℃程度の範囲内にお
いて轡関の負荷や回転速度等の運転条件に応じて最適に
設定されるものであり、填3図の割込み処理により一定
時間毎に更新される(ステップ15 )。尚、図示例に
電子側倒燃料噴射方式の場合に、その噴射弁駆動パルス
のパルス幅および周期(ステップ14)に基づいて最適
な設定温度を決定するようにしている〇 一方、再始動時には既に系内に気相冷媒領域・が拡がっ
ており、ま之系内から冷媒供給ポンプ4および1!2を
磁弁16を通して若干の冷媒が流出するので、冷媒温度
が設定温度に達する前に、ウォータジャケットz内の液
面やロアタンク13内の液面が過度に低下することがあ
るり従って、何れか一方の液面が第1液面センサ32め
るいば第2液面センサあの設定レベルを下廻つ之ときv
crf、i[ちにこの制御を終了する(ステップ43)
In this case, in step 33, water remains in the system for a predetermined period of time, specifically, the software timer is set in advance to be sufficient to fill the system with water, and continues for several seconds to several tens of seconds. The tank 2 is placed in the upper part of the system, and the tank 2 is removed from the system through the entire air exhaust passage 24.
It is forcibly ejected into 1. Then, after a predetermined period of time has passed, 7
Refrigerant supply pump at point 4? OFF (Stella 13
4) and proceed to the warm-up side a (step 4) shown in the 6th prisoner 0. At the time when the warm-up side moves to the warm-up open side, the inside of the condenser 3 is filled with liquid phase refrigerant and is in the state t.ηλ et al. The heat dissipation capacity of the condenser 3 is suppressed to an extremely low level, and as a result, the temperature of the refrigerant within the water jacket 2 quickly rises, and boiling soon begins. On the warm-up side 'fIIJ, the first solenoid valve 25 is set to "closed" and the second solenoid valve 16 is set to "flow path A" (step 41), and the system is filled with all liquid phase refrigerant and the water is in the t state. The system waits until the temperature of the refrigerant in the jacket 2 rises to the target temperature, and in step 42, the actual detected temperature is compared with the set temperature (anatomical accuracy), and the detected temperature is determined to be the "set temperature".
When the temperature reaches 10 degrees Celsius (α ℃), the system is completely sealed (step 44), and this system is completely terminated. The above set temperature is optimally set within the range of, for example, 80 to 110 degrees Celsius, depending on the operating conditions such as the load and rotation speed of the gate, and is set at regular intervals by the interrupt processing shown in Figure 3. It is updated (step 15). In addition, in the case of the electronic side fuel injection method shown in the illustrated example, the optimum set temperature is determined based on the pulse width and period (step 14) of the injector drive pulse.On the other hand, when restarting, The gas phase refrigerant region has already expanded in the system, and some refrigerant flows out from the system through the refrigerant supply pumps 4 and 1!2 through the magnetic valve 16, so before the refrigerant temperature reaches the set temperature, The liquid level in the water jacket z or the liquid level in the lower tank 13 may drop excessively, and if the liquid level of either one falls below the set level of the first liquid level sensor 32 or the second liquid level sensor. When it comes down to the bottom
crf, i [End this control immediately (step 43)
.

暖機制御の終了後に、前述しtようにステップ5〜ステ
ップ100制−ルー1が繰り返されることになるが、こ
の制御ループは、冷却ファン14の0N−OFF VC
より微細な温度制a?行うステップ5のファン制御(第
7図)と、液相冷媒の循環供給vcよリウオータジャケ
ット2内の液面を設定レベル以上に保つステップ6の液
面側倒(第8図)と、検出温度が目標とする設定温度か
ら比較的大きく離れた場合に実質的放熱面積の拡大ある
いげ稲小金行うステップ9のコンデンサ内水位低下割@
I (@9図)およびステップ10のコンデンサ内水位
上昇制御(第10図)とに大別畜れる。
After the warm-up control is completed, steps 5 to 100 are repeated as described above, but this control loop is performed when the cooling fan 14 is
More detailed temperature control a? The fan control in step 5 (Fig. 7), the liquid level tilting in step 6 (Fig. 8) to keep the liquid level in the water jacket 2 above the set level by circulating liquid refrigerant VC, and the detection If the temperature deviates relatively significantly from the target set temperature, the actual heat dissipation area will be expanded.
It can be roughly divided into step I (Fig. 9) and step 10, water level rise control in the capacitor (Fig. 10).

先ず、前述したように、暖機′制m(gs+図)におい
て検出温度が「設定温度+2.0℃(α魯)」となった
状態でこの制御ループに進んで未定場合について説明す
ると、第7図のステップ51.ステップ52で冷却ファ
ン14をONとするとともに、既にステップ7における
上限温度〔設定温度+2.0℃(α、)〕で越えている
ので、直ちにwX9■のコンデンサ内水位低下側倒に入
ろ。
First, as mentioned above, we will explain the case where the detected temperature in the warm-up control m (GS+ figure) is "set temperature + 2.0°C (α)" and the control loop is proceeded to and the determination is not made. Step 51 in Figure 7. In step 52, the cooling fan 14 is turned on, and since the upper limit temperature in step 7 has already been exceeded [set temperature + 2.0°C (α, )], immediately enter the wX9■ condenser water level lowering side.

このコンデンサ内水位低下制情ハ、コンデンサ3内の液
相冷媒を冷媒供給ポンプ4にエリIIザーバタンク21
へ強制的に排出しくステップ61.ステップ62)、コ
ンデンサ3内の液面を低下させて放熱能力を高めるもの
であり、その排出は検出温度が「設定温度+1.0℃(
α番)」の温度に低下するまで婦続され(ステップ67
)、最後に系内号密閉(ステラ768)l、て終了する
。上記の終了温度に、冷却ファン14のみに依存する条
件であるステップ7の上限温度〔設定温度+2.0℃(
α@)〕と下限温度〔設定温度−4,0℃(α4)〕の
範囲内で、かつ設定温度より若干高温側に設定しである
が、これば液面の下降に対する温度変化の応答性を考慮
し&4のである。ま之、上記冷媒排出中にも、ウォータ
ジャケット2内では冷媒が沸騰し続けるので、徐々にそ
の液面が低下して行くが、Cのウォータジャケット側液
面が設定レベル以下となつt場合vcは、@2電磁弁1
6を一時「流路B」に切換えてコンデンサ3からウォー
タジャケット2へ液相冷媒の補給を行い(ステップ63
〜65)、IEI液面センサ32の設定レベルに維持す
る。尚、万一コンデンサ3内の液面を最大限に低下させ
ても放熱能力不足が回避できずに、纂2液面センサ34
にLる設定レベルT/cまで液面が下降してしまつt場
合には、蒸気の流出を防止する之めに、直ちにこの制@
を終了する(ステップ66)。まt同様の理由vh ラ
ステップ8でコンデンサ3内の液面が@2液而センサ3
4の設定レベル以下である場合には、コンデンサ内水位
低下制@を行わない。
To control this water level drop in the condenser, the liquid phase refrigerant in the condenser 3 is transferred to the refrigerant supply pump 4 to the Eli II reservoir tank 21.
Step 61. Step 62) lowers the liquid level inside the capacitor 3 to increase the heat dissipation ability, and its discharge is performed when the detected temperature is "set temperature + 1.0 °C (
α)” (step 67)
), and finally the system is sealed (Stella 768). In addition to the above end temperature, the upper limit temperature of step 7 [set temperature + 2.0°C (
α@)] and the lower limit temperature [set temperature -4.0℃ (α4)], and set slightly higher than the set temperature, this will improve the responsiveness of temperature changes to the drop in liquid level. Considering &4. However, even during the refrigerant discharge, the refrigerant continues to boil in the water jacket 2, so the liquid level gradually decreases, but if the liquid level on the water jacket side of C falls below the set level, then vc is @2 solenoid valve 1
6 is temporarily switched to "flow path B" to supply liquid phase refrigerant from the condenser 3 to the water jacket 2 (step 63).
~65), maintain the IEI liquid level sensor 32 at the set level. In addition, even if the liquid level in the capacitor 3 is lowered to the maximum, insufficient heat dissipation capacity cannot be avoided, and the liquid level sensor 34
If the liquid level drops to the set level T/c, immediately turn on this control to prevent steam from escaping.
(Step 66). The same reason vh When the liquid level inside the capacitor 3 is at step 8, the liquid level is @2 and the sensor 3
If the water level is below the set level in step 4, the water level reduction system in the capacitor is not performed.

一方、上記のようにコンデンサ3内の液面が11宜に制
御されて機関発熱量とコンデンサ3の放熱量とが、その
沸点の下で略平衡し、系内が密閉されt後は、鷹7図に
示しtファン制例(ステップ5)と第8図に示し定液面
制御(ステップ6)とを操り返し行うつ上記ファン制御
において框、系内温度を史に高精度に、具体的には「設
定温度刊5℃(α、)」と「設定温度−0,5℃(α1
)」との間(ステップ52)に維持するように冷却ファ
ン14のみ?0N−OFF制−(ステップ52 、53
 )する。ま念上記液面制御においてげ、ウォータジャ
ケット2内の液面が設定レベル以下となった場合に、コ
ンデンサ3側からウォータジャケット2へ液相冷@金補
給し、その液面を設定レベルに維持する(ステップ54
〜56)、。
On the other hand, as mentioned above, the liquid level in the condenser 3 is controlled at the appropriate time, and the amount of heat generated by the engine and the amount of heat dissipated from the condenser 3 are approximately balanced at their boiling point, and the system is sealed, and after t. The fan control example (step 5) shown in Fig. 7 and the constant liquid level control (step 6) shown in Fig. 8 are repeated. "Set temperature 5℃ (α, )" and "Set temperature -0.5℃ (α1
)” (step 52) so as to maintain the cooling fan 14 only? 0N-OFF system (steps 52, 53
)do. As a reminder, if the liquid level in the water jacket 2 falls below the set level during the liquid level control described above, replenish liquid phase cooling @ gold from the condenser 3 side to the water jacket 2 to maintain the liquid level at the set level. (step 54)
~56),.

まf5M両走新風の増大などの外乱や、運転条件の変化
に伴う設定温度自体の変化によって、系同温度がステッ
プ7の下限温度〔設定温度−4,0℃(α4)〕を下廻
つ7tj′4合には、!10図に示でコンデンサ内水位
上昇側倒?−開始する。こればリザーバタンク21内の
液相冷媒金コンデンサ3側に冷媒供給ポンプ4の逆方向
駆動によって強制的に導入しくステップ71 、73 
) 、コンデンサ3内の液面を上昇させて放熱能力を抑
制する制御である。この冷媒導入は、検出温度が「設定
温度−2,0℃(α、)」の温度に上昇するまで継続さ
れ(ステップ75)、その温度回復時点で系内金密閉(
ステップ76)して終了するり上記の終了温度ζ、やζ
り液面の上昇に対する温度変化の応答性を考慮しtもの
である017j、この冷媒導入中にウォータジャケット
2内の液相冷媒が不足しt場合にσ、!2を磁弁16ヲ
「流路B」に一時切換えるとともに冷媒供給ボン14t
?正方向に駆動し、コンデンサ3からウォータジャケッ
ト2へ冷媒の補給ヲ行う(ステラ172 、74 ) 
The system temperature may fall below the lower limit temperature of step 7 [set temperature -4.0°C (α4)] due to disturbances such as an increase in fresh air running on both sides of f5M or changes in the set temperature itself due to changes in operating conditions. At 7tj'4,! As shown in Figure 10, is the water level in the capacitor rising? -Start. Then, the liquid phase refrigerant in the reservoir tank 21 is forced to be introduced into the gold condenser 3 side by driving the refrigerant supply pump 4 in the reverse direction.Steps 71 and 73
) is a control that raises the liquid level in the capacitor 3 and suppresses the heat dissipation ability. This refrigerant introduction continues until the detected temperature rises to "set temperature - 2.0°C (α,)" (step 75), and at the time of temperature recovery, the system is sealed (
Step 76) and end at the above end temperature ζ, or ζ
Considering the responsiveness of temperature changes to the rise in the liquid level, 017j, if there is a shortage of liquid phase refrigerant in the water jacket 2 during this refrigerant introduction, σ,! Temporarily switch the magnetic valve 16 to "flow path B" and open the refrigerant supply cylinder 14t.
? Drives in the forward direction and replenishes refrigerant from the condenser 3 to the water jacket 2 (Stella 172, 74)
.

上記のコンデンサ内水位上昇、1tl1例の結果、系同
温度がステップ7の上限温度〜下限温度に導かれt後は
、やriり前述しfcI?却ファン14のみicよる温
度制御(ステップ51〜53)が行われる。
As a result of the water level rise in the capacitor described above, the system temperature is guided from the upper limit temperature to the lower limit temperature in step 7, and after t, the above-mentioned fcI? Only the cooling fan 14 is temperature controlled by IC (steps 51 to 53).

このように、コンデンサ3内の液■制御に、系同温度を
常に「設定温度+2.0℃」と「設定温度−4,0℃」
の範囲内(ステップ7)に導くように行われるものであ
り、例えば運転条件の急変により設定温度が犬きく変化
し次場合にも、コンデンサ3の放熱能力を広範囲に、か
つ速やかに変化させ得るとともに、これによる凝縮量変
化が直ちにウォータジャケット2側冷媒の沸騰の抑制、
促進として影響を及ぼすので、極めて良好に設定温度に
追従させるOとができる。そして、冷却ファン140制
@は、系内温度t−更に「設定温度±0.5T:Jの範
囲内(ステップ51)に導くように行われ、これによっ
て一層高n1度ででiつ応答性の良い温度制御が達成さ
れるのである。
In this way, the system temperature is always set to ``set temperature +2.0℃'' and ``set temperature -4.0℃'' to control the liquid in the capacitor 3.
(Step 7).For example, even if the set temperature changes sharply due to a sudden change in operating conditions, the heat dissipation capacity of the capacitor 3 can be changed quickly and over a wide range. At the same time, the change in condensation amount caused by this immediately suppresses boiling of the refrigerant on the water jacket 2 side.
Since it has an accelerating effect, it is possible to follow the set temperature extremely well. Then, the cooling fan 140 system is operated to bring the system temperature t - further within the range of "set temperature ±0.5T:J" (step 51), thereby increasing the responsiveness at a higher n1 degree. Good temperature control is achieved.

次に第11図は、機関のイグニッションキーが011操
作され定場合に割込処理場れるステップ12のキーOF
F制御全示している。
Next, FIG. 11 shows the key OF in step 12, which is activated when the ignition key of the engine is operated in 011, and the interrupt processing
F control is fully shown.

これは、先ず設定温度t?80℃にセット(ステラ’ 
  782)することによって、前述し定コンデンサ内
水位低下制仰を行わせ、コンデンサ3の放熱能力を最大
限に利用するようにするとともに、冷却ファン14vc
よる強制冷却(ステップ51 、52 ) vc工り温
度低下を促進するっそして、系同温度が80℃にまで低
下する(ステップ81 ) 27k 、系内が負圧状態
になる(ステップ83)か、あるいは一定時間(例えば
60秒)経過したこと(ステラ784)’Th条件とし
て′電源k OFF Cステップ85)とする。この電
源OF’FiC、j: 17常開型電磁弁である@l成
磁弁25か蝿となる定め、系内の温度低下つまり圧力低
下に伴ってリザーバタンク21から空気排出通路24を
介して液相冷媒が自然に導入され、最終的にζ系全体が
液相冷媒で満たされ次状態となって次の始動に備えるこ
とVCなる。従って、系内の負圧化によるシール等の損
傷や機関停止中の空気の侵入が防止される。
First of all, the set temperature t? Set to 80℃ (Stella'
782) By doing so, the above-mentioned constant water level drop control in the condenser is carried out, the heat dissipation capacity of the condenser 3 is utilized to the maximum, and the cooling fan 14vc is
Forced cooling (Steps 51, 52) accelerates the VC process temperature drop, and the system temperature drops to 80°C (Step 81). The system becomes under negative pressure (Step 83). Alternatively, it is assumed that a certain period of time (for example, 60 seconds) has elapsed (Stella 784) 'Th condition is 'power supply k OFF C step 85). This power supply OF'FiC, j: 17 is a normally open type solenoid valve 25, and as the temperature in the system decreases, that is, the pressure decreases, air is discharged from the reservoir tank 21 via the air discharge passage 24. Liquid phase refrigerant is naturally introduced, and finally the entire ζ system is filled with liquid phase refrigerant and becomes ready for the next start-up.VC. This prevents damage to seals and the like due to negative pressure in the system and prevents air from entering while the engine is stopped.

発明の効果 以上の説明で明らかなように、この発明に係る内燃機関
の沸騰冷却!!噴においてく、コンデンサ内の冷媒液面
を強制的に上昇・下降させることによって、車両走行風
等の外乱に影響されることなく系内温度を目標温度に速
やかに追従きせることが可能となり、燃料消費率や@関
出力等を考慮した高精度な温度制御f実現することがで
きるりま之、系内へ液相冷媒全強制的に導入し、空気排
出、1!l路を介して空気を押し出すことによって系内
から空気を確実に除去することができ、コンデンサの放
熱能力を最大限に確保できる。しかも、温度割判時の冷
媒の導入・排出および空気排出時の冷媒導入が総て単一
の冷媒供給ポンプICよって行われるので、構成が非常
に簡単なものとなる。
Effects of the Invention As is clear from the above explanation, boiling cooling of an internal combustion engine according to this invention! ! By forcibly raising and lowering the refrigerant liquid level in the condenser during injection, it is possible to quickly make the system temperature follow the target temperature without being affected by disturbances such as the wind when the vehicle is running, and the fuel It is possible to achieve highly accurate temperature control that takes into account the consumption rate and @Seki output, etc. It is possible to completely forcibly introduce liquid phase refrigerant into the system and exhaust air, 1! By pushing the air out through the L path, air can be reliably removed from the system, and the heat dissipation capacity of the capacitor can be maximized. Moreover, since the introduction and discharge of refrigerant during temperature determination and the introduction of refrigerant during air discharge are all performed by a single refrigerant supply pump IC, the configuration is extremely simple.

【図面の簡単な説明】 軍1図にこの発明の一実施例ケ示f構底説明図、第2図
、筆3図、第4図、フ5図、第6図、第7図、第8図1
.筆9図、第10■お工び第11図はこの実施側におけ
る側倒の同各を示すフローチャートである。 1・・・内燃機関、2・・・ウォータジャケット、3・
・・コンデンサ、4・・・冷媒供給ポンプ、13・・・
ロアタンク、14・・・冷却ファン、15・・・冷媒循
環通路、16・・・第2電磁弁、21・・・リザーバタ
ンク、23・・・補助冷媒通路、24・・・空気排出通
路、25・・・第1直磁弁、31・・・制a装置、32
・・・第1液而センサ、33・・・温度センサ、34・
・・第2液面センサ、35・・・負圧スイッチ0第2図 第3図 第4図 第6図 第7図 第9図 第10図 第11図
[BRIEF DESCRIPTION OF THE DRAWINGS] An embodiment of the present invention is shown in Figure 1. 8Figure 1
.. Drawing 9 and Drawing 10 and Drawing 11 are flowcharts showing the same side fall on the implementation side. 1... Internal combustion engine, 2... Water jacket, 3...
...Condenser, 4...Refrigerant supply pump, 13...
Lower tank, 14... Cooling fan, 15... Refrigerant circulation passage, 16... Second solenoid valve, 21... Reservoir tank, 23... Auxiliary refrigerant passage, 24... Air discharge passage, 25 . . . first direct magnetic valve, 31 . . . control a device, 32
...first liquid sensor, 33...temperature sensor, 34.
...Second liquid level sensor, 35...Negative pressure switch 0 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 9 Fig. 10 Fig. 11

Claims (1)

【特許請求の範囲】[Claims] (1)液相冷媒が貯留されるウォータジャケットと、こ
のウォータジャケットで発生した冷媒蒸気が導入され、
かつ下部に凝縮した液相冷媒が貯留されるコンデンサと
、上記コンデンサの下部と上記ウォータジャケットとを
連通した冷媒循環通路と、上記ウォータジャケット、コ
ンデンサおよび冷媒循環通路からなる密閉した冷媒循環
系に対し、その外部に設けられたリザーバタンクと、一
端が上記冷媒循環通路に接続され、かつ他端が上記リザ
ーバタンクに接続された補助冷媒通路と、正逆両方向へ
送給可能に構成され、かつ上記冷媒循環通路のコンデン
サと補助冷媒通路接続部との間に介装された冷媒供給ポ
ンプと、上記両通路の接続部に配設され、かつ上記冷媒
供給ポンプを上記ウォータジャケットあるいは上記リザ
ーバタンクに選択的に連通させる流路切換機構と、上記
冷媒循環系の最上部に一端が接続され、かつ開閉弁を備
えた空気排出通路と、上記ウォータジャケット内の液相
冷媒の液面位置を検出する液面検出手段と、上記ウォー
タジャケット内の冷媒温度を直接あるいは間接に検出す
る温度検出手段と、上記冷媒供給ポンプ、流路切換機構
および開閉弁を所定のプログラムに従つて制御する制御
装置とを備えてなる内燃機関の沸騰冷却装置。
(1) A water jacket in which liquid phase refrigerant is stored, and refrigerant vapor generated in this water jacket are introduced,
and for a closed refrigerant circulation system consisting of a condenser in which condensed liquid refrigerant is stored in the lower part, a refrigerant circulation passage communicating the lower part of the condenser with the water jacket, and the water jacket, the condenser, and the refrigerant circulation passage. , a reservoir tank provided on the outside thereof, and an auxiliary refrigerant passage whose one end is connected to the refrigerant circulation passage and whose other end is connected to the reservoir tank, and is configured to be able to feed in both forward and reverse directions, and A refrigerant supply pump interposed between the condenser of the refrigerant circulation passage and the auxiliary refrigerant passage connection part, and a refrigerant supply pump disposed at the connection part of both passages, and the refrigerant supply pump is selected as the water jacket or the reservoir tank. an air discharge passage having one end connected to the top of the refrigerant circulation system and equipped with an on-off valve, and a liquid for detecting the liquid level position of the liquid phase refrigerant in the water jacket. surface detection means, temperature detection means for directly or indirectly detecting the refrigerant temperature in the water jacket, and a control device for controlling the refrigerant supply pump, flow path switching mechanism, and on-off valve according to a predetermined program. Boiling cooling system for internal combustion engines.
JP25267384A 1984-11-28 1984-11-28 Evaporative cooling apparatus of internal-combustion engine Pending JPS61129417A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25267384A JPS61129417A (en) 1984-11-28 1984-11-28 Evaporative cooling apparatus of internal-combustion engine
US06/802,358 US4646688A (en) 1984-11-28 1985-11-27 Cooling system for automotive engine or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25267384A JPS61129417A (en) 1984-11-28 1984-11-28 Evaporative cooling apparatus of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61129417A true JPS61129417A (en) 1986-06-17

Family

ID=17240641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25267384A Pending JPS61129417A (en) 1984-11-28 1984-11-28 Evaporative cooling apparatus of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61129417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809308A1 (en) * 1987-04-02 1988-10-20 Volkswagen Ag Internal combustion engine with evaporation cooling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809308A1 (en) * 1987-04-02 1988-10-20 Volkswagen Ag Internal combustion engine with evaporation cooling

Similar Documents

Publication Publication Date Title
JPS6183413A (en) High-temperature anomaly avoiding controller in evaporative cooling apparatus of internal-combustion engine
JPH0692730B2 (en) Boiling cooling device for internal combustion engine for vehicles
JPH0475369B2 (en)
JPS61247819A (en) Evaporative cooling device for internal-combustion engine
EP0176985B1 (en) Cabin heating arrangement for vehicle having evaporative cooled engine
JPS61129417A (en) Evaporative cooling apparatus of internal-combustion engine
JPS6183410A (en) Coolant-temperature controller in evaporative cooling apparatus of internal-combustion engine
JPS6183430A (en) Self-diagnoser in evaporative cooling device for internal-combustion engine
JPS63134811A (en) Cooling device of internal combustion engine
JPS6183427A (en) Anomaly diagnosing apparatus in evaporative cooling apparatus for internal-combustion engine
JPS61201815A (en) Evaporative cooling device for internal-combustion engine
JPS6183414A (en) Air-discharge controller for evaporative cooling apparatus
JPS6181517A (en) Evaporative cooling device for internal-combustion engine
JPS6183438A (en) Evaporative cooling device for internal-combustion engine
JPS6183429A (en) Refrigerant temperature controller in evaporative cooling device for internal-combustion engine
JPS6183412A (en) Controller for coolant liquid level of cooling jacket in evaporative cooling apparatus for internal-combustion engine
JPS6181515A (en) Evaporative cooling device for internal-combustion engine
JPS6183419A (en) Evaporative cooling apparatus of internal-combustion engine
JPS6183433A (en) Refrigerant liquid level controller inside cooling jacket in evaporative cooling device for internal-combustion engine
JPH06102976B2 (en) Boiling cooling device for internal combustion engine
JPH0692731B2 (en) Boiling cooling device for internal combustion engine
JPS6183428A (en) Anomaly diagnosing apparatus in evaporative cooling apparatus for internal-combustion engine
JPS6183445A (en) Trouble detector for evaporative cooling device
JPS6183432A (en) Refrigerant liquid level controller inside cooling jacket in evaporative cooling device for internal-combustion engine
JPS62618A (en) Evaporative cooling device for internal-combustion engine