JPS6181408A - Method of polymerizing propylene - Google Patents

Method of polymerizing propylene

Info

Publication number
JPS6181408A
JPS6181408A JP20182984A JP20182984A JPS6181408A JP S6181408 A JPS6181408 A JP S6181408A JP 20182984 A JP20182984 A JP 20182984A JP 20182984 A JP20182984 A JP 20182984A JP S6181408 A JPS6181408 A JP S6181408A
Authority
JP
Japan
Prior art keywords
propylene
improver
reflux condenser
steric regularity
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20182984A
Other languages
Japanese (ja)
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Yoshiyuki Funakoshi
船越 良幸
Mitsugi Ito
伊藤 貢
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP20182984A priority Critical patent/JPS6181408A/en
Publication of JPS6181408A publication Critical patent/JPS6181408A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled polymer efficiently without causing reduction in heat removal ability, by using a catalyst consisting of a solid transition metalcatalyst, an organoaluminum compund, and an improver for steric regularity, adding the improver for steric regularity to the vapor introduction part of a reflux condenser, and carrying out bulk polymerization. CONSTITUTION:In subjecting propylene to bulk polymerization by the polymerizer 1 using propylene itself as a medium by the use of a catalyst consisting of a solid transition metal catalyst, an organoaluminum compound and an improver for steric regularity, propylene vapor evaporated from the polymerizer 1 through the vapor introduction line 8 is blended with at least part of the improver fior steric regularity fed from the feed line 9 of the improver for steric regularity, fed to the reflux condenser 2, the propylene vapor is condensed, circulated from the circulation line 5 for the condensed solution to the polymerizer 1, so that the reaction heat is removed and the bulk polymerization of propylene is carried out at a constant temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロピレンの重合方法に関する。詳しくはプロ
ピレン自身を媒体とする塊状合法で還流冷却器で反応熱
を除去して一定温度でプロピレンを重合する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for the polymerization of propylene. Specifically, the present invention relates to a method of polymerizing propylene at a constant temperature by removing the reaction heat with a reflux condenser using a bulk method using propylene itself as a medium.

従来の技術 重合反応を行うに際し発生する重合熱を反応機の壁を介
しであるいは反応機内に熱交換器を設けて除去すること
は公知であるが大型の反応機では上記方法では伝熱面積
が大きくとれないことから液状媒体の潜熱を利用する還
流冷却器を用いる方法が行われている。(例えば持分4
3−14226.特公昭5l−29196) 還流冷却器を用いる方法は除熱能力に優れているが、還
流冷却器内で単量体が重合し除熱能力が低下していくと
いう問題があり冷却器内に不活性液体を流す方法(特開
昭48−88186)液体を噴霧する方法(特開51−
84887.特開昭52−96687)特定の形状のも
のを用いる方法(特開昭49−18187)によって上
記重合体の付着による除熱能力の低下を防止することが
提案されている。
Conventional technology It is known to remove the polymerization heat generated during a polymerization reaction through the wall of the reactor or by installing a heat exchanger inside the reactor, but in a large reactor, the heat transfer area is too large for the above method. Since it cannot be made large, a method using a reflux condenser that utilizes the latent heat of the liquid medium is used. (For example, equity 4
3-14226. Although the method using a reflux condenser has excellent heat removal ability, it has the problem that the monomer polymerizes in the reflux condenser, reducing the heat removal ability. Method of flowing active liquid (JP-A-48-88186) Method of spraying liquid (JP-A-51-88186)
84887. JP-A-52-96687) It has been proposed that a method using a specific shape (JP-A-49-18187) prevents the reduction in heat removal ability due to the adhesion of the polymer.

発明が解決しようとする問題点 重合体の付着による還流冷却器の除熱能力の低下に対し
て先に挙げた方法では、塩化ビニルの重合のような回分
的重合においては、一定の改良効果があるものの、プロ
ピレンなどのオレフィンの重合は連続重合法で行われる
ため、上述の方法では不充分であり長期間の運転を行う
と還流冷却器の除熱能力が低下し運転を中断して還流冷
却器の整備を行う必要があった。
Problems to be Solved by the Invention The above-mentioned methods do not have a certain improvement effect in batch polymerization such as vinyl chloride polymerization for reducing the heat removal ability of the reflux condenser due to polymer adhesion. However, since the polymerization of olefins such as propylene is carried out by a continuous polymerization method, the above method is insufficient, and if the operation is continued for a long period of time, the heat removal capacity of the reflux condenser decreases, and the operation is interrupted and reflux cooling is performed. It was necessary to maintain the equipment.

本発明者らは上記問題を解決する方法について鋭意検討
した結果特定の操作を行うことにより上記問題が解決で
きることを見い出し本発明を完成した。
The inventors of the present invention have conducted intensive studies on methods for solving the above-mentioned problems, and have found that the above-mentioned problems can be solved by performing specific operations, and have completed the present invention.

本発明の目的は還流冷却器で反応熱を除去してプロピレ
ンを重合するに際し還流冷却器の除熱能力の低下を起さ
ない方法を提供することにある。
An object of the present invention is to provide a method for polymerizing propylene by removing reaction heat using a reflux condenser without causing a decrease in the heat removal ability of the reflux condenser.

問題点を解決するための手段 即ち本発明は、固体遷移金属触媒と有機アルミニウム化
合物及び立体規則性向上剤からなる触媒を用いてプロピ
レン自身を媒体とする塊状重合法でプロピレンを蒸発さ
せて還流冷却器でプロピレン蒸気を凝縮して反応熱を除
去して一定温度でプロピレンを重合する方法において、
少なくさもl−部の立体規則性向上剤を還流冷却器への
蒸気の導入部に添加することを特徴とするプロピレンの
重合方法に関する。
A means for solving the problem, that is, the present invention, is to evaporate propylene using a bulk polymerization method using propylene itself as a medium using a catalyst consisting of a solid transition metal catalyst, an organoaluminum compound, and a stereoregularity improver, followed by reflux cooling. In the method of polymerizing propylene at a constant temperature by condensing propylene vapor in a vessel to remove the reaction heat,
A process for the polymerization of propylene, characterized in that at least 1 part of a stereoregularity improver is added to the introduction of the steam to a reflux condenser.

本発明においてプロピレンの重合とは、プロピレン単独
のみならずプロピレンと他のオレフィン例えばエチレン
、ブテン−11ヘキセン−1との共重合も含まれ、発明
の構成より明らかなように多段重合であっても良い。
In the present invention, the polymerization of propylene includes not only propylene alone but also copolymerization of propylene with other olefins such as ethylene, butene-11-hexene-1, and as is clear from the structure of the invention, even if it is a multistage polymerization. good.

本発明の方法は回分重合法にも適用可能であるが特に連
続重合に適用するとその効果が犬であも本発明において
固体遷移金属触媒と有機アルミニウム化合物及び立体規
則性向上剤からなる触媒については特に制限はなく上記
三成分からなる触媒系であればどのようなものであって
も良い。
Although the method of the present invention is applicable to batch polymerization, it is particularly effective when applied to continuous polymerization. There are no particular limitations, and any catalyst system may be used as long as it is composed of the three components mentioned above.

固体遷移金属触媒の代表的なものとしては、金属アルミ
ニウム、有機アルミニウム、有機マク不シウムの還元剤
で四塩化チタンを還元して得た三塩化チタン又はそれら
を粉砕、エーテルなどの糖化剤で処理すること、或はさ
らに不活性炭化水素で洗浄すること、又は四塩化チタン
などさらに処理することなどによって活性化処理したも
の。或はハロゲン化マグネシウムシリカ、アルミナ、酸
化マグネシウムなどを粉砕、共粉砕、溶解沈殿、スプレ
ー乾燥など種々の方法で造粒して得た担体にハロゲン化
チタンを担持して得たもの或は必要に応じ含酸素化合物
で接触処理したものなどが挙げられる。有機アルミニウ
ム化合物としては、トリエチルアルミニウム、トリプロ
ピルアルミニウムトリブチルアルミニウム、トリヘキシ
ルアルミニウム又はそれらの混合物などのトリアルキル
アルミニウム、ジエチルアルミニウムクロリド、ジプロ
ピルアルミニウムクロリド、シフチルアルミニウムクロ
リド、ジエチルアルミニウムクロリド、又はそれらの塩
素が臭素又はヨー素で置換されたもの又は混合物などの
ジアルキルアルミニウムハロゲン、或はアルキルアルミ
ニウムセスキハライド、アルキルアルミニウムシバライ
ドなどが挙げられ、なかでもトリアルキルアルミニウム
、ジアルキルアルミニウムハライドが好ましく用いられ
る。
Typical solid transition metal catalysts include titanium trichloride obtained by reducing titanium tetrachloride with a reducing agent such as metallic aluminum, organoaluminium, or organomatium, or titanium trichloride obtained by pulverizing them and treating them with a saccharifying agent such as ether. activated by further washing with an inert hydrocarbon, or further treatment with titanium tetrachloride, etc. Alternatively, titanium halide is supported on a carrier obtained by granulating halogenated magnesium silica, alumina, magnesium oxide, etc. by various methods such as pulverization, co-pulverization, dissolution precipitation, and spray drying, or as required. Examples include those that have been subjected to contact treatment with an oxygen-containing compound. Examples of organoaluminum compounds include trialkylaluminum such as triethylaluminum, tripropylaluminum tributylaluminum, trihexylaluminum or mixtures thereof, diethylaluminum chloride, dipropylaluminum chloride, cyphthylaluminum chloride, diethylaluminum chloride, or chlorine thereof. Examples include dialkylaluminum halogens such as those in which is substituted with bromine or iodine, or mixtures thereof, alkylaluminum sesquihalides, alkylaluminum cibarides, and among these, trialkylaluminum and dialkylaluminum halides are preferably used.

本発明において立体規則性向上剤とは、得られるポリプ
ロピレンの立体規則性を向上させるために用いる化合物
を示し具体的には含酸素化合物、含窒素化合物、含イオ
ウ化合物が挙げられ中でも含酸素化合物が好ましく用い
られる。具体的にはエステル、エーテル、アミド、アル
コキシケイ素化合物が好ましく用いられ、芳香族カルボ
ン酸エステル、ジアルキルエーテル、ジアリールエーテ
ル、アルコキンケイ素が特に良好な結果を与える本発明
の触媒系において上記3成分の使用割合については、使
用する化合物によってその適当な範囲が異なるが通常有
機アルミニウムと立体規則性向上剤の量比は100〜1
(’(lし比)有機アルミニウムと遷移金属触媒の量比
は100−1重量比である。
In the present invention, the stereoregularity improver refers to a compound used to improve the stereoregularity of the obtained polypropylene, and specifically includes oxygen-containing compounds, nitrogen-containing compounds, and sulfur-containing compounds, among which oxygen-containing compounds are used. Preferably used. Specifically, esters, ethers, amides, and alkoxy silicon compounds are preferably used, and aromatic carboxylic acid esters, dialkyl ethers, diaryl ethers, and alkoxy silicon compounds give particularly good results. Regarding the proportion used, the appropriate range varies depending on the compound used, but the ratio of organic aluminum to stereoregularity improver is usually 100 to 1.
('(l ratio) The weight ratio of organoaluminum to transition metal catalyst is 100-1 weight ratio.

本発明において重合温度については冷却剤として安価な
ものが使用可能であることから30〜90°C通常40
〜90°Cで行うのが好ましい。
In the present invention, the polymerization temperature is usually 30 to 90°C and 40°C because an inexpensive coolant can be used.
Preferably it is carried out at ~90°C.

重合圧力はプロピレン自身を液状媒体として使用するこ
とから他のオレフィンとの量比或は分子量調節剤として
用いる水素あるいは、フラシンク等て用いる不活性媒体
の量比なとて定まる。
Since propylene itself is used as a liquid medium, the polymerization pressure is determined by the quantitative ratio of propylene to other olefins, hydrogen used as a molecular weight regulator, or an inert medium such as flaxin.

本発明の実施の態様を図面を用いて説明する。Embodiments of the present invention will be described using the drawings.

■は重合槽てあり、ンヤケノト10及び還流冷却器2に
よって反応熱を除去して一定温度で重合が行われる。図
面には反応槽の温度を検知しその温度により制御器11
により還流冷却器2に導入される冷媒の流量を制御する
例を示しているが重合温度の制御のための種々の工夫に
ついては何ら制限はない。還流冷却器2への蒸気の供給
はライン8より行われ、還流冷却器は例えは多管式熱交
換器より構成されプロピレン蒸気は冷却凝縮されて凝縮
液はライン5より、又非凝縮カスはブロワ−6を経てラ
イノアより重合槽へ循環される。
(2) is a polymerization tank, in which the heat of reaction is removed by a heat exchanger 10 and a reflux condenser 2, and polymerization is carried out at a constant temperature. In the drawing, the temperature of the reaction tank is detected and a controller 11 is installed according to the temperature.
Although an example is shown in which the flow rate of the refrigerant introduced into the reflux condenser 2 is controlled by the following, there is no restriction at all as to various measures for controlling the polymerization temperature. Steam is supplied to the reflux condenser 2 through a line 8, and the reflux condenser is composed of, for example, a multi-tubular heat exchanger. It is circulated from the Rhinore to the polymerization tank via the blower 6.

ライン8には反応槽に装入されるべき立体規則性向上剤
の一部が導入される。この際反応槽に装入されるべき1
部のプロピレンで立体規則性向上剤を希釈して導入する
とより効果的である。
A portion of the stereoregularity improver to be charged to the reaction vessel is introduced into line 8. At this time, 1 to be charged into the reaction tank
It is more effective to dilute the stereoregularity improver with 50% propylene and introduce it.

本発明の方法に従って40m3の反応槽で、塩化7り不
ノウムに四塩化チタンを担持した遷移金属触媒Q、3k
vh、 h ’J x チルアルミニウムO,ssg、
/h。
Transition metal catalyst Q, 3k, in which titanium tetrachloride was supported on heptanoium chloride in a 40 m3 reaction vessel according to the method of the present invention.
vh, h'J x chill aluminum O, ssg,
/h.

ジエチルアルミニウムクロライド1.4 #/h 1立
体規則性向上剤としてp−トルイル酸メチル0.4 l
/h及びテトラエキジンラン0.41/hを装入して3
.2T/hてポリプロピレンを75°ご重合した。初ル
Q、271/hをプロピレン50kl/hで希釈して装
入し次の7[コ間はテトラエトキシシラン0.2 l/
hをプロピレン50ky/hで希釈して装入した14日
間の運転の後還流冷却器まわり(配管5,7.8も含め
)を解体して調べたところ付着物はほとんど見られなか
った。
Diethylaluminum chloride 1.4 #/h 1 Methyl p-toluate 0.4 l as stereoregularity improver
/h and tetraexid run 0.41/h and charged 3
.. Polypropylene was polymerized at 75° at 2 T/h. The first liter Q, 271/h was diluted with 50 kl/h of propylene and charged, and the next 7
After 14 days of operation in which the reflux condenser (including pipes 5 and 7.8) was dismantled and examined, almost no deposits were found.

次いで立体規則性向上剤を添加することなく同様に14
日間運転(ライン9よりのプロピレンの装入は行った)
した後解体して調べたところライン8に少量のポリマー
の付着があり還流冷却器2の多管式熱交換器の1部が閉
塞していた。
14 in the same manner without adding stereoregularity improver.
Daily operation (propylene was charged from line 9)
When the reactor was dismantled and examined, it was found that a small amount of polymer had adhered to the line 8, and a portion of the multi-tubular heat exchanger of the reflux condenser 2 was blocked.

作   用 立体規則性向上剤は重合活性を低下させる効果を示し、
特に他の成分に対する量比が大きい場合その効果は犬で
ある。したがって蒸気の還流冷却器への導入ラインに立
体規則性向上剤を導入することで1部はそのまま導入ラ
インを逆流して反応槽に入り又一部は蒸気に同伴して還
流冷却器、凝縮液循環ライン及び非1疑縮ガス循環ライ
ンより反応槽に入ることになり還流冷却器まわりでの重
合を実質的に起こさせないことになっているものと推定
される。
Effect Stereoregularity improvers show the effect of reducing polymerization activity,
Especially when the ratio of the amount to other ingredients is large, the effect is significant. Therefore, by introducing a stereoregularity improver into the introduction line of the steam to the reflux condenser, a portion of it will flow back through the introduction line and enter the reaction tank, and a portion will accompany the steam to the reflux condenser and condensate. It is presumed that since the gas enters the reaction tank through the circulation line and the non-condensed gas circulation line, polymerization around the reflux condenser is not substantially caused.

効   果 本発明の方法を実施することにより反応熱を、効率よく
還流冷却器で除去して連続的にプロビレ/を重合するこ
とが可能となり工業的に価値がある。
Effects By carrying out the method of the present invention, it is possible to efficiently remove the reaction heat using a reflux condenser and continuously polymerize probylene, which is industrially valuable.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法を実施するための装置の1例を示す
図である。 1は重合槽、2は還流冷却器、3は冷媒導入ライ/、4
は冷媒排出ライン、5は凝縮液循環ライン6はブロワ−
17は非凝縮カス循環ライン、8は蒸気導入ライン、9
は立体規則性向上剤導入ライン、】0はンヤケノト、1
1は変換器、12はバルブである。
The drawing shows an example of an apparatus for carrying out the method of the invention. 1 is a polymerization tank, 2 is a reflux condenser, 3 is a refrigerant introduction line/, 4
5 is the refrigerant discharge line, 5 is the condensate circulation line 6 is the blower
17 is a non-condensable waste circulation line, 8 is a steam introduction line, 9
is the stereoregularity improver introduction line, ] 0 is the stereoregularity improver introduction line, 1 is the stereoregularity improver introduction line,
1 is a converter, and 12 is a valve.

Claims (1)

【特許請求の範囲】 1)固体遷移金属触媒と有機アルミニウム化合物及び立
体規則性向上剤からなる触媒を用いてプロピレン自身を
媒体とする塊状重合法でプロピレンを蒸発させて還流冷
却器でプロピレン蒸気を凝縮して反応熱を除去して一定
温度でプロピレンを重合する方法において、少なくとも
1部の立体規則性向上剤を還流冷却器への蒸気の導入部
に添加することを特徴とするプロピレンの重合方法 2)立体規則性向上剤が含酸素有機化合物である特許請
求の範囲第1項記載の方法。
[Claims] 1) Propylene is evaporated by a bulk polymerization method using propylene itself as a medium using a catalyst consisting of a solid transition metal catalyst, an organoaluminum compound, and a stereoregularity improver, and propylene vapor is produced in a reflux condenser. A method for polymerizing propylene at a constant temperature by condensing to remove the heat of reaction, characterized in that at least one part of a stereoregularity improver is added to the introduction of steam to a reflux condenser. 2) The method according to claim 1, wherein the stereoregularity improver is an oxygen-containing organic compound.
JP20182984A 1984-09-28 1984-09-28 Method of polymerizing propylene Pending JPS6181408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20182984A JPS6181408A (en) 1984-09-28 1984-09-28 Method of polymerizing propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20182984A JPS6181408A (en) 1984-09-28 1984-09-28 Method of polymerizing propylene

Publications (1)

Publication Number Publication Date
JPS6181408A true JPS6181408A (en) 1986-04-25

Family

ID=16447584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20182984A Pending JPS6181408A (en) 1984-09-28 1984-09-28 Method of polymerizing propylene

Country Status (1)

Country Link
JP (1) JPS6181408A (en)

Similar Documents

Publication Publication Date Title
FI89370C (en) POLYMERIZATION AV OLEFINER MEDELST ANVAENDNING AV EN MODIFIERAD ZIEGLER-NATTA-KATALYSATOR
CN100360571C (en) Liquid phase process for the polymerization of alpha-olefins
CN1098866C (en) Gas-phase method total density polyvinyl high-efficiency catalyst
EP0034061B1 (en) Method and apparatus for removal of heat from an olefin polymerization reactor
EP0376936B1 (en) A ziegler-Natta catalyst component
US3065220A (en) Preparation and use of ziegler catalysts wherein the catalyst components are reacted at below-25 deg.c.
JP2001261720A (en) Method for producing polyolefin and vapor phase polymerization apparatus
JPH0830089B2 (en) Catalyst for olefin polymerization
EP0604994B1 (en) Method for drying vapor phase reaction system
JPS6181408A (en) Method of polymerizing propylene
JP2766523B2 (en) Method for producing stabilized olefin polymerization catalyst
JPS61126109A (en) Catalyst component and catalyst for polymerization of olefin
JPH062777B2 (en) Method for continuous vapor phase polymerization of propylene
US5098967A (en) Method of controlling the molecular weight of polypropylene
GB2069369A (en) Method and apparatus for removal of heat from an olefin polymerization reactor
US4420609A (en) Catalyst deactivation in propylene polymers using ammonium salts
JP3577394B2 (en) Continuous polymerization of propylene
JPH0149282B2 (en)
JP3418956B2 (en) Polymerization terminator
JP2009292963A (en) Method for producing olefin polymer
JP2598287B2 (en) Solid catalyst components and catalysts for olefins polymerization
CA1305281C (en) Control method of molecular weight of polypropylene
JPS58111806A (en) Vapor phase polymerization of olefin
JPS63301A (en) Catalyst for polymerization of olefin
JP2657385B2 (en) Solid catalyst components and catalysts for olefins polymerization