JPS6180096A - Method of reducing radioactive waste - Google Patents

Method of reducing radioactive waste

Info

Publication number
JPS6180096A
JPS6180096A JP59201932A JP20193284A JPS6180096A JP S6180096 A JPS6180096 A JP S6180096A JP 59201932 A JP59201932 A JP 59201932A JP 20193284 A JP20193284 A JP 20193284A JP S6180096 A JPS6180096 A JP S6180096A
Authority
JP
Japan
Prior art keywords
waste liquid
regeneration
exchange resin
ion exchange
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59201932A
Other languages
Japanese (ja)
Inventor
幸雄 池田
毅 吉岡
修一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP59201932A priority Critical patent/JPS6180096A/en
Publication of JPS6180096A publication Critical patent/JPS6180096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射性物質を含むイオン交換装置からのイオ
ン交換樹脂の再生廃液中の未反応薬剤を有効に再利用す
ることにより放射性廃棄物の量を低減する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to the disposal of radioactive waste by effectively reusing unreacted chemicals in the recycled waste liquid of ion exchange resin from ion exchange equipment containing radioactive materials. Concerning how to reduce the amount.

〔従来の技術〕[Conventional technology]

従来、例えばBWR型原子力発電所における復水浄化系
復水脱塩装置においては、海水漏洩対策及び出口水の純
度を確保するため、イオン交換樹脂中のイオン負荷が極
ぐ低い時点でイオン交換樹脂の再生が行われており、従
ってこの際発生する再生廃液中〈は通薬量の95%以上
の未反応薬剤(苛性ソーダ或いは硫酸)が残留する結果
となっている。
Conventionally, in condensate desalination equipment for condensate purification systems in BWR type nuclear power plants, for example, in order to prevent seawater leakage and ensure the purity of outlet water, ion exchange resin is Therefore, in the recycled waste liquid generated at this time, unreacted chemicals (caustic soda or sulfuric acid) remain in the amount of over 95% of the amount passed.

そして、この未反応薬剤を含むイオン交換樹脂の再生廃
液はそのま\廃棄物処理系統へ送られ、蒸発濃縮した後
最終的には硫酸す) IJウムとして通常ドラム缶内で
アスファルト或いはセメント等(でより固型化されるが
、これら置屋化物は放射性を有しておシ、容易に廃棄二
分することができないので、現時点では発電所内に蓄積
される一方となっており、これら放射性廃棄物の二分は
環境問題ともからんで重要な課題の一つとなっている。
The recycled waste liquid of the ion exchange resin containing this unreacted agent is sent as is to the waste treatment system, where it is evaporated and concentrated and finally converted into sulfuric acid. However, these waste materials are radioactive and cannot be easily divided into two parts for disposal, so at present they are only being accumulated inside the power plant, and it is difficult to divide these radioactive wastes into two parts. This is one of the important issues as it is related to environmental issues.

〔発明の構成〕[Structure of the invention]

本発明は、放射性物質を含む液体をイオン交換により精
製する方法において、イオン交換樹脂を再生する際に生
成する再生廃液を再生の初期に排出される再生廃液とそ
の後排出される再生廃液とに二分割し、再生の初期に排
出され九再生廃液は電気透析法くより未反応薬剤を回収
し、その後排出された再生廃液はそのままで両者を次回
の再生用薬剤として再使用することを特徴とする放射性
廃棄物を低減する方法である。
In a method for purifying a liquid containing a radioactive substance by ion exchange, the present invention divides the recycled waste liquid generated when regenerating an ion exchange resin into the recycled waste liquid discharged at the beginning of the regeneration and the recycled waste liquid discharged afterwards. The method is characterized in that the regenerated waste liquid is divided and discharged at the initial stage of regeneration, and the unreacted drug is recovered by electrodialysis, and the regenerated waste liquid discharged thereafter is left as is and both are reused as the next regeneration agent. This is a way to reduce radioactive waste.

本発明者等は、放射性廃棄物の二分方法は重大な社会問
題となっていることから、該二分方法を完全に解決しえ
ないまでも、二分すべき廃棄物の量を減少せしめる場合
、廃棄物の貯臓容積を減少せしめうろことから、イオン
交換樹脂再生時において排出される再生廃液を減少させ
る方策について種々検討を行っているうちに本発明をな
すに到った。
Since the method of dividing radioactive waste into two has become a serious social problem, the present inventors believe that even if the method of dividing radioactive waste into two is not completely solved, if the amount of waste to be divided into two can be reduced, The present invention was developed while conducting various studies on ways to reduce the amount of regeneration waste liquid discharged during ion exchange resin regeneration in order to reduce the storage volume of substances.

原子力発電所等における通常の運転時のイオン負荷は、
海水漏洩対策及び出口水の純度維持のためイオン交換樹
脂の再生時におけるイオン交換樹脂のイオン負荷量も小
さいものとせざるを光ない。このため、脱塩塔1塔当シ
45000μs/1−711−一で運転されており゛、
再生時における再生用薬剤溶液(通常8%の%80.及
び4%のNaolll)中の再生薬剤の消費量は約4〜
5%と少なく、多量の未反応の薬剤即ち硫酸又は苛性ソ
ーダが再生廃液中に存在している。
The ion load during normal operation at nuclear power plants, etc. is
In order to prevent seawater leakage and maintain the purity of the outlet water, it is necessary to keep the ion load of the ion exchange resin small during regeneration of the ion exchange resin. For this reason, each desalination tower is operated at 45,000 μs/1-711-1.
The consumption of regeneration agent in the regeneration agent solution (usually 8% 80. and 4% Naoll) during regeneration is approximately 4-
As little as 5%, a large amount of unreacted drug, ie sulfuric acid or caustic soda, is present in the regeneration effluent.

通常のイオン交換樹脂再生の際における再生用薬剤溶液
中における薬剤量(通薬量)と再生廃液中に存在する未
反応薬剤量との関係を示すと次表のとおりである。
The following table shows the relationship between the amount of drug in the regeneration drug solution (drug passing amount) and the amount of unreacted drug present in the regeneration waste liquid during normal ion exchange resin regeneration.

再生廃液中には、上記表に示すとおシ、多量の未反応の
再生剤を含有しているので、該再生廃液を繰シ返し使用
することも考えられるが、再生廃液中には、脱塩塔へ供
給される復水中の不純物、例えばNa 、Oa 、Fθ
、C/  等が含まれておシ、イオン交換樹脂の再生レ
ベルが低下するだけでなく、繰シ返し使用する場合再生
廃液中の不純物とυわけ放射性物質が濃縮されるKつれ
環境の線量率が増加し、被曝低減対策上好ましくない。
The recycled waste liquid contains a large amount of unreacted regenerant as shown in the table above, so it is possible to use the recycled waste liquid repeatedly. Impurities in the condensate supplied to the column, such as Na, Oa, Fθ
, C/, etc., not only reduces the regeneration level of the ion exchange resin, but also increases the dose rate of the environment as radioactive materials are concentrated in proportion to impurities in the recycled waste liquid when used repeatedly. increases, which is not desirable in terms of radiation exposure reduction measures.

そして、再生廃液中に含まれている上記Na。And the above Na contained in the recycled waste liquid.

Ca、Pe、O/ 等の不純物は、再生操作開始後比較
的早い時期の再生廃液中に出現し、それ以後は不純物の
少ない未反応薬剤が再生塔より再生廃液として流出する
特徴があるが、本発明はこの点に着目し、再生廃液を再
生の初期に排出される不純物の多い再生廃液と不純物の
少ない廃液との二つに分割収集し、前者は電気透析槽に
より未反応薬剤のfl製・濃縮を行うと共に1後者はそ
のまま回収し、次回の再生時には先づ後者を用いて前半
の再生を行った後ついで電気透析により精製した未反応
薬剤と補充用の新薬剤溶液を用いて後半の再生を行うも
のである。
Impurities such as Ca, Pe, and O/2 appear in the recycled waste liquid relatively early after the start of the regeneration operation, and after that, unreacted chemicals with few impurities flow out from the regeneration tower as the recycled waste liquid. Focusing on this point, the present invention divides and collects the regenerated waste liquid into two parts: a regenerated waste liquid with many impurities and a waste liquid with few impurities, which are discharged in the early stage of regeneration.・At the same time as concentration, the latter is recovered as it is, and in the next regeneration, first the latter is used to regenerate the first half, and then the unreacted drug purified by electrodialysis and the new drug solution for replenishment are used to regenerate the second half. It performs regeneration.

なお、再生廃液を二つに分割する場合、初期に排出され
る再生廃液として、全体の再生廃液の/3或いはそれ以
下の量程度を回収してもよいが、不純物の除去を確実に
するためKは約4量とするのが好ましい。
In addition, when the recycled waste liquid is divided into two, it is possible to collect about 1/3 or less of the total recycled waste liquid as the initially discharged recycled waste liquid, but in order to ensure the removal of impurities, Preferably, the amount of K is about 4.

〔実施例〕〔Example〕

つぎに図面に基いて本発明の詳細な説明する。 Next, the present invention will be explained in detail based on the drawings.

イオン交換樹脂再生塔1に導入された再生すべきイオン
交換樹脂(湯イオン交換樹脂又は陰イオン交換樹脂)に
、先づ、前回の廃液受槽2中のイオン交換樹脂の再生時
の後半に用いられた再生廃液をポンプ烏により管12を
経て再生塔IK供給し、再生塔から排出される再生廃液
は管?及び11を経て廃液受槽3に貯留される。
The ion exchange resin to be regenerated (hot water ion exchange resin or anion exchange resin) introduced into the ion exchange resin regeneration tower 1 is first treated with the ion exchange resin used in the latter half of the previous regeneration of the ion exchange resin in the waste liquid receiving tank 2. The regenerated waste liquid is supplied to the regeneration tower IK through the pipe 12 by a pump, and the regenerated waste liquid discharged from the regeneration tower is supplied to the regeneration tower IK through the pipe 12. and 11, and is stored in the waste liquid receiving tank 3.

ついで前回の再生時の前半に用いられた廃液から電気透
析により回収した回収薬剤槽7に貯留されている回収薬
剤液をポンプaにょシ管19を経て管20から供給され
る新しい再生薬液と共に再生塔1に供給し該塔中のイオ
ン交換樹脂を再生し、この原管9から排出される再生廃
液は管10を経て原液受槽2に貯留され、該廃液は次回
の再生の前半に使用される。一方、廃液受槽3に貯留さ
れている再生の前半に使用した再生廃液は、ポンプ烏に
より廃液タンク4に移送された後、ポンプP、により電
気透析槽5の脱塩室に循環し、また、回収液タンク6に
張った純水を陽極室、陰極室および濃縮室にポンプ4で
循環させ電気透析を行い再生廃液中の薬剤を精製回収し
、回収された薬剤溶液は回収液タンク6から回収薬剤槽
7に一時貯留し、濃度を確認した後ポンプP、により管
19を経て新りしく補給された薬液と共に次回の再生工
程の後半に使用される。
Next, the recovered chemical liquid stored in the recovered chemical tank 7, collected by electrodialysis from the waste liquid used in the first half of the previous regeneration, is regenerated together with the new regenerated chemical liquid supplied from the pipe 20 via the pump a pipe 19. The recycled waste liquid is supplied to the column 1 to regenerate the ion exchange resin in the column, and the recycled waste liquid discharged from the raw tube 9 is stored in the raw liquid receiving tank 2 via the pipe 10, and the waste liquid is used in the first half of the next regeneration. . On the other hand, the recycled waste liquid used in the first half of the regeneration stored in the waste liquid receiving tank 3 is transferred to the waste liquid tank 4 by the pump P, and then circulated to the desalination chamber of the electrodialysis tank 5 by the pump P. The purified water in the recovery liquid tank 6 is circulated through the anode chamber, cathode chamber, and concentration chamber by the pump 4 and subjected to electrodialysis to purify and recover the drug in the recycled waste liquid, and the recovered drug solution is recovered from the recovery liquid tank 6. It is temporarily stored in the chemical tank 7, and after checking the concentration, it is used in the second half of the next regeneration process together with the newly supplied chemical solution via the pipe 19 by the pump P.

また、電気透析槽における回収廃液は、管23により廃
棄物処理工程へ排出され、一方、イオン交換樹脂再生後
管8を経て供給される洗浄水により発生する廃液は、管
9、管22を経て廃棄物処理工程へ排出される。
Furthermore, the recovered waste liquid from the electrodialysis tank is discharged to the waste treatment process through a pipe 23, while the waste liquid generated by the washing water supplied through the pipe 8 after regenerating the ion exchange resin is discharged through the pipe 9 and the pipe 22. Discharged to waste treatment process.

電気透析により薬剤の回収装置は、陰・陽画イオン交換
樹脂再生廃液のため2系統設ける必要のあることは当然
である。
It goes without saying that it is necessary to provide two systems for recovery of drugs by electrodialysis for negative and positive ion exchange resin regeneration waste liquids.

電気透析槽としては、どのような種類のものを用いても
よいが、最も典型的な電気透析装置を用いてイオン交換
樹脂再生廃液からHIF304  およびNaOHの回
収について説明する。
Although any type of electrodialysis tank may be used, recovery of HIF304 and NaOH from ion exchange resin regeneration waste liquid will be explained using the most typical electrodialysis equipment.

fs2図は陽イオン交換樹脂の再生廃液である主として
Fl、B 04とNl!L1804  を含む溶液から
馬80番を回収する状態を示す図であ勺、第5図は陰イ
オン交換樹脂の再生廃液である主としてNaOHとHa
lt  を含む溶液からNaOHを回収する状態を示す
図である。
The fs2 diagram shows mainly Fl, B 04 and Nl!, which is the recycled waste liquid of cation exchange resin. Figure 5 shows the state in which horse No. 80 is recovered from a solution containing L1804.
FIG. 3 is a diagram showing a state in which NaOH is recovered from a solution containing lt.

透析槽には両端に一対の陽極と陰極が設けられ、その間
に陰イオン交換膜ムと陽イオン交換膜Cとが交互に多数
配列されておシ、陽極と陰イオン交換膜との間に陽極室
が、陰極と陽イオン交換膜との間に陰極室が形成されて
いる。
The dialysis tank is equipped with a pair of anodes and a cathode at both ends, between which a large number of anion exchange membranes and cation exchange membranes C are arranged alternately. A cathode chamber is formed between the cathode and the cation exchange membrane.

第2図に基いて説明すると、陽イオン交換樹脂再生廃液
は管33を経て脱塩室(原液室)に導入され、管34を
経て管33に循環され、馬SO,回収液は管31から両
極室及び濃縮室に導かれ、管32を経て51に循環され
る。この間804− 、Ha”、H+等の各イオンは矢
印の方向に移動するが、原液室内に日Qa−が残ってい
る間、即ち対立■+の高い間はH+とNa中の移動性の
大きな相違もあり、H+のみが移動し、Na中は殆んど
移動し碌い。その結果濃縮室に純粋のH@so、  を
得ることができる。ただし、硫酸の回収率が90%以上
となると原液室内の■中濃度が希薄となりNa中が回収
硫酸中に移動し始めるので注意を要する。
To explain based on FIG. 2, the cation exchange resin regenerated waste liquid is introduced into the demineralization chamber (undiluted solution chamber) through the pipe 33, and is circulated through the pipe 34 to the pipe 33. It is led to the bipolar chamber and the concentration chamber and circulated through tube 32 to 51. During this time, ions such as 804-, Ha'', H+, etc. move in the direction of the arrow, but while Qa- remains in the stock solution chamber, that is, while the opposition ■+ is high, the mobility in H+ and Na is large. There is also a difference; only H+ moves, while most of Na moves.As a result, pure H@so can be obtained in the concentration chamber.However, if the recovery rate of sulfuric acid is 90% or more, Care must be taken because the concentration in ■ in the stock solution chamber becomes diluted and Na begins to move into the recovered sulfuric acid.

つぎに第3図に基いてNaOHの回収について説明する
と、陰イオン交換樹脂再生廃液は管43を経て脱塩室(
原液室)K導入され、管44を経て管43に循環され、
NaOH回収液は管41から両電極室及び濃縮室に導か
れ、管42を経て管41に循環される。この間Na” 
、 Cl−。
Next, to explain the recovery of NaOH based on FIG.
stock solution chamber) K is introduced and circulated through the pipe 44 to the pipe 43,
The NaOH recovery liquid is led from the pipe 41 to both electrode chambers and the concentration chamber, and is circulated to the pipe 41 via the pipe 42. During this time Na”
, Cl-.

OH−等の各イオンは矢印の方向に移動するが、原液室
内にNa中が残っている間、即ち対立OH−が高い間は
OH−とCl−の移動性の相違もあシ、OH−のみが移
動し、Cl−は殆んど移動しない。
Each ion such as OH- moves in the direction of the arrow, but while Na remains in the stock solution chamber, that is, while the opposing OH- is high, there is a difference in the mobility of OH- and Cl-, and OH- Only Cl- moves, and Cl- hardly moves.

従って濃縮室に純粋のNaOH溶液を得ることができる
。ただしNaOHの回収率が90%以上となると原液室
内のOR−濃度が小となp at−が回収NaOH溶液
中へ移動し始めるので注意を要する。
Therefore, a pure NaOH solution can be obtained in the concentration chamber. However, when the recovery rate of NaOH becomes 90% or more, the OR- concentration in the stock solution chamber becomes small and pat- begins to move into the recovered NaOH solution, so care must be taken.

以上説明した電気透析法により硫酸濃度的565の陣イ
オン交換樹脂再生廃液から約90%の回収率で約74%
の純粋の硫酸を回収でき、またNaOH濃度的2.9%
の陰イオン交換樹脂再生廃液から同様に約五5%の純粋
の苛性ソーダを回収できる。
By the electrodialysis method explained above, the recovery rate is about 74% with a recovery rate of about 90% from the recycled ion exchange resin waste liquid with a sulfuric acid concentration of 565%.
of pure sulfuric acid can be recovered, and NaOH concentration is 2.9%.
Similarly, approximately 55% pure caustic soda can be recovered from the anion exchange resin regeneration waste solution.

〔発明の効果〕〔Effect of the invention〕

本発明方法によるときは、樹脂の再生効率の点で従来の
再生法と同等の再生効率を得ることができる。
When using the method of the present invention, it is possible to obtain a regeneration efficiency equivalent to that of conventional regeneration methods in terms of resin regeneration efficiency.

また、本発明Vこよると最終固化体であるドラム缶本数
を計算すると下記の表のよう(なる。
Further, according to the present invention V, the number of drums that are the final solidified product is calculated as shown in the table below.

上記の様に従来法に比し約78%の低減が可能であシ、
ドラム缶の最終二分の困難さ、コスト高を考慮すると、
十分な経済性を有するものである。
As mentioned above, it is possible to reduce the amount by about 78% compared to the conventional method.
Considering the difficulty and high cost of final halving of drums,
It has sufficient economic efficiency.

尚、再生廃液よシの未反応薬剤の回収を全て電気透析法
(てよる方法に比べ本発明は次の点でメリットが有る。
The present invention has the following advantages compared to a method in which all unreacted drugs from recycled waste liquid are recovered by electrodialysis.

1)未反応薬剤の約/2を以下の量を電気透析処理すれ
ば良いため、電気透析装置規模は約4以下となり、電力
費、膜交換費等ランニングコストも4以下となる。
1) Since it is only necessary to electrodialyze about half of the unreacted drug in the following amount, the scale of the electrodialysis equipment becomes about 4 or less, and the running cost such as electricity cost and membrane replacement cost also becomes 4 or less.

2)電気透析装置のメンテナンス時、故障時等でも未反
応薬液の後半4をリサイクルとすれば最終廃棄物量は約
/に低減できる。
2) If the latter half of the unreacted chemical solution is recycled during maintenance or failure of the electrodialyzer, the amount of final waste can be reduced to about 1/2.

もちろんこの逆も可能であり、装置の裕度が広がる。Of course, the reverse is also possible, increasing the margin of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するための概略フロー図、第
2図および第3図は夫々陽イオン交換樹脂再生廃液から
H,EI04  を回収する状態を示す図および陰イオ
ン交換樹脂再生廃液からNaOHを回収する状態を示す
図である。
Figure 1 is a schematic flow diagram for explaining the method of the present invention, and Figures 2 and 3 are diagrams showing the recovery of H, EI04 from cation exchange resin recycled waste liquid, and anion exchange resin recycled waste liquid, respectively. FIG. 3 is a diagram showing a state in which NaOH is recovered.

Claims (1)

【特許請求の範囲】[Claims] 1、放射性物質を含む液体をイオン交換により精製する
方法において、イオン交換樹脂を再生する際に生成する
再生廃液を再生の初期に排出される再生廃液とその後排
出される再生廃液とに二分し、再生の初期に排出された
再生廃液は電気透析法により未反応薬剤を回収し、その
後排出された再生廃液はそのままで、次回の再生用薬剤
として再使用することを特徴とする放射性廃棄物を低減
する方法。
1. In a method for purifying a liquid containing a radioactive substance by ion exchange, the regenerated waste liquid generated when regenerating the ion exchange resin is divided into two: a regenerated waste liquid that is discharged at the beginning of the regeneration, and a regenerated waste liquid that is discharged afterwards; Reducing radioactive waste by collecting unreacted chemicals from the recycled waste liquid discharged at the beginning of regeneration using electrodialysis, and then reusing the recycled waste liquid as it is as it is for the next regeneration chemical. how to.
JP59201932A 1984-09-28 1984-09-28 Method of reducing radioactive waste Pending JPS6180096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201932A JPS6180096A (en) 1984-09-28 1984-09-28 Method of reducing radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201932A JPS6180096A (en) 1984-09-28 1984-09-28 Method of reducing radioactive waste

Publications (1)

Publication Number Publication Date
JPS6180096A true JPS6180096A (en) 1986-04-23

Family

ID=16449177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201932A Pending JPS6180096A (en) 1984-09-28 1984-09-28 Method of reducing radioactive waste

Country Status (1)

Country Link
JP (1) JPS6180096A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060700A (en) * 1973-09-29 1975-05-24
JPS50102798A (en) * 1974-01-23 1975-08-14
JPS50128683A (en) * 1974-03-29 1975-10-09
JPS569379A (en) * 1979-07-03 1981-01-30 Tokyo Keiki Co Ltd Automatic anticorrosion equipment for cathode
JPS5919551A (en) * 1982-07-23 1984-02-01 Ebara Corp Retrenchment of regenerating agent during regeneration of ion-exchange resin, reduction of total solid part and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060700A (en) * 1973-09-29 1975-05-24
JPS50102798A (en) * 1974-01-23 1975-08-14
JPS50128683A (en) * 1974-03-29 1975-10-09
JPS569379A (en) * 1979-07-03 1981-01-30 Tokyo Keiki Co Ltd Automatic anticorrosion equipment for cathode
JPS5919551A (en) * 1982-07-23 1984-02-01 Ebara Corp Retrenchment of regenerating agent during regeneration of ion-exchange resin, reduction of total solid part and apparatus therefor

Similar Documents

Publication Publication Date Title
JPS5927204B2 (en) Ion exchange and electrodialysis combined liquid purification method and device
JP4096576B2 (en) Chemical cleaning method
JP5044178B2 (en) Radionuclide-containing waste liquid treatment method and apparatus
JPH1147560A (en) Secondary system line water treatment plant for pressurized water type atomic power plant
JPH11352283A (en) Condensate processing method and condensate demineralization device
CN217498968U (en) Recycling treatment system for fly ash washing liquid
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JPS6180096A (en) Method of reducing radioactive waste
JPS5835096B2 (en) How to capture spilled ion exchange resin
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
CN109775910A (en) ICL for Indirect Coal Liquefaction reused water processing technique and system
JPH0356126A (en) Hollow yarn membrane filter having desalting function
JP3729347B2 (en) Electric regenerative desalination equipment
JP3714076B2 (en) Fluorine-containing wastewater treatment apparatus and treatment method
CN217127010U (en) Regeneration system of waste developing solution
CN212142638U (en) Ion exchange system for liquid stream treatment
KR100666309B1 (en) Deionization apparatus and Method for condensate with Continuous deionization equipment
CN212309614U (en) Ion exchange system for liquid stream treatment
JPS6151597A (en) Method of reducing radioactive waste
JPH04244288A (en) Apparatus for making ultra-pure water
CN113241207B (en) Method and system for treating acidic low-level waste liquid and nuclear fuel post-treatment plant system
JPH063495A (en) Equipment for treating waste liquid
CN115093066A (en) Recycling treatment system and process for fly ash washing liquid
SU856543A1 (en) Method of regeneration of strong-acidic cationic exchanger
JPH1177043A (en) Desalting apparatus