JPS6179904A - Feed pump changeover controller - Google Patents
Feed pump changeover controllerInfo
- Publication number
- JPS6179904A JPS6179904A JP19960884A JP19960884A JPS6179904A JP S6179904 A JPS6179904 A JP S6179904A JP 19960884 A JP19960884 A JP 19960884A JP 19960884 A JP19960884 A JP 19960884A JP S6179904 A JPS6179904 A JP S6179904A
- Authority
- JP
- Japan
- Prior art keywords
- water supply
- flow rate
- pump
- signal
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
- Feedback Control In General (AREA)
- Flow Control (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、給水制御系に係り、%に、低流量時の最少給
水流量を確保するための外乱となるボイラ給水ポンプ再
循環系の制御と給水制御系に好適な給水流量制御装置に
関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a water supply control system, and particularly relates to the control of a boiler feed water pump recirculation system that causes disturbance to ensure the minimum water supply flow rate at low flow rates. The present invention relates to a water supply flow rate control device suitable for a water supply control system.
従来の装置は、特開昭55−116006号公報に記載
のように、給水ポンプ切替時の変動量を抑制していた。Conventional devices, as described in Japanese Patent Application Laid-Open No. 55-116006, suppress the amount of fluctuation when switching the water supply pump.
しかし、変動量が給水制御系の制限値でなく、総給水量
が制限値であるが給水制御系の最上位に存在するボイラ
自動制御装置からの主給水量要求信号に対する補正信号
を加味するのみにとどまり、総給水量については配慮さ
れていなかった。However, although the amount of fluctuation is not the limit value of the water supply control system, and the total water supply amount is the limit value, only a correction signal is added to the main water supply amount request signal from the boiler automatic control device located at the top of the water supply control system. The total amount of water supplied was not considered.
本発明の目的は、給水制御の外乱として多様な制限を課
せられるボイラ給水ポンプ再循環弁等の制御系を、単純
化するとともに、汽缶設備からくる給水流量に対する制
限をクリアにし、給水制御装置全体を監視し、安定した
制御装置を提供するにある。The purpose of the present invention is to simplify the control system of boiler feed water pump recirculation valves, etc., which are subject to various restrictions as disturbances in water supply control, and to clear restrictions on the water supply flow rate from steam tank equipment, thereby improving the overall water supply control system. The purpose is to monitor and provide a stable control device.
給水制御系の大きな外乱として考えられるボイラ給水ポ
ンプ再循環弁動作に対し、数多くの制御装置が考え出さ
れてきているが、給水流量の低い領域での動作が問題と
なる。本発明は、ボイラ給水ポンプ再循環弁動作ポイン
トを検出し、給水流量を大きくし、ボイラ最少流量を確
保する給水ポンプ切替制御装置である。Many control devices have been devised to deal with the operation of the boiler feed water pump recirculation valve, which is considered to be a major disturbance in the feed water control system, but the operation in low feed water flow areas poses a problem. The present invention is a feed water pump switching control device that detects a boiler feed water pump recirculation valve operating point, increases the feed water flow rate, and ensures the boiler minimum flow rate.
第4図に発電所の概要を示す。汽缶設備1より発生した
蒸気は、主蒸気管2を通り、タービン3に導ひかれ、熱
エネルギを機械的エネルギに変換し、発電機4を回転さ
せて発電する。エネルギを放出した蒸気は、復水器5で
凝縮され水に戻される。復水ポンプ6は、復水器5より
水を抽出させ、水を復水昇圧ポンプ7へ送水する。復水
昇圧ポンプ7で昇圧された水は低圧給水加熱器8で加熱
され、脱気器9へと送られる。さらに、給水昇圧ポンプ
10、給水ポンプ11によシ昇圧された水は高圧給水加
熱器12で再加熱され、汽缶設備1へと給水される。給
水ポンプ11の再循環系統は、給水ポンプ11の出口配
管より分岐され、給水再循環弁(BFP再循環弁)13
を介し、脱気器9に接続される。尚、給水ポンプ11と
その再循環系統は複数系列設置される。Figure 4 shows an overview of the power plant. Steam generated from steam tank equipment 1 passes through main steam pipe 2 and is led to turbine 3, which converts thermal energy into mechanical energy, rotates generator 4, and generates electricity. The steam that has released energy is condensed in the condenser 5 and returned to water. The condensate pump 6 extracts water from the condenser 5 and sends the water to the condensate boost pump 7. The water pressurized by the condensate boost pump 7 is heated by the low-pressure feed water heater 8 and sent to the deaerator 9. Furthermore, the water whose pressure has been increased by the water supply pressure boost pump 10 and the water supply pump 11 is reheated by the high pressure water supply heater 12 and is supplied to the steam tank equipment 1. The recirculation system of the water supply pump 11 is branched from the outlet piping of the water supply pump 11, and is connected to a water supply recirculation valve (BFP recirculation valve) 13.
It is connected to the deaerator 9 via. Note that a plurality of water supply pumps 11 and their recirculation systems are installed.
第2図に給水ポンプ廻シの詳細図を示す。脱気器9の水
は、給水昇圧ポンプ10、給水ポンプ11により、汽缶
設備IVc給水される。給水ポンプは複水系列あり、他
方の給水昇圧ポンプ14、給水ポンプ15も並列で設置
され、各ポンプは再循環系統を単独にもち、それぞれの
給水再循環弁13゜16により、脱気器9へ戻される系
統である。再循環弁の開閉は、一般に、各給水ポンプ吸
込側に流量発信器17.18を設置し、流量を検出し、
必要再循環量を減少したら信号を出力する流量スイッチ
19,20,21.22に接続され、スイッチの信号に
より弁を動作させる。又、各給水ポンプの駆動源として
、全負荷時の25チ容量を持つ電動機23、と所内消費
電力を低減させるために、蒸気駆動のタービン24が使
用されている。Figure 2 shows a detailed diagram of the water supply pump circuit. The water in the deaerator 9 is supplied to the steam tank equipment IVc by a water supply boost pump 10 and a water supply pump 11. The feed water pump has a double water system, and the other feed water boost pump 14 and feed water pump 15 are also installed in parallel, each pump has its own recirculation system, and the deaerator 9 This is the system that will be returned to. The recirculation valve is generally opened and closed by installing a flow transmitter 17, 18 on the suction side of each water pump to detect the flow rate.
It is connected to flow rate switches 19, 20, 21, 22 which output a signal when the required recirculation amount is reduced, and the valve is operated by the switch signal. Further, as a driving source for each water pump, an electric motor 23 having a capacity of 25 cm at full load is used, and a steam-driven turbine 24 is used to reduce power consumption within the station.
所内蒸気源が確保されない起動過程では、電動機23V
c接続されている給水ポンプ11により給水し、蒸気が
確保された時点で、タービン24に接続されている給水
ポンプ15により、給水する方法が発電所の運用である
。従来発電所の起動過程で、給水ポンプの切換操作があ
シ、切換負荷は、電動機駆動給水ポンプの設計流量で行
なう。給水流量制御は、給水ポンプの切換えによシネ安
定要素があるため、切換え時の総給水流量を一定にして
行なうようにしている。During the startup process when an in-house steam source is not secured, the electric motor 23V
The operation of the power plant is to supply water by the water supply pump 11 connected to the turbine 24, and then, when steam is secured, to supply water by the water supply pump 15 connected to the turbine 24. Conventionally, during the start-up process of a power plant, there is a switching operation of the feedwater pump, and the switching load is performed at the designed flow rate of the motor-driven feedwater pump. Water supply flow rate control is performed by keeping the total water supply flow rate constant at the time of switching, since there is an element of cine stability due to switching of the water supply pump.
従来、総給水流量の最少流量値が汽缶設備側で設定され
ており、給水ポンプ側でも経済運用を目的として1昆動
給水ポンプ容量は25俤流量相当で設定されているため
、給水ポンプ切換時開閉する給水ポンプ再循環弁を、耐
用年数の低い連続制御弁とするなり、0N−QFF弁を
複数個順次動作させる等により、給水再循環弁の特性に
より対策してきており、給水制御系に対する技術として
は、末端部による保護と考えられる。Conventionally, the minimum flow rate value for the total water supply flow rate was set on the steam tank equipment side, and on the water supply pump side, for the purpose of economical operation, the capacity of one pump water supply was set at the equivalent of a flow rate of 25 tons, so when switching the water supply pump, The water supply pump recirculation valve that opens and closes has been replaced with a continuous control valve with a short service life, and multiple 0N-QFF valves are operated in sequence to improve the characteristics of the water supply recirculation valve, and technology for water supply control systems has been developed. As such, it is considered that protection is provided by the terminal part.
第1図に給水流量制御概略図を示す。給水ポンプの切替
時の流量変動率を少なくする制御系の二台の給水ポンプ
による概略図を示す。各給水ポンプの流量制御信号25
.26は次のように決定される。発電デマンド信号27
、や定値信号切替器28の出力信号は、変化率制限器2
9に取シ込まれ1、ある制限値による信号は、負荷から
流量換算する関数発生器30により流隼信号となる。こ
の信号とボイラ総給水流量発信器31からの信号は演算
器32によシ演算され、偏差信号となる。その流量偏差
信号は、各給水ポンプの自動モード手動モードを判定す
る判断回路33へ取り込まれその出力信号は比例積分調
節器34を介し給水流量マスク信号35となる。給水ポ
ンプ11Vc対して、自分の給水流量発信器36の信号
と給水流量マスタ信号35を演算器で演算し、バイアス
信号37があれは再演算させ、偏差信号を比例積分調節
器38を介し制御信号25となる。但し、給水ポンプA
の末端が手動の場合、自動/手動選択器39によシ切替
器40を介し制御信号25となる。給水ポンプ15に対
しても同様となり、給水流量発信器41、バイアス信号
42、比例積分調節器43、自動/手動選択器44、切
替器45等により制御信号26が発せられる制御概略図
を示す。Figure 1 shows a schematic diagram of water supply flow rate control. A schematic diagram of two water supply pumps in a control system that reduces the rate of flow rate fluctuation when switching between water supply pumps is shown. Flow rate control signal 25 for each water pump
.. 26 is determined as follows. Power generation demand signal 27
, and the output signal of the fixed value signal switch 28, the rate of change limiter 2
9, a signal based on a certain limit value becomes a flow signal by a function generator 30 that converts the flow rate from the load. This signal and the signal from the boiler total feedwater flow rate transmitter 31 are calculated by the calculator 32 to become a deviation signal. The flow rate deviation signal is taken into a determination circuit 33 that determines whether automatic mode or manual mode is selected for each water supply pump, and its output signal is passed through a proportional-integral regulator 34 and becomes a water supply flow rate mask signal 35. For the water supply pump 11Vc, the signal of its own water supply flow rate transmitter 36 and the water supply flow rate master signal 35 are calculated by a calculator, the bias signal 37 is recalculated, and the deviation signal is sent to the control signal via the proportional integral regulator 38. It becomes 25. However, water supply pump A
When the terminal is manual, the control signal 25 is passed through the automatic/manual selector 39 and the switch 40. The same applies to the water supply pump 15, and a control schematic diagram is shown in which a control signal 26 is issued by a water supply flow rate transmitter 41, a bias signal 42, a proportional-integral regulator 43, an automatic/manual selector 44, a switch 45, etc.
このようにして、各給水ポンプは制御され、その結果、
各ポンプ吐出流量等が変化し、ボイラ総給水流量発信器
31の信号が変化し、給水流量マスタ信号35が変わり
、最終的に各給水ポンプへフィードバックされる制御系
である。In this way, each water pump is controlled, so that
This is a control system in which the discharge flow rate of each pump changes, the signal of the boiler total feed water flow rate transmitter 31 changes, the feed water flow rate master signal 35 changes, and is finally fed back to each feed water pump.
給水ポンプ11と給水ポンプ15を切替える場合で、説
明上、給水ポンプ11が自動モード運転しており、給水
ポンプ15を起動するときを例にとる。In the case of switching between the water supply pump 11 and the water supply pump 15, for the sake of explanation, an example will be taken where the water supply pump 11 is operating in automatic mode and the water supply pump 15 is started.
給水ポンプ15は、給水流量としては当初零でアシ、ポ
ンプ切替モードであることから、変化率制限器29の信
号は、25%負荷設定器46からの信号となり、その流
量は、すべて、給水ポンプ11が確保している。この状
態から給水ポンプ15のバイアス信号42を減少させ、
流量制御信号を増加させると、ボイラ総給水流量発信器
31からの信号が増加するため、演算器32の信号は負
となり、給水流量マスク信号が負となることから、給水
ポンプ11は流量を減少させ、バランスをとり、ボイラ
総給水流量は25チとなる。Since the water supply pump 15 is in the pump switching mode with the water supply flow rate initially at zero, the signal from the rate of change limiter 29 becomes the signal from the 25% load setting device 46, and all of the flow rate is determined by the water supply pump. 11 is secured. From this state, reduce the bias signal 42 of the water supply pump 15,
When the flow rate control signal is increased, the signal from the boiler total feed water flow rate transmitter 31 increases, so the signal from the calculator 32 becomes negative, and the feed water flow rate mask signal becomes negative, so the feed water pump 11 decreases the flow rate. After adjusting and balancing, the total boiler water supply flow rate becomes 25 inches.
このようなバイアス信号42の操作をくシ返すことによ
り、ポンプ11流量が減少して再循環弁開動作相当流量
になった場合、従来、定値信号切替428の出力信号は
変えぬまま切替えを進行させたため再循環弁の流量が、
25チ総給水量に対して変動が発生するため、再循環弁
側で多様な対策を行なう必要があった。再循環弁開動作
相当流量において、給水ポンプ11の流量は6〜7チ流
量であり、給水ポンプ15で残シ18〜19チ流量を給
水している状態であることに着目し、給水ポンプ人が2
5チ流量まで給水可能であシ、25チ負荷設定器46の
信号を再循環弁開流量信号相当で35チ負荷設定器47
の信号に切シ替えることによバ総給水流量が増加し、再
循環弁動作時の変動が大きくても、汽缶側の最低流量を
満足し、しかも、給水ポンプ11の流量は設計値の25
チ流量を満足させる制御系の提供にある。By repeating this operation of the bias signal 42, when the flow rate of the pump 11 decreases to a flow rate equivalent to the opening operation of the recirculation valve, conventionally, the switching continues without changing the output signal of the fixed value signal switching 428. As a result, the flow rate of the recirculation valve is
Since fluctuations occur in the total water supply amount for 25 inches, it was necessary to take various measures on the recirculation valve side. At the flow rate corresponding to the opening operation of the recirculation valve, the flow rate of the water supply pump 11 is 6 to 7 inches, and the water supply pump 15 is in a state of supplying water at the remaining flow rate of 18 to 19 inches. is 2
It is possible to supply water up to a flow rate of 5 cm, and the signal from the 25-ch load setter 46 is equivalent to the recirculation valve opening flow rate signal to the 35-ch load setter 47.
By switching to a signal of
The objective is to provide a control system that satisfies the flow rate.
第3図に給水流量変動図を示す。切替開始タイミング4
8によシボンプ15流量49はバイアス藻作により増加
し、ポンプ11流量50は、総給水量52の2511流
量を保つように制御される。Figure 3 shows a diagram of water supply flow rate fluctuations. Switching start timing 4
8, the pump 15 flow rate 49 is increased by bias algae cultivation, and the pump 11 flow rate 50 is controlled to maintain the flow rate 2511 of the total water supply amount 52.
そこで、ポンプ11の流量が再循環弁開流量相当信号5
1になると、流量設定が切替えられ、総給水流量52は
35チ流量に増加し、ポンプ11流量50も増加する。Therefore, the flow rate of the pump 11 corresponds to the recirculation valve opening flow rate signal 5.
1, the flow rate setting is switched, the total water supply flow rate 52 increases to 35 inches flow rate, and the pump 11 flow rate 50 also increases.
流量設定が変えられたのち再度バイアス操作によシポン
プ15流量49は増加し、ポンプ11流量50が減少し
、再循環弁開タイミング53となる。しかし、総給水量
52が35チ流量であるため、給水変動率が少なく、汽
缶最少流量54を割ることが無く、ポンプ11の最大流
量55が満足され、安定した制■が提供できる。After the flow rate setting is changed, the pump 15 flow rate 49 is increased by bias operation again, the pump 11 flow rate 50 is decreased, and the recirculation valve opening timing 53 is reached. However, since the total water supply amount 52 is a 35 inch flow rate, the water supply fluctuation rate is small, the steam can minimum flow rate 54 is not exceeded, the maximum flow rate 55 of the pump 11 is satisfied, and stable control can be provided.
本発明によれば、同一ポンプ仕様で負荷が大きな値で切
替ることか可能であシ、発電効率が高くなム再循環弁動
作時にも給水変動率(変動量/給水量)が小さく、制御
上も良好となる。According to the present invention, it is possible to switch the load at a large value with the same pump specifications, and even when the recirculation valve is operating, which has high power generation efficiency, the water supply fluctuation rate (variation amount / water supply amount) is small and control is possible. The top is also good.
第1図は本発明の一実施例の給水流量制御概略図、第2
図は給水ポンプ廻りの系統図、第3図は給水流量変動説
明図、第4図は本発明に適用される発電所の系統概略図
である。
28・・・定値信号切替器、29・・・変化率制限器、
30μ・関数発生器、31・・・総給水流量発信器、3
2・・・演算器、33・・・判断回路、34・・・比例
積分調節器、36・・・給水流量発信器、38・・・比
例積分調節器、39・・・自動/手動選択器、40・・
・切替器、41・・・給水流量発信器、43・・・比例
積分調節器、44・・・自動/手動選択器、45・・・
切替器、46・・・25チ高2図
傾
粘4−図Fig. 1 is a schematic diagram of water supply flow rate control according to an embodiment of the present invention;
The figure is a system diagram around a water supply pump, FIG. 3 is an explanatory diagram of fluctuations in water supply flow rate, and FIG. 4 is a schematic diagram of a power plant system to which the present invention is applied. 28... Fixed value signal switcher, 29... Rate of change limiter,
30μ・Function generator, 31...Total water supply flow rate transmitter, 3
2... Arithmetic unit, 33... Judgment circuit, 34... Proportional-integral regulator, 36... Water supply flow rate transmitter, 38... Proportional-integral regulator, 39... Automatic/manual selector , 40...
- Switching device, 41... Water supply flow rate transmitter, 43... Proportional integral regulator, 44... Automatic/manual selector, 45...
Switching device, 46...25 inches height 2 figure tilting 4- figure
Claims (1)
備へ給水を行なう設備において、 前記給水ポンプの再循環弁開閉動作による給水流量の変
動率を少なくするため、再循環弁の動作時期の予測信号
により、前記総給水流量の設定値を変える手段を設けた
ことを特徴とする給水ポンプ切替制御装置。[Scope of Claims] 1. In equipment that supplies water to steam tank equipment using multiple systems of water supply pumps having a recirculation system, in order to reduce the fluctuation rate of the water supply flow rate due to the opening and closing operations of the recirculation valve of the water supply pump, A water supply pump switching control device, comprising means for changing the set value of the total water supply flow rate based on a prediction signal of the operation timing of the circulation valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19960884A JPS6179904A (en) | 1984-09-26 | 1984-09-26 | Feed pump changeover controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19960884A JPS6179904A (en) | 1984-09-26 | 1984-09-26 | Feed pump changeover controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6179904A true JPS6179904A (en) | 1986-04-23 |
Family
ID=16410688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19960884A Pending JPS6179904A (en) | 1984-09-26 | 1984-09-26 | Feed pump changeover controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6179904A (en) |
-
1984
- 1984-09-26 JP JP19960884A patent/JPS6179904A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2309058C (en) | Method for closed-loop output control of a steam power plant, and a steam power plant | |
US4651530A (en) | Method and apparatus for feed-water control in a steam generating plant | |
CN111206970A (en) | Peak regulation system and control method for steam-injection steam extractor of thermal power plant | |
CN112768101A (en) | System and method for starting nuclear power unit of high-temperature gas cooled reactor by sliding pressure | |
CN116667383A (en) | Heat pump and low-adding coupling thermal power generating unit frequency modulation system and method | |
JPS6213490B2 (en) | ||
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JPS6179904A (en) | Feed pump changeover controller | |
JP2918743B2 (en) | Steam cycle controller | |
JP2531755B2 (en) | Water supply control device | |
JP2839195B2 (en) | Waste heat recovery boiler water supply control device | |
JPS63198706A (en) | Control method for parallel operation of exhaust gas turbo-generator and diesel generator | |
JPS5948696A (en) | Steam distributing device of reactor plant | |
JP3112579B2 (en) | Pressure control device | |
JPS5823206A (en) | Thermal power plant equipped with stored steam power generation system | |
JP3010086B2 (en) | Cogeneration power plant | |
CN118815558A (en) | Two-loop start-stop system | |
JP2002116290A (en) | Reactor feed water controller | |
JPH0792203B2 (en) | Boiler water supply control method and device | |
JPS59110810A (en) | Water level control device for steam turbine degasifier | |
CN115095393A (en) | Hydraulic turbine power generation system for redundant flow energy recovery | |
CN115307209A (en) | Primary network excess pressure recovery heat exchange unit | |
JPS63306301A (en) | Controller for feedwater heater drain system | |
JPS6391408A (en) | Feedwater heater drain system controller | |
JPH01244204A (en) | Low speed operating device for stand-by water supplying pump turbine |