JPS6179768A - Sputtering method - Google Patents

Sputtering method

Info

Publication number
JPS6179768A
JPS6179768A JP20311884A JP20311884A JPS6179768A JP S6179768 A JPS6179768 A JP S6179768A JP 20311884 A JP20311884 A JP 20311884A JP 20311884 A JP20311884 A JP 20311884A JP S6179768 A JPS6179768 A JP S6179768A
Authority
JP
Japan
Prior art keywords
target
treated
central
peripheral
sputtering method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20311884A
Other languages
Japanese (ja)
Inventor
Masafumi Suzuki
雅史 鈴木
Shigeki Kobayashi
茂樹 小林
Yasuhisa Sato
泰久 佐藤
Haruyoshi Yagi
八木 春良
Kenji Nishida
健治 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20311884A priority Critical patent/JPS6179768A/en
Publication of JPS6179768A publication Critical patent/JPS6179768A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Abstract

PURPOSE:To deposit a target material over the entire surface of a material to be treated to a uniform thickness by forming the surface of the target facing the material to be treated into a specific shape in the stage of sputtering the target material onto the surface of the material to be treated in a low-pressure Ar atmosphere. CONSTITUTION:The metallic target 5 such as Al and the material 1 to be treated are positioned in parallel so as to face each other in the gaseous Ar atmosphere under about 10<-3> Toor and electric discharge is generated between the target as a cathode and an anode to sputter and deposit metal such as Al with is the target material on the adherent surface 1a of the material 1 to be treated. The target 5 is separated to the central target 5 and the peripheral target 6 and the radiating surface 6a of the peripheral target 6 is made into the shape inclined inward with respect to the radiating surface 5a of the central target 5. Even if recesses 3 exist in the central and peripheral parts of the material 1, the target metal on the inside surface thereof is formed always to the uniform deposition thicknesses T1-T4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スパッタ方法に係り、特に、例えば半導体装
置の主要部品である半導体チップを製造するウェーハな
どの被処理体の被着面に、例えば電極を形成する材料な
どを被着するスパッタ方法の改良に関す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sputtering method, and in particular, to a sputtering method that sputters a sputtering method to a surface of an object to be processed, such as a wafer for manufacturing a semiconductor chip, which is a main component of a semiconductor device. For example, it relates to improvements in sputtering methods for depositing materials for forming electrodes.

半導体チップは、一般に半導体ウェーハ上にトランジス
タなどの半導体素子を形成したもので、その信頼性には
、該半導体素子そのものの良し悪しは勿論であるが、該
半導体素子からの配線導出の良し悪しも大きく影響する
A semiconductor chip generally has semiconductor elements such as transistors formed on a semiconductor wafer, and its reliability depends not only on the quality of the semiconductor element itself, but also on the quality of the wiring from the semiconductor element. It has a big impact.

この配線導出は、通常、前記半導体素子を覆う絶縁膜に
コンタクトホールを形成し、その上に例えばアルミニウ
ムなどの電極材料をスパッタ法などにより被着し、この
被着膜をバターニングして電極および配線を形成するこ
とによって行っている。
This wiring is usually achieved by forming a contact hole in an insulating film covering the semiconductor element, depositing an electrode material such as aluminum on the contact hole by sputtering, and patterning this deposited film to form an electrode and a contact hole. This is done by forming wiring.

この際、該配線導出の良し悪しは、該被着膜の該コンタ
クトホール部におけるカバレージの良し悪しに左右され
、特に大型ウェーハの周辺部において問題になる該カバ
レージを良くするスパッタ方法の提案が望まれている。
At this time, the quality of the wiring lead-out depends on the quality of the coverage in the contact hole portion of the deposited film, and it is desirable to propose a sputtering method that improves the coverage, which is a problem especially in the peripheral area of large wafers. It is rare.

〔従来の技術〕[Conventional technology]

第2図(A)は従来の一般的なスパッタ方法の要部構成
を示した側断面図で、lは被着膜を被着する半導体ウェ
ーハなどの被処理体、laは被処理体1の被着面、2は
被着膜材料で形成されるターゲソト、2aは該材料を放
射するターゲット2の放射面である。
FIG. 2(A) is a side sectional view showing the main part configuration of a conventional general sputtering method, where l is an object to be processed such as a semiconductor wafer to which a deposited film is applied, and la is an object to be processed 1. The deposition surface 2 is a target formed of a deposition film material, and 2a is a radiation surface of the target 2 that emits the material.

スパッタ記よる被着膜の形成は、凡そ)0−3Torr
程度のアルゴン雰囲気中に、被処理体1とターゲット2
とを被着面1aが放射面2aに対して中心を酪合わせ平
行に対峙するように配置し、ターゲット2をカソードに
して図示されないアノードとの間に放電させることによ
り、被着膜材料を放射面2a・ から放射させ被着面1
aに被着させてなされる。
The deposition film is formed by sputtering at approximately 0-3 Torr.
The object to be processed 1 and the target 2 are placed in an argon atmosphere of about
The deposited film material is radiated by arranging the deposited surface 1a and the radiation surface 2a so that their centers are parallel to each other and facing each other, and by using the target 2 as a cathode and discharging between it and an anode (not shown). Surface 2a・ radiates from surface 1
It is made by attaching it to a.

この際、被処理体1の大きさく例えば直径)に対して、
ターゲット2の大きさを約1.5倍、にすると、被着面
1aに形成される被着膜の厚さが全面に渡り略均−にな
ることが経験的に知られている。
At this time, with respect to the size (for example, diameter) of the object to be processed 1,
It is known from experience that when the size of the target 2 is increased by about 1.5 times, the thickness of the deposited film formed on the deposited surface 1a becomes approximately uniform over the entire surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述したコンタクトホールを有する場合
などのように、被着面2に側断面図で示した第2図(B
−1) 、(B−2)図示の如(窪3がある場合には、
被着膜4の厚さは、窪3の部分で均一にならない。
However, as in the case where the above-mentioned contact hole is provided, as shown in FIG.
-1), (B-2) As shown in the diagram (if there is a depression 3,
The thickness of the deposited film 4 is not uniform in the depression 3 portion.

即ち、図(B−1)は窪3が被着面1aの中央部にある
場合を、図(B−2)は窪3が被着面の周辺部(図上、
左が中央側、右側が縁側を示す)にある場合を示し、図
(3−1)においては窪3の肩部における被着膜4の厚
さT1およびT2が揃っているが、図(B−2)におい
ては窪3の肩部における被着膜4の厚さT3とT4とが
異なり、被着面1aの縁側になるT4が薄くなっている
。この傾向は被処理体1が大きくなると顕著である。
That is, Figure (B-1) shows the case where the recess 3 is located at the center of the adherend surface 1a, and Figure (B-2) shows the case where the recess 3 is located at the periphery of the adherend surface (in the figure,
The left side shows the center side and the right side shows the edge side. In Figure (3-1), the thicknesses T1 and T2 of the deposited film 4 at the shoulder part of the depression 3 are the same, but in Figure (B In -2), the thicknesses T3 and T4 of the deposited film 4 at the shoulder portion of the depression 3 are different, and T4 on the edge side of the deposited surface 1a is thinner. This tendency becomes more noticeable as the object to be processed 1 becomes larger.

例えば、大きさ約1.5μm角、深さ約1μ鋼のコンタ
クトホールを有する直径約150flの大型ウェーハ(
6エンウエーハ)に、厚さTが約1μmになるようアル
ミニウムをスバ・ツタすると、厚さTl〜T3は厚さT
の略40%程度に揃っているが、厚さT4は厚さT3の
172以下と極めて薄くなる。
For example, a large wafer (approximately 150 fl in diameter) with a steel contact hole approximately 1.5 μm square in size and approximately 1 μm deep (
When aluminum is spun onto the wafer (6) so that the thickness T is approximately 1 μm, the thicknesses Tl to T3 are equal to the thickness T.
However, the thickness T4 is extremely thin, being 172 or less of the thickness T3.

このことは、例えば、半導体チップの前記配線導出にお
いて、ウェー八が太き(なるとウェーハ周辺部における
コンタクトホールのカバレージが悪くなり、その部分で
断線を生ずる危険性に繋がる問題点となる。
This poses a problem, for example, in the wiring of a semiconductor chip when the wafer is thick (if the wafer is thick, the coverage of contact holes in the wafer periphery is poor, leading to a risk of disconnection in that area).

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点↓よ、中央部と周辺部とに分離させたターゲ
ットを使用して被処理体りこ対するターゲメト材料のス
パッタを行う本発明のスパック方法すこよって解決され
る。
The above-mentioned problems ↓ can be solved by the sputtering method of the present invention, which uses targets separated into a central part and a peripheral part to sputter a target material onto an object to be processed.

本発明によれ、ば、前記周辺部ターゲ、7トの放射面を
前記中央部ターゲットの放射面に対し内側に向けて傾斜
させ、被処理体の被着面を該中央部ターゲットの放射面
に対して平行シこ対・峙させるのがよい。
According to the present invention, the radiation surfaces of the peripheral targets (7) are inclined inward with respect to the radiation surfaces of the central target, and the attachment surface of the object to be processed is aligned with the radiation surface of the central target. It is better to have them face each other in parallel.

(作用〕 従来方法において、被処理体被着面の周辺部にある窪に
対する被着膜のカバレージが悪いのは、ターゲットの形
状から制約されて、該周辺部において被着材料の縁側に
向かう横方向の放射密度が少ないことに起因するものと
考えされる。
(Function) In the conventional method, the reason why the coverage of the deposited film is poor in the depressions in the periphery of the deposition surface of the object to be treated is because of the shape of the target. This is thought to be due to the low radiation density in the direction.

そこで、ターゲットを中央部と周辺部とに分離させ、該
周辺部の放射面を例えば上記のようにして、被着材料の
方向による放射密度の均一化を図ることにより、問題の
カバレージ不良を改善させることが可能になり、その結
果、例えば、半導体千ノブの前記配線導出において、コ
ンタクトホール部分で断線を生ずる危険性を低減させる
ことが可能りこなる。
Therefore, by separating the target into a central part and a peripheral part, and making the radiation surface of the peripheral part as described above, for example, to make the radiation density uniform depending on the direction of the adhered material, the problem of poor coverage can be improved. As a result, it becomes possible to reduce the risk of disconnection occurring at the contact hole portion, for example, in leading out the wiring of a semiconductor chip.

[実施例〕 以下本発明の一実施例を図により説明する。全図を通じ
同一符号は同一対象物を示す。
[Example] An example of the present invention will be described below with reference to the drawings. The same reference numerals indicate the same objects throughout the figures.

第1図(A)!よ本発明によるスパック方法の一実施例
の要部構成を示した側断面図、第1図(B−1)、(B
−2)はその実施例による膜被着状況の一例を示した側
断面図である。
Figure 1 (A)! Figures 1 (B-1) and (B
-2) is a side sectional view showing an example of a film adhesion situation according to the example.

第1図(A)は第2図(A)に対応する図であり、第1
図(A)図示の方法においては、ターゲット2が中央部
と周辺部とに分離された中央ターゲット5と周辺ターゲ
ット6とに置換されている。
FIG. 1(A) is a diagram corresponding to FIG. 2(A), and is a diagram corresponding to FIG.
In the method shown in Figure (A), the target 2 is replaced by a central target 5 and a peripheral target 6, which are separated into a central part and a peripheral part.

中央ターゲット5は、直径約100mでその放射面5a
は従来の放射面2aと同様に被処理体lの被着面1aに
対峙している。周辺ターゲット6は、その放射面6aが
内径約130鶴、外形的250tmの円錐台状をなし、
放射面5aに対する放射面6aの傾斜角αは約40度で
ある。
The central target 5 has a diameter of approximately 100 m and its radiation surface 5a.
faces the adhering surface 1a of the object to be processed l, similar to the conventional radiation surface 2a. The peripheral target 6 has a radiation surface 6a in the shape of a truncated cone with an inner diameter of about 130 mm and an outer diameter of 250 mm.
The inclination angle α of the radiation surface 6a with respect to the radiation surface 5a is about 40 degrees.

本願の発明者は、中央ターゲット5と周辺ターゲット6
を組み合わせた上記ターゲットをアルミニウムで形成し
、例えば、先に述べたものと同様な、大きさ約1.5μ
m角、深さ約1μmのコンタクトホールを有する直径約
150m謹の大型ウェーハ(6Pウエーハ)の被着面1
aを放射面5aから約70籠の位置に配置し、厚さTが
約1μmになるようアルミニウムをスパッタした。
The inventor of the present application has identified a central target 5 and a peripheral target 6.
The above-mentioned target in combination with
Adhesion surface 1 of a large wafer (6P wafer) with a diameter of approximately 150 m and having contact holes of m square and depth of approximately 1 μm.
a was placed at a position approximately 70 cages away from the radiation surface 5a, and aluminum was sputtered to a thickness T of approximately 1 μm.

その結果は、第2図(B−1) 、(B−2)に対応す
る第1図(B〜1) 、(B−2)が示すように、窪3
の肩部における被着IPJ 4の厚さT1〜T4は共に
厚さTの略40%程度になり、従来周辺部にある窪3に
おいて悪かったカバレージを改善することが出来た。
The results are as shown in Figure 1 (B-1) and (B-2) corresponding to Figure 2 (B-1) and (B-2).
The thicknesses T1 to T4 of the deposited IPJ 4 at the shoulder portions were all about 40% of the thickness T, and it was possible to improve the coverage that was conventionally poor in the depressions 3 in the peripheral portions.

更に本出願人は、直径約200tmの大型ウェーハ(8
!ンウエーハ)に至るまで、上記ターゲットを使用して
略良好な結果を得ることが可能なことも確認した。
Furthermore, the applicant has developed a large wafer (8 tm) with a diameter of about 200 tm
! It has also been confirmed that it is possible to obtain generally good results using the above target, up to and including wafers.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によるスパッタ方法によれ
ば、被処理体の大型化に伴い、その被着面周辺部にある
窪のカバレージが悪化するのを抑制することが可能にな
り、例えば、半導体チップの製造において、大型ウェー
ハ周辺部における配線導出のコンタクトホール部分での
断線を生ずる危険性を低減させ、酸ウェーハの大型化を
可能にさせる効果がある。
As explained above, according to the sputtering method of the present invention, it is possible to suppress the deterioration of the coverage of the depressions in the periphery of the adhered surface as the object to be processed increases in size. In the manufacture of semiconductor chips, the present invention has the effect of reducing the risk of disconnection at contact holes for leading out wiring in the periphery of large wafers, and making it possible to increase the size of acid wafers.

【図面の簡単な説明】[Brief explanation of drawings]

図面において、 第1図(A)は本発明によるスパッタ方法の一実施例の
要部構成を示した(、1IIJ 1)面図、第1図(B
−1) 、(B−2)はその実施例による膜被着状況の
一例を示した側断面図、 第2図(A)は従来の一般的なスパッタ方法の要部構成
を示した側断面図、 第2図(B−1) 、(B−2)はその方法による膜被
着状況の一例を示した側断面図である。 また、図中において、 ■は被処理体、    1aは被着面、2はターゲット
、   2aはその放射面、3は窪、        
4は被着膜、5は中央ターゲット、 5aはその被着面
、6は周辺ターゲット、 6aはその被着面、T、Tl
〜T4は厚さ、   αは傾斜角、をそれぞれ示す。 第2図 (A)
In the drawings, FIG. 1(A) is a side view (, 1IIJ 1) showing the main part configuration of an embodiment of the sputtering method according to the present invention, and FIG.
-1) and (B-2) are side cross-sectional views showing an example of the film deposition situation according to the embodiment, and Figure 2 (A) is a side cross-sectional view showing the main part configuration of a conventional general sputtering method. Figures 2 (B-1) and 2 (B-2) are side sectional views showing an example of the state of film deposition by this method. In addition, in the figure, ■ is the object to be processed, 1a is the adherend surface, 2 is the target, 2a is the radiation surface, 3 is the depression,
4 is a deposited film, 5 is a central target, 5a is its deposited surface, 6 is a peripheral target, 6a is its deposited surface, T, Tl
~T4 represents the thickness, and α represents the inclination angle, respectively. Figure 2 (A)

Claims (2)

【特許請求の範囲】[Claims] (1)中央部と周辺部とに分離させたターゲットを使用
して被処理体に対するターゲット材料のスパッタを行う
ことを特徴とするスパッタ方法。
(1) A sputtering method characterized in that a target material is sputtered onto an object to be processed using a target separated into a central part and a peripheral part.
(2)前記周辺部ターゲットの放射面を前記中央部ター
ゲットの放射面に対し内側に向けて傾斜させ、被処理体
の被着面を該中央部ターゲットの放射面に対して平行に
対峙させたことを特徴とする特許請求の範囲第1項記載
のスパッタ方法。
(2) The radiation surface of the peripheral target is inclined inward with respect to the radiation surface of the central target, and the adhering surface of the object to be processed is opposed parallel to the radiation surface of the central target. A sputtering method according to claim 1, characterized in that:
JP20311884A 1984-09-28 1984-09-28 Sputtering method Pending JPS6179768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20311884A JPS6179768A (en) 1984-09-28 1984-09-28 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20311884A JPS6179768A (en) 1984-09-28 1984-09-28 Sputtering method

Publications (1)

Publication Number Publication Date
JPS6179768A true JPS6179768A (en) 1986-04-23

Family

ID=16468696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20311884A Pending JPS6179768A (en) 1984-09-28 1984-09-28 Sputtering method

Country Status (1)

Country Link
JP (1) JPS6179768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103065A (en) * 1986-10-20 1988-05-07 Tokyo Electron Ltd Film formation by sputtering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103065A (en) * 1986-10-20 1988-05-07 Tokyo Electron Ltd Film formation by sputtering

Similar Documents

Publication Publication Date Title
EP0630423B1 (en) Method of bonding a sputter target-backing plate assembly
US6283357B1 (en) Fabrication of clad hollow cathode magnetron sputter targets
US6875325B2 (en) Sputtering target producing few particles
US5540820A (en) Thin film forming method
KR20030064398A (en) Method of manufacturing sputter targets with internal cooling channels
US5336386A (en) Target for cathode sputtering
US5362372A (en) Self cleaning collimator
JP2001032065A (en) Method for bonding sputtering target to receiving board
US5876861A (en) Sputter-deposited nickel layer
JP2720755B2 (en) Ti target material for magnetron sputtering
JPS6179768A (en) Sputtering method
US20020162741A1 (en) Multi-material target backing plate
JP2001140063A (en) Sputtering target having prolonged life
US4726983A (en) Homogeneous fine grained metal film on substrate and manufacturing method thereof
US5271817A (en) Design for sputter targets to reduce defects in refractory metal films
JP3852967B2 (en) Low pressure sputtering equipment
US6723213B2 (en) Titanium target assembly for sputtering and method for preparing the same
JP2917743B2 (en) Si target material for magnetron sputtering
US4923526A (en) Homogeneous fine grained metal film on substrate and manufacturing method thereof
JP2002004038A (en) Sputtering target with less particle generation
JPS59179783A (en) Sputtering target
JPH11236663A (en) Sputtering target, sputtering system and sputtering method
JP2580149B2 (en) Spatter equipment
JPH06306590A (en) Metallic target for sputtering device
KR19980050037A (en) Sputtering Targets for Semiconductor Manufacturing