JPS6181640A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6181640A
JPS6181640A JP60036335A JP3633585A JPS6181640A JP S6181640 A JPS6181640 A JP S6181640A JP 60036335 A JP60036335 A JP 60036335A JP 3633585 A JP3633585 A JP 3633585A JP S6181640 A JPS6181640 A JP S6181640A
Authority
JP
Japan
Prior art keywords
pellet
microscope
semiconductor
deposited
semiconductor pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60036335A
Other languages
Japanese (ja)
Inventor
Seiji Kashioka
誠治 柏岡
Masayoshi Kameyama
亀山 正義
Norimasa Miyamoto
宮本 憲昌
Hiroshi Yamamoto
博司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60036335A priority Critical patent/JPS6181640A/en
Publication of JPS6181640A publication Critical patent/JPS6181640A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]

Abstract

PURPOSE:To obtain an image having a constant contrast independently from inclination of a semiconductor pellet, by providing the pellet with a vapor- deposited aliminium surface having a constant diffuse reflection component so as to inhibit any regularly reflected light from entering into a microscope. CONSTITUTION:Aluminium is vapor deposited on a semiconductor pellet under a sufficient residual air pressure (3X10<-6>Torr or higher) to provide the deposited aluminium film with a satin-like surface having a reflection luminance higher than a predetermined value for all the radiation angles. Further, in order to observe the pellet, a tube 5 receiving a light source 3 and a condenser lens 4 therein is provided separately from a microscope lens barrel 1 and an object lens 2 so as to apply light obliquely to a semiconductor pellet 6 which is present within the visual field of the microscope and has the reflectivity of aluminium.

Description

【発明の詳細な説明】 本発明は半導体素子の生産システム、とくに視覚による
検出の作業能率を向上させ、あるいは人工の視ユ″ご装
置によって置換するための、hF ;He<体索子表面
のアルミ膜の生成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a system for producing semiconductor devices, particularly for improving the efficiency of visual detection or for replacing it with an artificial visual system. This paper relates to a method for producing an aluminum film.

トランジスタや隻稙回路素子などの半導体素子の生産工
程において、とくに半11t1体ペレットとして完、戎
した後の組立て工程においては、その表面ぐ光学的パタ
ーンを用いて検査や位置決めを行なうことが多い。たと
えば、半導体の電極から外部接続のための端子への配a
を金縁?熱圧着することによって行なうワイヤボンディ
ング工程においては、半導体ペレットの台座上でのズレ
を視覚的に検出し金線の圧着位置を合わせることが行な
われる。ま次ベレットの欠陥の有無?視覚によって検出
することも行なわれる。このとき対象である半導体ペレ
ットは微小な物体であるため、実体顕微遅あるいは金属
顕微鏡などが用いて、この物体課を拡大することが必要
である。
In the production process of semiconductor devices such as transistors and circuit elements, especially in the assembly process after the semi-11T single pellet is completed and cut, inspection and positioning are often performed using an optical pattern on its surface. For example, the arrangement a from a semiconductor electrode to a terminal for external connection.
Gold-rimmed? In the wire bonding process performed by thermocompression bonding, the displacement of the semiconductor pellet on the pedestal is visually detected and the crimp position of the gold wire is adjusted. Is there a defect in the maji bellet? Visual detection is also performed. Since the target semiconductor pellet is a minute object, it is necessary to use a stereoscopic microscope or a metallurgical microscope to enlarge this object section.

半導体ペレットの視覚的な検出に、従来作業者の視覚に
よって行なわれて来之が、之とえば既に本発明者による
特願昭48−21636号のように2工業用テレビカメ
ラなどの撮像装#、光重変換装置など音用いてその吠漂
を取込み、処理す石ことによって自動的に検出する装置
が開発されつつあり、また特頚昭44−33968号の
ように工業用テレビカメラを用いて保全テレビモニタ上
に再現し作業者が見やすくなるようにすることも試みら
れている。
Conventionally, visual detection of semiconductor pellets was carried out by the visual sense of the operator, but for example, as disclosed in Japanese Patent Application No. 48-21636 by the present inventor, imaging equipment such as an industrial television camera has been developed. , devices such as light-grain conversion devices that use sound to capture the drift and automatically detect it by processing stones are being developed. Attempts have also been made to reproduce it on maintenance television monitors to make it easier for workers to see.

作業者による場合も自動検出装置による場合も半導体ペ
レット上のパターンが高いコントラストで見られれば有
利な条件となる。とぐに自動検出装置においては検出確
度?上げるため、高いコントラストを得ることが必須の
条件となる。代表的な半導体ペレツ)C1表面は酸化シ
リコン、アルミおよびシリコンによって形成され、とく
に前二者の占める面積が大きい。従って酸化シリコン部
分とアルミ部分とのコントラストラ問題とすればよい。
It is advantageous if the pattern on the semiconductor pellet can be seen with high contrast, both by an operator and by an automatic detection device. What is the detection accuracy of Toguni automatic detection equipment? In order to improve the image quality, it is essential to obtain high contrast. The surface of a typical semiconductor pellet (C1) is formed of silicon oxide, aluminum, and silicon, with the former two occupying a particularly large area. Therefore, it is sufficient to deal with the problem of contrast between the silicon oxide part and the aluminum part.

有機樹脂や酸化シリコンなどによる保護被膜でこれらを
覆うこともあるが、膜が薄い之め光の反射に関する限り
、下地の性質がほぼそのまま現われると考えてよい。
These may be covered with a protective film made of organic resin or silicon oxide, but since the film is thin, it is safe to assume that as far as light reflection is concerned, the properties of the underlying material appear almost as they are.

物質の光学的反射に関する性質はたとえば第1図のよう
な反射輝度曲線で表現される。この曲線は物体の表面の
性質および光の入射角度によって変わる。−役の金属顕
微鏡においては、第2図に示すような垂直落射照明を行
なうので、入射角O0の近傍で照明を与え反射角0°の
近傍の反射光束?とらえている。第1図のグラフは、照
明の入射角が0°の場合で、横軸は反射角を表わし、た
て軸は反射率を表わす。反射角0°においては、鏡面に
近い表面状態をもつアルミ(A)の反射寒け、シリコン
層上の酸化シリコンの反射寒と比べて元方大きく両者の
フントラストは高い。しかし、別種の表面状態を持つア
ルミω)の例ではアルミ反射寒は酸化シリコンとほぼ同
等であり、両者のコントラストは低い。従って、一般の
蒸着法でアルミ表面を鏡蘭状に保てばよめか、実際には
半導体ペレットの傾きから、大きな影響を受けるという
問題点がある。
The optical reflection properties of a substance are expressed, for example, by a reflection brightness curve as shown in FIG. This curve varies depending on the nature of the surface of the object and the angle of incidence of the light. - In the metallurgical microscope used, vertical epi-illumination as shown in Fig. 2 is performed, so the illumination is applied near the incident angle O0, and the reflected light flux near the reflection angle 0°? I'm getting it. In the graph of FIG. 1, the incident angle of illumination is 0°, the horizontal axis represents the reflection angle, and the vertical axis represents the reflectance. At a reflection angle of 0°, the reflection angle of aluminum (A), which has a surface condition close to a mirror surface, is larger than that of silicon oxide on a silicon layer, and both have a high load resistance. However, in the case of aluminum (ω), which has a different surface condition, the aluminum reflection is almost the same as that of silicon oxide, and the contrast between the two is low. Therefore, although it is sufficient to maintain the aluminum surface in a mirror-like pattern using a general vapor deposition method, there is a problem in that it is actually greatly affected by the inclination of the semiconductor pellet.

このことを説明すると次のようになる。半導体ベレット
をその台座た接着する際に水平度を正確に保つことが困
難である。水平度を保てず半導体ベレットの表面の垂直
線が顕微鏡先細とある角度を持った場合、照明入射角が
0°ではなくな、す、第1図の同じ対象に対して、その
反射輝1曲線は第3図のようになる。すなわち最大反射
を得る正反射方向はベレット表面垂直線方向?はさんで
光軸方向と反対方向に移動する。これを第2図のような
垂直落射照明の顕微鏡で観測すると第3図グラフの反射
角Pでの反射層全観測することになる。
This can be explained as follows. It is difficult to maintain accurate levelness when bonding the semiconductor pellet to its base. If horizontality cannot be maintained and the vertical line on the surface of the semiconductor pellet has a certain angle to the tapered part of the microscope, the incident angle of illumination will not be 0°, and the reflected brightness will be 1. The curve will look like Figure 3. In other words, is the direction of specular reflection that gives the maximum reflection the direction perpendicular to the surface of the pellet? Move in the direction opposite to the optical axis direction. If this is observed using a microscope with vertical epi-illumination as shown in FIG. 2, the entire reflective layer at the reflection angle P shown in the graph of FIG. 3 will be observed.

これ?第2図の場合と比較するとアルミ(5)、酸化シ
リコンとも反射寒はかなり減衰する。たとえば開口数0
.1の対物レンズを用いた場合、対象の3゜れるため1
人間が見え場合は検出が可能であるが。
this? Compared to the case in Figure 2, the reflected cold is considerably attenuated for both aluminum (5) and silicon oxide. For example, numerical aperture 0
.. When using an objective lens of 1, since the object is 3°
Detection is possible if humans are visible.

自動検出装置を用いる場合は、この反射:の変化?補償
しなければならない。撮像視野には半導体ベレットのみ
ならず、傾きの異なる台座の部分も写るのが通常である
之め、視野全体の反射寒が一様に変化するのでなく、対
果ベレットの部分のみ減衰する之め単純な方式で補iX
k行なうことは容易ではない。さらに補足すると、自動
認識のために映(at白か黒かの2喧として処理するこ
とにより@置規模を大巾に縮少できることが多い。この
ため映像信号上あるしきい値と比較して白か黒かを決定
するのが普通であるが、反射星に前運のような大きな変
化がある場合、一定のしきい値で白黒を決定することが
できない。またペレット部分のみの反射軍変化にこのし
きい値を追従させることも容易ではない。
When using automatic detection equipment, this reflex: change? must be compensated. Normally, not only the semiconductor pellet but also parts of the pedestal with different inclinations are captured in the imaging field of view. Therefore, the reflected cold does not change uniformly in the entire field of view, but only the part of the objective pellet is attenuated. Complement iX with a simple method
It's not easy to do. As a further supplement, it is often possible to greatly reduce the size of the video signal by processing it as two images (white or black) for automatic recognition. It is normal to determine whether it is white or black, but if there is a large change in the reflecting star such as a fortune, it is not possible to determine whether it is black or white with a certain threshold.Also, if the reflecting star changes only in the pellet part It is not easy to follow this threshold value.

一方、ペレットの水平度ti保すること亡考えると、た
とえば−辺0.4画のペレットでは1°の傾きは、−辺
両端において0.007a++nの高低差となる。ペレ
ット全台圧に接着する際には境界面が溶解するため高低
差を0.007am程度以下に押えることは容易ではな
い。
On the other hand, considering that it is impossible to maintain the horizontality ti of the pellet, for example, in the case of a pellet with a minus side of 0.4 strokes, a 1 degree inclination results in a height difference of 0.007a++n at both ends of the minus side. When the pellets are bonded to the entire base pressure, the boundary surface dissolves, so it is not easy to suppress the difference in height to about 0.007 am or less.

本発明の目的は安定したアルミと酸化シリコンのコント
ラストで半導ベレットヲ親測することにあり、とくに上
述し几、従来の照明法のもつ、ペレットの傾きによる影
響を受けるという欠点をなくすことにある。
The purpose of the present invention is to detect semiconductor pellets using a stable contrast between aluminum and silicon oxide, and in particular to eliminate the above-mentioned drawbacks of conventional illumination methods, such as being affected by the tilt of the pellet. .

上記の目的を達成するため、本発明の半導体ベレットに
おいては、アルミ表面で拡散反射の成分が多くなるよう
にする。たとえば第1図におけるアルミCB)のように
全角度にわたって反射輝度が一定以上の強さを持つよう
にする。このような表面?鏡面に対して拡散反射面ある
いは束子地面と呼ぶことかある。
In order to achieve the above object, in the semiconductor pellet of the present invention, the diffuse reflection component is increased on the aluminum surface. For example, as with aluminum CB in FIG. 1, the reflection brightness is made to have a certain level of intensity over all angles. A surface like this? In contrast to a mirror surface, it is sometimes called a diffuse reflection surface or a bundled surface.

このような表面をもつペレットに対して照明の入射角を
犬きくとる。第4図にそのときの反射輝度曲線を示す。
The angle of incidence of illumination is carefully determined for pellets with such a surface. FIG. 4 shows the reflected luminance curve at that time.

顕微鏡光軸のあるO0近傍は正反射方向で−はなく、酸
化シリコンの反射輝度はほぼOであるためアルミと高い
コントラスト°が得られる。また対象表面が傾い几とき
の曲線は、このグラフがそのまま横軸方向に移動したも
のとなるが0°方向の反射呂はほとんど変化しない。従
ってベレットの少々の傾きによらず、一定のコントラス
トが保たれ種々の自動検出装置において安定しt動作を
得ることができる。
Near O0, where the optical axis of the microscope is located, the specular reflection direction is not -, and the reflection brightness of silicon oxide is approximately O, so a high contrast with aluminum can be obtained. Further, when the target surface is tilted, the curve is the same as this graph moved in the horizontal axis direction, but the reflection curve in the 0° direction hardly changes. Therefore, a constant contrast is maintained regardless of the slight inclination of the pellet, and stable t-operation can be obtained in various automatic detection devices.

すなわち本発明の要点は半導体ペレットのアルミ蒸着表
面が一定の拡散反射成分を持つこと、2よび照明方向分
選択して正反射光が顕微鏡に入射しないようにすること
の2点である。
That is, the main points of the present invention are that the aluminum-deposited surface of the semiconductor pellet has a certain diffuse reflection component, and that the illumination direction is selected so that specularly reflected light does not enter the microscope.

以下、本発明全実施列によって説明する。Hereinafter, the present invention will be explained based on all embodiments.

まず半導体ベレットのウェハまでの製造法につ込ては根
本的な工程の変更は必要としない。酸化シリコン膜は従
来から行なわれている酸化法で行なえばよく、とくに変
更を必要としない。アルミ膜は従来と同様蒸着によって
作成するが、とくに拡散反射表面を持几せるため蒸着時
の条件を適切に設定する必要がある。蒸着時の残留気圧
を高くすれば拡散反射面となるが、金線の圧着に適して
いない表面となるため、残留気圧は約10−ゝtorr
以下に保つ必要がある。金線の圧着にも適した拡散反射
面とするには蒸着速度を遅くする方法、膜厚を厚くする
方法、基板温度を高くする方法およびその組合わせによ
る方法があり使用する@置によって選択すればよい。た
とえば、具体的に数値を上げると温度180°C〜25
0°C&残留気圧3X 10−”−8X I G”’ 
torr、膜厚1.5〜2.5arnである。
First, there is no need to fundamentally change the manufacturing process of semiconductor pellets up to the wafer. The silicon oxide film may be formed by a conventional oxidation method, and no particular changes are required. Aluminum films are created by vapor deposition as in the past, but in order to maintain a diffusely reflective surface, it is necessary to appropriately set the conditions during vapor deposition. If the residual pressure during vapor deposition is increased, it will become a diffusely reflecting surface, but the surface will not be suitable for crimping gold wire, so the residual pressure will be about 10-torr.
Must be kept below. To create a diffuse reflection surface suitable for crimping gold wire, there are several methods: slowing down the deposition rate, increasing the film thickness, increasing the substrate temperature, and combinations thereof.The method should be selected depending on the @position used. Bye. For example, if you raise the specific value, the temperature will be 180°C to 25°C.
0°C & residual pressure 3X 10-"-8X I G"'
torr, and the film thickness is 1.5 to 2.5 arn.

次にペレットの観測の際の照明の与え方を示す。Next, we will show how to provide illumination when observing pellets.

第5図はその一発帷しリであり、顕微Jf虜筒1と対物
レンズ2とは別に光源3と集光レンズ4を収めた筒5を
設け、顕微鏡の視野にありかつ上記のアルミ反射率の性
質?もつ半導体ベレット6に対して斜め方向より照明を
与えるものである。こうして照明され之ベレットの像は
肉眼での検出にもよく、丁たTVカメラ7により撮像し
1位置決めや欠陥検査などの之めの自動検出@置8に安
定でかつコントラストのよい映像を供給することができ
る。
Fig. 5 shows a single shot of this.In addition to the microscope Jf cylinder 1 and the objective lens 2, a cylinder 5 containing a light source 3 and a condensing lens 4 is provided, which is in the field of view of the microscope and the above-mentioned aluminum reflector. Nature of rate? Illumination is applied to the semiconductor pellet 6 from an oblique direction. The image of the pellet thus illuminated is suitable for detection with the naked eye, and is captured by a fixed TV camera 7 to provide a stable and high-contrast image for automatic detection @ 8 for positioning, defect inspection, etc. be able to.

第6図に示したように、光源3.および集光レンズ4よ
り光学ファイバ9により光を導き、斜め方河より光を照
射することによっても同碌の効果が得られる。
As shown in FIG. 6, light source 3. The same effect can also be obtained by guiding light from the condensing lens 4 through the optical fiber 9 and irradiating the light obliquely.

第7図は、顕微鏡光柵が対象の表面に対して垂直でない
配置を示す。このとき照明は金属顕@誂の通常の落射照
明でもよく、あるいは別の照明筒を用いてもよい。後者
の場合は照明の正反射が顕微鏡の光軸と重ならなければ
任意の方回より照明してもよい。
FIG. 7 shows an arrangement in which the microscope light fence is not perpendicular to the surface of the object. At this time, the illumination may be ordinary epi-illumination of a metal microscope, or another illumination tube may be used. In the latter case, illumination may be performed from any direction as long as the regular reflection of the illumination does not overlap with the optical axis of the microscope.

第8図の奥柴例においては、顕微鏡鏡筒11を2重とし
、光源3の光をレンズ12によって平行光線とし、反射
鏡13によって外側の鏡筒に導き、対物レンズ20周辺
よりパラボラ型の反射誘14によって対象上に集光する
ものである。この場合涙微鏡光軸と一定角度をなす光軸
まわり360’cの方向から照明が与えられる。市販の
金属謳微鏡の中にもこのような構造をもつものがあり、
暗視明の効果を得ることができる。
In the Okushiba example shown in FIG. 8, the microscope barrel 11 is double-layered, the light from the light source 3 is converted into parallel rays by the lens 12, guided to the outer barrel by the reflector 13, and a parabolic beam is formed from around the objective lens 20. The light is focused on the object by the reflected light 14. In this case, illumination is provided from a direction 360'c around the optical axis that forms a constant angle with the optical axis of the lacrimal microscope. Some commercially available metal microscopes have this kind of structure,
You can obtain the effect of night vision.

以上説明しtごとく本発明によれば、半導体ペレットの
位置、欠陥などの自動検出あるいは目視検出において、
ベレットの傾きによらず一定のコントラストのある映像
を得ることができ安定した動作あるいは作業を行なうこ
とができる。
As explained above, according to the present invention, in automatic or visual detection of the position and defects of semiconductor pellets,
Images with constant contrast can be obtained regardless of the inclination of the beret, allowing stable operation or work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図までは従来例の説明図、第4図から第
8図までは本発明の説明図である。 図面の+S(内容)二変更なし) yo’              グ第タ図    
  qt、、4目 葡7図       詐89 手  続  補  正  書  (方式)%式% 事件の表示 昭和60年   特 許 願  第36335号発明の
名称  半導体装置の製造方法 補正をする者 事件との関係   特 許 出 願 人名称(510)
    株式会社 日 立 製 作 新式  理  人 居所〒100    東京都千代田区丸の内−丁[1l
I5番1号株式会社 日 立 製 作 所 内 電  話 東 京212−1111(大代表)補正の対
象   明R4書の特許請求の範囲の欄および発明の詳
細な説明の欄および図面。
1 to 3 are explanatory diagrams of the conventional example, and FIGS. 4 to 8 are explanatory diagrams of the present invention. +S (Contents) of drawing (No change) yo' Guta diagram
qt,, 4th figure, 7th figure Fraud 89 Procedural amendment (method) % formula % Indication of the case 1985 Patent application No. 36335 Title of the invention Relationship with the person who amends the manufacturing method of semiconductor devices Case Patent Permission applicant name (510)
Manufactured by Hitachi Co., Ltd. Shinshiki Ri Resident address: 100 Marunouchi-cho, Chiyoda-ku, Tokyo [1l]
I5 No. 1 Hitachi Manufacturing Co., Ltd. Telephone Tokyo 212-1111 (Major Representative) Subject of amendment The claims section, detailed description of the invention section, and drawings of Book R4.

Claims (1)

【特許請求の範囲】 1、半導体ペレットにアルミを蒸着する際に、蒸着され
たアルミ膜の表面を全照射角度にわたって、反射輝度が
一定値以上の強さを有する梨子地面とするのに十分な残
留気圧下において、アルミを蒸着することを特徴とする
半導体装置の製造方法。 2、第一項において、前記残留気圧は、 3×10^−^6Torr以上の気圧であることを特徴
とする半導体装置の製造方法。
[Claims] 1. When depositing aluminum on semiconductor pellets, the surface of the deposited aluminum film has a pear-like surface with a reflection brightness of a certain value or more over the entire irradiation angle. A method for manufacturing a semiconductor device, characterized by depositing aluminum under residual pressure. 2. The method for manufacturing a semiconductor device according to item 1, wherein the residual pressure is an atmospheric pressure of 3×10^-^6 Torr or more.
JP60036335A 1985-02-27 1985-02-27 Manufacture of semiconductor device Pending JPS6181640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036335A JPS6181640A (en) 1985-02-27 1985-02-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036335A JPS6181640A (en) 1985-02-27 1985-02-27 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6423175A Division JPS51140477A (en) 1975-05-30 1975-05-30 Method of fabricating semiconductor device

Publications (1)

Publication Number Publication Date
JPS6181640A true JPS6181640A (en) 1986-04-25

Family

ID=12466956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036335A Pending JPS6181640A (en) 1985-02-27 1985-02-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6181640A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113581A (en) * 1973-02-26 1974-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113581A (en) * 1973-02-26 1974-10-30

Similar Documents

Publication Publication Date Title
US6388820B1 (en) Panoramic imaging arrangement
US5894348A (en) Scribe mark reader
US6341044B1 (en) Panoramic imaging arrangement
US7400393B2 (en) Method and apparatus for detecting defects in a specimen utilizing information concerning the specimen
US6356296B1 (en) Method and apparatus for implementing a panoptic camera system
US4547073A (en) Surface examining apparatus and method
TWI725208B (en) Defect inspection device, defect inspection method, wafer, semiconductor wafer, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
FR2686697A1 (en) Device for detecting defects in bilayer components, especially in solar cells
JP2011070208A (en) Imaging device allowing capturing of image of view at different resolution
JP2008058270A (en) Inspection method of polycrystal silicon substrate, inspection method of photovoltaic cell, and infrared inspection apparatus
JPH04225537A (en) Chip-position detecting method
JPH03283572A (en) Solid-state image pick up element
JP5589423B2 (en) Transparent flat plate detection system
JP3717514B2 (en) Apparatus and method for observing confirmation mark on semiconductor wafer
JPS6181640A (en) Manufacture of semiconductor device
EP0079439A1 (en) Optical system for oblique viewing
JP3417736B2 (en) Optical member inspection device
WO2018008512A1 (en) Defect detection device, defect detection method, wafer, semiconductor chip, semiconductor device, die bonder, bonding method, semiconductor manufacturing method, and semiconductor device manufacturing method
CN101071261B (en) Method for detecting coated surface of IR-cut filter
JP3417738B2 (en) Optical member inspection device
JPH08178863A (en) Method for inspecting defect of lenticular lens sheet
JP2807599B2 (en) Semiconductor chip appearance inspection device
JP3366211B2 (en) Mirror object imaging method
JPS62191741A (en) Method for detecting surface flaw
JPH03261807A (en) Outer appearance inspection apparatus