JPS6181197A - Control circuit of induction motor - Google Patents

Control circuit of induction motor

Info

Publication number
JPS6181197A
JPS6181197A JP59202411A JP20241184A JPS6181197A JP S6181197 A JPS6181197 A JP S6181197A JP 59202411 A JP59202411 A JP 59202411A JP 20241184 A JP20241184 A JP 20241184A JP S6181197 A JPS6181197 A JP S6181197A
Authority
JP
Japan
Prior art keywords
voltage
output
induction motor
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59202411A
Other languages
Japanese (ja)
Inventor
Akira Yoshino
吉野 晢
Kazuhiro Matsuoka
和宏 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP59202411A priority Critical patent/JPS6181197A/en
Publication of JPS6181197A publication Critical patent/JPS6181197A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To effectively drive by varying an output voltage on the basis of the displacement of a current phase, thereby automatically regulating the drive voltage of a motor for the variation in the load of the motor or the alteration of the motor. CONSTITUTION:If a motor 7 is in a no load state, a signal (f) input to an output voltage controller 15 is preset to become substantially zero. If a load is applied to the motor 7, a current phase is displaced as compared with the no load case, a momentary current value is sampled by the displaced phase at the current sampling time signal c time, the output signal (e) of a current amount detector 13 which exhib its the current value is input though a limiter 14 to the controller 15 to alter the pulse width, thereby raising an output to output a signal to a transistor base driver 16 to supply the raised voltage to the motor 7.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は可変電圧可変周波数の交流電力を誘導電動機に
供給して駆動させる誘導電動機の制御回路に関し、特に
誘導電動機の出力トルク特性を改良した誘導電動機の制
御回路に関する。
[Detailed Description of the Invention] "Field of Industrial Application" The present invention relates to a control circuit for an induction motor that drives the induction motor by supplying alternating current power of variable voltage and frequency, and in particular improves the output torque characteristics of the induction motor. This invention relates to a control circuit for an induction motor.

「従来の技術」 一般に誘導電動機をその等価回路をもってその出力トル
クを説明すると、その等価回路は第4図の如く二次側イ
ンピーダンスz2と励磁アドミッタンスYOとを並列接
続しこの並列回路の両端点A、B間に一次側インピーダ
ンスZ1を介して入力電圧Vが印加される回路に置き換
えられ、電源周波数をfとし、点A、B間に印加される
電圧をEとすると、その出力トルクTは、 T鴛(E/f)” で示される。従って、誘導電動機を可変電圧可変周波数
の交流電力にて駆動し可変速運転させる場合には(E/
 f )の値を略一定として行う必要があるが、この(
E/ f )の値を一定にしつつ入力電圧Vを供給する
ためには−次側インピーダンスZlによる電圧降下分を
加味して行わなくてはならず、特に低い周波数での駆動
に際しては一次側インピーダンスZ1の抵抗R1による
電圧降下分が他の降下分に比し大きな割合を占めるため
、低い周波数での駆動では入力電圧■を予め高く疫定し
ていた。
"Prior Art" In general, the output torque of an induction motor is explained using its equivalent circuit.As shown in Fig. 4, the equivalent circuit connects a secondary side impedance z2 and an excitation admittance YO in parallel, and connects both end points A of this parallel circuit. , B is replaced with a circuit in which an input voltage V is applied through a primary impedance Z1, and when the power supply frequency is f and the voltage applied between points A and B is E, the output torque T is: Therefore, when an induction motor is driven with variable voltage and variable frequency AC power and operated at variable speed, it is expressed as (E/f).
It is necessary to keep the value of f ) approximately constant, but this (
In order to supply the input voltage V while keeping the value of E/f) constant, it is necessary to take into account the voltage drop due to the negative side impedance Zl, and especially when driving at a low frequency, the primary side impedance Since the voltage drop due to the resistor R1 of Z1 occupies a larger proportion than other drops, the input voltage (2) was previously determined to be high when driving at a low frequency.

「発明が解決しようとする問題点」 而しながら、予め固定的に抵抗R1による電圧降下分を
補正した場合、電動機の負荷の変化或いは電動機の変更
の時には、−次側インピーダンスZ1に流れる電流が変
化してその電圧降下分も変化し、電動機が過励磁状態や
全く逆の粗励磁状態となり、もって電動機の磁気騒音の
増大、電動機の過熱或いはトルク不足等不都合な現象が
発生していた。しかも、誘導電動機の出力トルクTと回
−転速度Frとの関係は、第3図の特性図の点線で示す
如く電源周波数fが大きい場合、即ち誘導電動機の電源
同期速度Fが大きい値F1の場合には所定のトルクT1
を得るのに回転速度Frは電源同期速度Fの値F1より
やや小さな低下の値Frlにて得るのに対し、電源周波
数fが小さい場合、即ち誘導電動機の電源同期速度Fが
小さい値F2の場合には所定のトルクTIを得るのに回
転速度Frは電源同期速度Fの値F2より大きく低下し
た値Frlにて得るものであり、両者におけるすべりS
は大きく異なり電動機の回転数制御が十分に出来ていな
かった。従って、誘導電動機の回転数により入力電圧■
を調整してすべりSの補償をする必要があった。尚、す
べりSは一般に((F−Fr)/F)にて示される。
"Problem to be Solved by the Invention" However, if the voltage drop caused by the resistor R1 is fixedly corrected in advance, when the load of the motor changes or the motor is changed, the current flowing through the negative side impedance Z1 As a result, the voltage drop also changes, causing the motor to be in an overexcited state or in the completely opposite coarsely excited state, resulting in inconvenient phenomena such as an increase in the magnetic noise of the motor, overheating of the motor, or insufficient torque. Moreover, the relationship between the output torque T and the rotational speed Fr of the induction motor is as follows when the power supply frequency f is large, as shown by the dotted line in the characteristic diagram of FIG. In this case, the predetermined torque T1
In order to obtain the rotational speed Fr, the rotation speed Fr is obtained at a value Frl that is slightly smaller than the value F1 of the power supply synchronous speed F, whereas when the power supply frequency f is small, that is, when the power supply synchronous speed F of the induction motor is a small value F2. In order to obtain a predetermined torque TI, the rotational speed Fr is obtained at a value Frl that is much lower than the value F2 of the power supply synchronous speed F, and the slip S in both
were significantly different, and the rotational speed of the motor could not be controlled sufficiently. Therefore, depending on the rotation speed of the induction motor, the input voltage
It was necessary to compensate for the slip S by adjusting the Note that the slip S is generally expressed as ((F-Fr)/F).

「問題を解決するための手段」 本発明は可変電圧可変周波数の交流電力を誘導電動機に
供給して駆動させる誘導電動機の制御回路に、誘導電動
機に供給する線電流を検出する電近傍での位相ずれを基
準として有負荷状態での位相ずれに対応して前記インバ
ータ回路の出力電圧を可変する出力電圧制御回路とを設
けたものである。
"Means for Solving the Problem" The present invention provides a control circuit for an induction motor that supplies variable voltage, variable frequency alternating current power to drive the induction motor. and an output voltage control circuit that varies the output voltage of the inverter circuit in response to a phase shift in a loaded state using the shift as a reference.

「作用」 上述の構成により、誘導電動機の負荷の変化或いは誘導
電動機の変更等に対し、誘導電動機が過励磁状態や全く
逆の粗励磁状態となることを少なくし誘導電動機を効率
よく駆動すると共に可変周波数に対してすべりの補償を
し電動機の回転数制御を十分に行なえるものであ゛る。
"Function" With the above-mentioned configuration, the induction motor is efficiently driven by reducing the possibility that the induction motor becomes over-excited or becomes the completely opposite coarse excitation state in response to a change in the load of the induction motor or a change in the induction motor. It is possible to compensate for slippage with respect to the variable frequency and to sufficiently control the rotational speed of the motor.

・ 「実施例」 以下本発明を一実施例として掲げた図面に基づいて説明
する。一般に誘導電動機の制御の方法には、電流形のも
のと電圧形のものとに区分され、さらに電圧形のなかで
もパルス振幅制御(PAM制御)とパルス中制御(PW
M制御)とに区分され、而もパルス中制御(PWM制御
)のなかでも不等パルス中制御と等パルス巾制御とに区
分されるが、一実施例として掲げるものは上記の電圧形
−パルス巾制御(PWM制御)−不等パルス巾制御のも
のである。而して第1図は回路ブロック図を示し、1は
3相交流電源、2はダイオードブリッジ3−により構成
されたコンバータ回路であって、交流電源1の交流電圧
を整流して脈流を出力する。4はコンバータ回路2の出
力に接続した平滑コンデンサで、コンバータ回路2の出
力電圧である脈流を平滑し、直流電圧とする。5はトラ
ンジスタ6・−からなるインバータ回路であって、トラ
ンジスタ6−を一対直列接続してアームと成しこのアー
ムを3組並列接続して構成し、平滑コンデンサ3の出力
電圧を各アームに入力し各アームのトランジスタ6・−
を夫々 120度の位相をずらしてスイッチング動作さ
せて不等パルス巾の電圧でなる3相交流電源を発生させ
る。7はインバータ回路5から出力される3相交流電圧
にて駆動される誘導電動機である。而して上述のインバ
ータ回路5はコントロール回路8によりそのスイッチン
グ動作が制御され出力される3相交流電圧を可変電圧可
変周波数とし誘導電動機7を可変速運転させる。9は誘
導電動機7に供給される一相の線電流を検出する電流検
知器であり、−相に流れる電流に対応した波形を出力を
する。
- "Example" The present invention will be described below based on the drawings as an example. In general, induction motor control methods are divided into current type and voltage type, and among voltage type, pulse amplitude control (PAM control) and pulse duration control (PW
M control), and within pulse control (PWM control), it is divided into unequal pulse width control and equal pulse width control. Width control (PWM control) - Unequal pulse width control. FIG. 1 shows a circuit block diagram, in which 1 is a three-phase AC power supply and 2 is a converter circuit composed of a diode bridge 3-, which rectifies the AC voltage of the AC power supply 1 and outputs a pulsating current. do. 4 is a smoothing capacitor connected to the output of the converter circuit 2, which smoothes the ripple current that is the output voltage of the converter circuit 2, and converts it into a DC voltage. Reference numeral 5 denotes an inverter circuit consisting of transistors 6 and 6. The transistors 6 and 6 are connected in series to form an arm, and three sets of these arms are connected in parallel to form an inverter circuit, and the output voltage of the smoothing capacitor 3 is input to each arm. Transistor 6 of each arm
A three-phase AC power source consisting of voltages with unequal pulse widths is generated by performing switching operations with a phase shift of 120 degrees. Reference numeral 7 denotes an induction motor driven by a three-phase AC voltage output from the inverter circuit 5. The switching operation of the inverter circuit 5 is controlled by the control circuit 8, and the output three-phase AC voltage is made into a variable voltage and variable frequency to drive the induction motor 7 at variable speed. A current detector 9 detects the one-phase line current supplied to the induction motor 7, and outputs a waveform corresponding to the current flowing in the negative phase.

次に、上述したコントロール回路6を説明すると、10
は周波数を可変設定する設定回路10であり、連続的に
可変自在とした直流電圧を設定信号(a)として出力す
るものである。11はサイン波パルス列発生回路であり
、設定回路10の設定信号(a)を入力しこの設定信号
(a)の電圧の大きさに比例して出力信号の周波数が変
化する不等パルス中の信号(b)を出力する。12は電
流サンプリングタイム発生回路であり、サイン波パルス
列発生回路11の出力信号(b)を入力してこの信号(
b)に同期して電流サンプリングタイム信号(C)を発
生する。尚、実施例では誘導電動機7が無負荷状態での
電流波形で零の位置、即ち電流がゼロクロスの時に、極
めて短い時間のパルス信号を出ゲタイム発生回路12の
サンプリング信号(c)及び電流検知器9の検出信号(
d)を入力しサンプリング信号(C)の入力時に電流検
知器9の検出信号(d)の値を検出して次の検出時まで
その値を保持し信号(e)を出力する。14はリミッタ
回路であり、電流量検出回路13の出力信号(e)を入
力しこの信号(e)が所定値以上にならないように制限
して信号(f)を出力する。15は出力電圧制御回路で
あり、サイン波パルス列発生回路11の出力信号(b)
及びリミッタ回路14の出力信号(、f)を入力し、サ
イン波パルス列発生回路11の出力信号(b)にリミッ
タ回路14の出力信号(f)に対応した電圧骨を加味し
てパルス巾を可変し、出力電圧を調整した不等パルス巾
の信号(g)を出力する。16はトランジスタベースド
ライブ回路であり、この出力電圧制御回路15の出力信
号(g)を入力しインバータ回路5のトランジスタ6・
−・を夫々制御する。
Next, the above-mentioned control circuit 6 will be explained.
1 is a setting circuit 10 that variably sets the frequency, and outputs a continuously variable DC voltage as a setting signal (a). Reference numeral 11 denotes a sine wave pulse train generation circuit, which inputs the setting signal (a) of the setting circuit 10 and generates a signal in an unequal pulse whose output signal frequency changes in proportion to the magnitude of the voltage of this setting signal (a). Output (b). 12 is a current sampling time generation circuit, which inputs the output signal (b) of the sine wave pulse train generation circuit 11 and generates this signal (
A current sampling time signal (C) is generated in synchronization with b). In the embodiment, when the induction motor 7 is at the zero position in the current waveform under no load, that is, when the current is at zero cross, an extremely short pulse signal is outputted to the sampling signal (c) of the time generating circuit 12 and the current detector. 9 detection signal (
d), and when the sampling signal (C) is input, the current detector 9 detects the value of the detection signal (d), holds that value until the next detection, and outputs the signal (e). A limiter circuit 14 inputs the output signal (e) of the current amount detection circuit 13, limits the signal (e) so that it does not exceed a predetermined value, and outputs a signal (f). 15 is an output voltage control circuit, which outputs the output signal (b) of the sine wave pulse train generation circuit 11;
and the output signal (, f) of the limiter circuit 14 are input, and the pulse width is varied by adding the voltage bone corresponding to the output signal (f) of the limiter circuit 14 to the output signal (b) of the sine wave pulse train generation circuit 11. Then, a signal (g) of unequal pulse width with the output voltage adjusted is output. 16 is a transistor base drive circuit which inputs the output signal (g) of the output voltage control circuit 15 and drives the transistors 6 and 6 of the inverter circuit 5.
- and are controlled respectively.

尚、第2図は上述の回路ブロック図に於ける各部の信号
状態を示し、(A)は設定回路10の出力信号(a)、
(B)はサイン波パルス列発生回路11の出力信号(b
)、(C)は電流サンプリングタイム発生回路12の出
力信号(C)、(D)は電流検知器9の出力信号(d)
、(E)は電流量検出回路13の出力信号(6)、(F
)はリミッタ回路14の出力信号(f)、(G)は出力
電圧制御回路15の出力信号(g)を示す。この第2図
は誘導電動機が通常の有負荷状態のものを示し、而も(
D)乃至(G)に於いては、通常の有負荷状態である場
合の実線の他に、誘導電動機が無負荷状態である場合(
一点鎖線)と誘導電動機が過負荷状態である場合(点線
)とを示す。
Incidentally, FIG. 2 shows the signal states of each part in the above-mentioned circuit block diagram, and (A) shows the output signal (a) of the setting circuit 10,
(B) is the output signal (b
), (C) is the output signal (C) of the current sampling time generation circuit 12, (D) is the output signal (d) of the current detector 9
, (E) are the output signals (6), (F
) shows the output signal (f) of the limiter circuit 14, and (G) shows the output signal (g) of the output voltage control circuit 15. This figure 2 shows the induction motor in a normal loaded state, and (
In D) to (G), in addition to the solid line when the induction motor is in the normal loaded state, there is a solid line when the induction motor is in the no-load state (
(dashed line) and when the induction motor is overloaded (dotted line).

而してこの動作状態を説明すると、誘導電動機7が無負
荷状態の場合は第2図〔(D)乃至(G)に於いては一
点鎖線〕で示す様に、設定回路10の設定信号(a)に
対応してサイン波パルス列発生回路11が所定の周波数
をもつ不等パルス中の信号(b)を出力し、さらにサイ
ン波パルス列発生回路11の出力信号(b)に同期して
所定の位相ずれを設けた電流サンプリングタイム信号(
c)を発生し、而も電流サンプリングタイム信号(C)
を電流量検出回路13に入力して電流サンプリングタイ
ム信号(C)の出力時に電流検知器9より出力される検
出信号(d)をもって誘導電動機7の相電流の瞬時値を
出力する。尚、この場合には無負荷状態であるため予め
設定した様に電流の瞬時値は略零を示す。さらに、電流
量検出回路13の出力信号(e)はリミッタ回路14に
入力され、リミッタ回路14の出力信号(f)が出力電
圧制御回路15に入力される。尚、出力電圧制御回路1
5に入力される信号は略零であるので、予め設定された
周波数と電圧との比例関係をもって電圧が決定され、ト
ランジスタベースドライブ回路16に信号(g)が出力
される。この出力信号(g)によりトランジスタベース
ドライブ回路16がインバータ回路5次に誘導電動機7
がを負荷状態の場合は第2図〔(D)乃至(G)に於い
ては実線〕で示す様に、電流サンプリングタイム信号(
c)を電流量検出回路13に入力して電流サンプリング
タイム信号(C)の出力時に電流検知器9より出力され
る出力される検出信号(d)をもって誘導電動機7の相
電流の瞬時値を出力するのであるが、この時誘導電動機
7には負荷がかかることにより電気的な抵抗分が増加す
るため位相ずれが無負荷の場合に比し少なくなりもって
電流サンプリングタイム信号(C)時にはそのずれた位
相にて瞬時の電流値がその位相に対応して発止しこの瞬
時の電流値を示す電流量検出回路13の出力信号(e)
がリミッタ回路14を介して出力電圧制御回路15に入
力され、出力電圧制御回路15ではその出力信号(e)
、即ち電流値に対応して不等パルス中を変化し出力電圧
を上昇させてトランジスタベースドライブ回路16に信
号(g)を出力し、インバータ回路5を介して誘導電動
機7に上昇した交流電圧を供給する。
To explain this operating state, when the induction motor 7 is in a no-load state, the setting signal of the setting circuit 10 ( Corresponding to a), the sine wave pulse train generation circuit 11 outputs a signal (b) in the unequal pulse having a predetermined frequency, and further synchronizes with the output signal (b) of the sine wave pulse train generation circuit 11 to output a predetermined signal (b). Current sampling time signal with phase shift (
c), and also generates a current sampling time signal (C)
is input to the current amount detection circuit 13, and the instantaneous value of the phase current of the induction motor 7 is outputted using the detection signal (d) output from the current detector 9 when the current sampling time signal (C) is output. In this case, since there is no load, the instantaneous value of the current is approximately zero, as set in advance. Furthermore, the output signal (e) of the current amount detection circuit 13 is input to the limiter circuit 14, and the output signal (f) of the limiter circuit 14 is input to the output voltage control circuit 15. Furthermore, the output voltage control circuit 1
Since the signal input to the transistor base drive circuit 5 is approximately zero, the voltage is determined based on the proportional relationship between the frequency and the voltage set in advance, and the signal (g) is output to the transistor base drive circuit 16. This output signal (g) causes the transistor base drive circuit 16 to be connected to the inverter circuit 5 and the induction motor 7.
When is under load, the current sampling time signal (
c) is input to the current amount detection circuit 13, and when the current sampling time signal (C) is output, the instantaneous value of the phase current of the induction motor 7 is output using the detection signal (d) outputted from the current detector 9. However, at this time, due to the load being applied to the induction motor 7, the electrical resistance increases, so the phase shift is smaller than when there is no load, and the shift occurs at the current sampling time signal (C). An output signal (e) of the current amount detection circuit 13 indicating an instantaneous current value that starts at a phase corresponding to that phase and indicates this instantaneous current value.
is input to the output voltage control circuit 15 via the limiter circuit 14, and the output voltage control circuit 15 outputs the output signal (e).
That is, the output voltage is increased by varying the unequal pulse according to the current value, and a signal (g) is output to the transistor base drive circuit 16, and the increased AC voltage is transmitted to the induction motor 7 via the inverter circuit 5. supply

尚、不等パルス巾の変化方法は、同一周期の中で・を向
上させると共にすべりを小さくするよう働くのである。
It should be noted that the method of varying the unequal pulse width works to improve the ratio and reduce the slip within the same cycle.

尚、過負荷状態の場合は第2図((D)乃至(G)に於
いては点線〕で示す様に、供給電圧の上昇に対して出力
トルクの向上或いはすべりが未だ追従できず電流サンプ
リングタイム信号時に電流検知器9からの瞬時の電流値
が高く継続する場合は、リミッタ回路14により電圧の
上昇が停止され誘導電動機が異常な過励磁となり焼損す
る恐れを少なくしているのである。
In addition, in the case of overload, as shown in Figure 2 (dotted lines in (D) to (G)), the increase in output torque or slippage cannot yet follow the increase in supply voltage, and current sampling is not performed. If the instantaneous current value from the current detector 9 continues to be high at the time of the time signal, the limiter circuit 14 stops the voltage from rising, thereby reducing the possibility that the induction motor will become abnormally overexcited and burn out.

さらに設定回路10の設定信号(a)を変化させた場合
は第2図に於いて時間tl乃至時間t2と時間t3乃至
時間t4との比較で示す如く上述したように設定回路1
0の設定信号(a)に対応してサイン波パルス列発生回
路11が所定の周波数をもつ不等パルス巾の信号(b)
を出力して夫々に対応した可変電圧可変周波数の電源供
給をもって誘導電動機7を駆動するのである。尚、周波
数が高い場合は既に電圧も上昇しているので負荷の大き
さに対応して電圧の向上は周波数の低い場合に比しそれ
捏上がらないようになっている。
Furthermore, when the setting signal (a) of the setting circuit 10 is changed, the setting circuit 1
In response to the setting signal (a) of 0, the sine wave pulse train generation circuit 11 generates a signal (b) of unequal pulse width with a predetermined frequency.
The induction motor 7 is driven by outputting power of variable voltage and frequency corresponding to each output. It should be noted that when the frequency is high, the voltage has already increased, so the increase in voltage is not as great as when the frequency is low, depending on the size of the load.

このように、負荷の有無或いは負荷の大小に店番して自
動的に駆動電圧が変化することにより、第31!l(実
線にて示す〕に示す如く、周波数の高低によるすべりの
変化を少なく出来、もうで可変周波数に対してすべりの
補償をし電動機の回転数制御を十分に行うことが可能と
なる。
In this way, by automatically changing the drive voltage depending on the presence or absence of a load or the size of the load, the 31st! As shown by 1 (indicated by the solid line), it is possible to reduce the change in slip due to the height of the frequency, and it is now possible to compensate for the slip for the variable frequency and to sufficiently control the rotational speed of the motor.

以上の如く、実施例では電圧形−パルス中制御(PWM
制御)−不等パルス中制御のものをもって誘導電動機に
供給する線電流を検出する電流検出器の出力電圧を駆動
電圧波形との位相ずれを比較し無負荷状態近傍での位相
ずれを基準として有負荷状態での位相ずれに対応して前
記インバータ回路の出力電圧を可変することにより、出
力トルクを向上させると共にすべりを小さくするよう働
かせて効率的に誘導電動機を駆動するものを掲げたが、
勿論電圧形のものであればいずれのものも適用が可能で
ある。
As described above, in the embodiment, voltage type-pulse control (PWM
Control) - Compare the output voltage of the current detector that detects the line current supplied to the induction motor with the unequal pulse control for the phase shift with the drive voltage waveform, and use the phase shift near the no-load state as a reference. The above proposed system efficiently drives the induction motor by varying the output voltage of the inverter circuit in response to the phase shift under load, thereby increasing the output torque and reducing slippage.
Of course, any voltage type can be applied.

「発明の効果」 本発明は上記の如く、誘導電動機に供給する線電流を検
出する電流検出器と、この電流検出器の出力電圧を入力
して駆動電圧波形との位相ずれを比較し無負荷状態近傍
での位相ずれを基準として位相ずれに対応して前記イン
バータ回路の出力電圧を可変する出力電圧制御回路とを
設けたので、誘導電動機の負荷の変化或いは誘導電動機
の変更等に対し誘導電動機の駆動電圧を自動的に調整す
るから、誘導電動機が過励磁状態や全く逆の粗励磁状態
となることが少なくなり誘導電動機を効率よく駆動でき
ると共に、而も可変周波数に対してすべりの補償がされ
電動機の回転数制御を十分に行なえる効果がある。
"Effects of the Invention" As described above, the present invention includes a current detector that detects the line current supplied to the induction motor, and the output voltage of this current detector is inputted to compare the phase shift with the drive voltage waveform. Since an output voltage control circuit is provided that varies the output voltage of the inverter circuit in response to the phase shift based on the phase shift in the vicinity of the state, the induction motor Since the driving voltage of the motor is automatically adjusted, the induction motor is less likely to be in an over-excited state or the completely opposite coarse-excited state, and the induction motor can be driven efficiently. This has the effect of sufficiently controlling the rotation speed of the electric motor.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は回路ブロック図、第2図は第1図の回路ブ
ロック図の各部の信号図、第3図は回転速度とトルクと
の特性図、第4図は誘導電動機の等価回路図である。 1−交流電源、2・−コンバータ回路、3−ダイオード
ブリッジ、4・−・平滑コンデンサ、5−インバータ回
路、6・−トランジスタ、7・−誘導電動機、8−コン
トロール回路、9−・電流検知器、10−・−設定回路
、11−サイン波パルス列発生回路、12−電流サンプ
リングタイム発止回路、13−電流量検出回路、14・
−リミッタ回路、15−・出力電圧制御回路、16− 
 トランジスタベースドライブ回路。
Figure 1 is a circuit block diagram, Figure 2 is a signal diagram of each part of the circuit block diagram in Figure 1, Figure 3 is a characteristic diagram of rotational speed and torque, and Figure 4 is an equivalent circuit diagram of an induction motor. be. 1 - AC power supply, 2 - converter circuit, 3 - diode bridge, 4 - smoothing capacitor, 5 - inverter circuit, 6 - transistor, 7 - induction motor, 8 - control circuit, 9 - current detector , 10--setting circuit, 11-sine wave pulse train generation circuit, 12-current sampling time starting circuit, 13-current amount detection circuit, 14-
-Limiter circuit, 15-/Output voltage control circuit, 16-
Transistor-based drive circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)一対のスイッチング素子を直列接続して構成した
アームに直流電圧が印加され、このスイッチング素子間
に出力される交流電圧を誘導電動機に供給するインバー
タ回路と、このインバータ回路のスイッチング素子に駆
動信号を供給すると共に前記誘導電動機の駆動周波数及
び駆動電圧を略比例して可変するコントロール回路とで
なる誘導電動機の制御回路に於いて、前記誘導電動機に
供給する線電流を検出する電流検出器と、この電流検出
器の出力電圧を入力して駆動電圧波形との位相ずれを比
較し無負荷状態近傍での位相ずれを基準として有負荷状
態での位相ずれに対応して前記インバータ回路の出力電
圧を可変する出力電圧制御回路とを設けたことを特徴と
する誘導電動機の制御回路。
(1) A DC voltage is applied to an arm configured by connecting a pair of switching elements in series, and the AC voltage output between the switching elements is applied to an inverter circuit that supplies the induction motor and the switching element of this inverter circuit. An induction motor control circuit comprising a control circuit that supplies a signal and varies the driving frequency and driving voltage of the induction motor substantially proportionally, the control circuit comprising: a current detector that detects a line current supplied to the induction motor; , input the output voltage of this current detector, compare the phase shift with the drive voltage waveform, and calculate the output voltage of the inverter circuit corresponding to the phase shift in the loaded state, using the phase shift near the no-load state as a reference. 1. A control circuit for an induction motor, comprising: an output voltage control circuit that varies the output voltage.
JP59202411A 1984-09-25 1984-09-25 Control circuit of induction motor Pending JPS6181197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202411A JPS6181197A (en) 1984-09-25 1984-09-25 Control circuit of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202411A JPS6181197A (en) 1984-09-25 1984-09-25 Control circuit of induction motor

Publications (1)

Publication Number Publication Date
JPS6181197A true JPS6181197A (en) 1986-04-24

Family

ID=16457056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202411A Pending JPS6181197A (en) 1984-09-25 1984-09-25 Control circuit of induction motor

Country Status (1)

Country Link
JP (1) JPS6181197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330477A2 (en) * 1988-02-24 1989-08-30 Matsushita Electric Works, Ltd. Induction motor control system
JPH0385393A (en) * 1989-08-29 1991-04-10 Ntn Corp Motor control device for vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0330477A2 (en) * 1988-02-24 1989-08-30 Matsushita Electric Works, Ltd. Induction motor control system
JPH0385393A (en) * 1989-08-29 1991-04-10 Ntn Corp Motor control device for vacuum pump

Similar Documents

Publication Publication Date Title
JP3540152B2 (en) Engine driven generator
JPH0728559B2 (en) Operation method of variable speed power generation system
JPS6042717B2 (en) Power control device for induction motor
EP2062347B1 (en) Method and device for reducing the influence of a dc component in a load current of an asynchronous three-phase motor
JP2002204596A (en) Inverter-control type generator
JPS6181197A (en) Control circuit of induction motor
JPS58141699A (en) Motor controller
JPH0341029B2 (en)
JP2002078349A (en) Inverter device
JPS6120236B2 (en)
JPH0744834B2 (en) Pulse width control power converter
TW416183B (en) Method for controlling an electric motor and electric apparatus
JP3239532B2 (en) Motor drive
JP2639985B2 (en) Control method of single-phase induction motor
JPH033472B2 (en)
JP2006246667A (en) Motor driving device
JPH0452719B2 (en)
JPH01311889A (en) Controller for induction motor
JP2685547B2 (en) Control device for arc welding power supply
JPH0585470B2 (en)
JPS61266074A (en) Method of controlling pwm inverter
JPH01270789A (en) Controller for ac induction motor
JPS59165987A (en) Controller for induction motor
JP2835822B2 (en) Variable speed power generation system
SU1403324A1 (en) Induction electric drive with extremum control