JPS61795A - Gas cooling type reactor - Google Patents

Gas cooling type reactor

Info

Publication number
JPS61795A
JPS61795A JP59122563A JP12256384A JPS61795A JP S61795 A JPS61795 A JP S61795A JP 59122563 A JP59122563 A JP 59122563A JP 12256384 A JP12256384 A JP 12256384A JP S61795 A JPS61795 A JP S61795A
Authority
JP
Japan
Prior art keywords
gas
cooling system
nuclear reactor
gas flow
primary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122563A
Other languages
Japanese (ja)
Inventor
圭介 神坐
均 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59122563A priority Critical patent/JPS61795A/en
Publication of JPS61795A publication Critical patent/JPS61795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、例えばヘリウムガスを1次冷却材とするガ
ス冷却型原子炉に関する。 この種のガス冷却型原子炉は1次冷却系管路に万一破断
事故が発注した場合には、原子炉の停止後早急に炉心を
低温に導くように炉を冷却できることが望まれる。
The present invention relates to a gas-cooled nuclear reactor using, for example, helium gas as a primary coolant. In this type of gas-cooled nuclear reactor, in the event that a rupture occurs in the primary cooling system pipes, it is desirable to be able to cool the reactor so that the reactor core is brought to a low temperature immediately after the reactor is shut down.

【従来技術とその問題点】[Prior art and its problems]

まず第7図に頭記ガス冷却型原子炉の従来構成を示す。 図において、1は原子炉の圧力容器、2は燃料ブロック
31反射体ブロック4.高温プレナム部5等で構成され
た炉心部、6はターラとしての熱交換器7.ガス循環機
8を含むループ系としてなる1次冷却系管路であり、圧
力容′B1に接続配管された1次冷却系管路の主冷却管
は内外二重管構造としてなり、そのガス人口管9は圧力
容器1の底壁に開口し、出口管10は圧力容器の底壁を
貫通して炉心部2の高温ブレナム部5に開口されている
。まだ前記1次冷却系管路6は通常1基の原子炉に対し
て複数ループ設置されている。かかる構成で原子炉の運
転時には、熱交換器7で冷却されたガスは、ガス循環機
8で昇圧された後に1次冷却系管路の入口管9を通じて
圧力容器1内に吐き出し、ここから圧力容器内の外周を
上昇して上部より炉心部2の燃料チャンネルに流れ込み
、燃料ブロック3と熱交換して昇温する。その後高温プ
レナム部4に合流し、ここから出口’[10を通じて1
次冷却系管路6へ排出されるように循環通流する。 ところで、かかる原子炉設備で炉の運転中に、不測に1
次冷却系管路に破断事故の生じることがある。このよう
な非常事態の発生時には炉心の異常温度上昇を避けるた
めに、直ちに炉の運転を停止するとともに、停止後の炉
の除熱を行う必要がある。かかる除熱対策として従来で
は、第7図のように圧力容器1の外周を包囲して後備冷
却パネル11を設置しておき、輻射伝熱により間接的に
原子炉の除熱を行う方式が実施されている。しかして、
上記の後備冷却パネル11による除熱方式は除熱性能が
低く、その改善策が望まれている。 かかる点、炉の運転停止後も破断事故発生の1次冷却系
管路を除く他の健全なループを運転して、炉心に冷却ガ
スの循環通流を行うことができるならば、早急に炉を低
温に導くことが可能である。 しかして、第7図の符号Pで示す箇所の管路に破断事故
が生じた場合を想定して考えると、左側の健全な1次冷
却系管路6を使ってガスの強制循環を行うとしても、入
口管9を通じて圧力容器1内に吐き出されたガスの一部
は点線矢印のように炉心部2内を流れる以前の段階で破
断箇所Pを通して系外に漏出してしまい、逆に高温プレ
ム部5へ系外から空気とヘリウムガスとの混合気体を吸
い込むようになる。このために結果として炉心部2を流
れる十分なガス流量が確保できず、炉心を有効に冷却す
ることができない。 −
First, FIG. 7 shows the conventional configuration of the gas-cooled nuclear reactor mentioned above. In the figure, 1 is a pressure vessel of a nuclear reactor, 2 is a fuel block 31, a reflector block 4. A reactor core section consisting of a high-temperature plenum section 5, etc., 6 a heat exchanger 7. This is a primary cooling system conduit that serves as a loop system including the gas circulation machine 8, and the main cooling pipe of the primary cooling system conduit connected to the pressure volume 'B1 has a double pipe structure inside and outside, and its gas population The pipe 9 opens into the bottom wall of the pressure vessel 1, and the outlet pipe 10 passes through the bottom wall of the pressure vessel and opens into the high-temperature brenum section 5 of the reactor core section 2. Still, the primary cooling system pipe line 6 is usually installed in a plurality of loops for one nuclear reactor. When the reactor is operated with this configuration, the gas cooled by the heat exchanger 7 is pressurized by the gas circulator 8 and then discharged into the pressure vessel 1 through the inlet pipe 9 of the primary cooling system pipe line, from where the pressure is increased. The fuel rises along the outer periphery of the container, flows from the upper part into the fuel channel of the reactor core 2, exchanges heat with the fuel block 3, and rises in temperature. It then merges into the high temperature plenum section 4, from which exit '[10 through 1
It circulates and flows to be discharged to the next cooling system pipe line 6. By the way, during the operation of the reactor in such nuclear reactor equipment, 1.
A breakage accident may occur in the secondary cooling system pipes. When such an emergency situation occurs, in order to avoid an abnormal temperature rise in the core, it is necessary to immediately stop the operation of the reactor and to remove heat from the reactor after the shutdown. Conventionally, as a heat removal measure, a back-up cooling panel 11 is installed surrounding the outer periphery of the pressure vessel 1 as shown in FIG. 7, and heat is removed indirectly from the reactor through radiant heat transfer. has been done. However,
The heat removal method using the backup cooling panel 11 described above has low heat removal performance, and improvements are desired. In this regard, if it is possible to continue operating the other healthy loops except for the primary cooling system piping in which the rupture accident occurred even after the reactor has stopped operating, and to circulate the cooling gas through the reactor core, the reactor can be restarted as soon as possible. It is possible to bring the temperature down to a low temperature. However, if we assume that a rupture accident occurs in the pipe at the location indicated by the symbol P in Figure 7, we will assume that forced circulation of gas is performed using the healthy primary cooling system pipe 6 on the left. However, some of the gas discharged into the pressure vessel 1 through the inlet pipe 9 leaks out of the system through the fracture point P before flowing through the reactor core 2, as shown by the dotted arrow, and conversely leaks out of the system through the high-temperature preform. A mixture of air and helium gas is sucked into section 5 from outside the system. As a result, a sufficient flow rate of gas flowing through the reactor core section 2 cannot be secured, and the reactor core cannot be effectively cooled. −

【発明の目的] この発明は上記の点にかんがみなされたものであり、そ
の目的は1次冷却系管路の破断事故発生時にも、破断事
故発生ループを除く他の健全な1次冷却系管路を使用し
て原子炉に冷却ガスを強制循環通流できるようにして、
炉心のガスによる直接冷却が行えるようにしたガス冷却
型原子炉を提供することにある。 【発明の要点】 上記目的を達成するために、この発明は原子炉の圧力容
器に接続配管された複数ループの1次冷却系管路につい
て、圧力容器の内方側に前記各ループの1次冷却系管路
に直列に配置され前記1次冷却系管路の破断時にその管
路のガス流を制限するガス流量制限機構を設置し、該ガ
ス流量制限機構の動作で破断側ループの1次冷却系管路
からのガス流漏出を制限しつつ、健全側ループを通して
炉心部内を流れる循環ガス流量を確保し、早急に原子炉
を低温に導くようにしたものである。
[Purpose of the Invention] This invention has been made in consideration of the above points, and its purpose is to repair other healthy primary cooling system pipes other than the loop in which the rupture accident occurred even when a rupture accident occurs in the primary cooling system pipe. By using channels to enable forced circulation of cooling gas through the reactor,
An object of the present invention is to provide a gas-cooled nuclear reactor in which the core can be directly cooled by gas. SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a primary cooling system for a plurality of loops connected to a pressure vessel of a nuclear reactor. A gas flow rate limiting mechanism is installed in series with the cooling system pipeline and limits the gas flow in the pipeline when the primary cooling system pipeline breaks, and the operation of the gas flow rate limiting mechanism causes the primary cooling system to While restricting gas flow leakage from the cooling system pipes, the system ensures a flow rate of circulating gas flowing through the healthy side loop within the reactor core to bring the reactor to a low temperature as soon as possible.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の実施例によるガス流量制限機構を設
置したガス冷却型原子炉の傘体の略示構成図、第2図、
第3図、第4図、第5図、および第6図はそれぞれガス
流量制限機構の異なる実施例の構造を示すものであり、
第1図において圧力容器1に接続配管された各1次冷却
系管路6について、その入口管9の開口端に対向して圧
力容器1内に符号12で示すガス流量開数機構が設置さ
れている。このガス流量制限機構12は、複数ループの
1次冷却系管路のうちのあるループの管路に破断事故が
発生した場合に、該事故発生のループを除く他の健全な
ループを通して炉内に供給されたガスが破断箇所を通じ
て外部に漏出するバイパス流を制限する役目を果たすも
のであり、次ぎにこのガス流量制限機構のいくつかの実
施例を図面について説明する。 まず第2図、第3図の実施例は、スライド式シャッタ機
構としてなるガス流量制限機構を示すもので、該機構は
圧力容器内におりる入口管9の開口端に対向して架台1
3に設置されたスライド式シャ・ンタ)反14a、 1
4bと、このシャツクキ反をラック−ピニオン機構15
を介して矢印方向に開閉操作する駆動装置16とから構
成されている。シャッタ14a。 14bは端部に出口管10の外形に対、応する半円形の
四部が切り欠かかれた形状で、かつ常時は実線位置に後
退しており、駆動装置16に指令を与えることにより、
鎖線位置へスライド移動して入口管9の開口端を閉塞す
るように動作する。 上記の構成で、いま炉の運転中にある1次冷却系ループ
の管路に破断が生じた場合に、その破断事故の発生した
ループのガス流量制限機構12の駆動装置16に指令を
与えてシャッタ板を閉じれば、他の健全なループを通し
て圧力容器内に導入されたガス流は破断ループの入口管
を通して系外に漏出することがなく、炉心部を経由して
循環通流し、炉心を直接ガス冷却する。なお炉心部を通
過したガス流はそのまま高温プレナム部を経て健全ルー
プの出口管10へ還流するので、破断ループの出口管を
通じて圧力容器外の外気を吸い込むことは殆どない。 第4図、第5図の実施例は、前記実施例のスライド式シ
ャッタ板に替えて、回動式のシャッタ板17a、 17
bを駆動装置16により実線の開放位置と鎖線の閉塞位
置との間で矢印のように180度回転して開閉操作する
ように構成したものである。 第6図の実施例は前記の各実施例と異なり、ガス流量制
限機構として出口管10の外周を取り巻くリング形のオ
リフィスとしてなる固定絞り機構18を入口管9の開口
端に設置したものである。この固定絞り機構18は出口
管10の外周面との間の絞り流路抵抗が第1図に示した
炉心部2を経由する流路抵抗よりも大きな流路抵抗とな
るように設定されている。これにより、1次冷却系管路
の破断率4の発生時に他の健全なループを通じてガスの
強制循環を行う際に、第7図に点線矢印で示したような
ガスバイパス流の発生を抑制し、炉心部を流れるガス流
量を確保できることになる。なおこの実施例は、先に述
べた実施例と比べてガス流抑制効果は多少劣るが、可動
部分およびその駆動装置が無く、したがって保守を必要
とせず高0信頼性が得られる。また通常の炉運転時にも
この固定絞り機構18が作用してガス循環系路の圧力損
失が多少増大するが、この点はガス循環機の吐出圧力を
多少高めに設定しておくことにより何等支障なく炉内ガ
ス循環、を行うことができる。 なお上記の各実施例では、ガス流量制限I!構力(いず
れも1次冷却系管路の出口管側に設置されている例を示
したが、このガス流貴制限機構番よ1次冷却系管路の出
口管側、あるいは入口管と出口管との両側に設けて実施
しても同様な効果を奏することができる。 【発明の効果] 以上述べたようにこの発明によれば、圧力容器に接続配
管された複数ループの1次冷却系管路について、圧力容
器の内方側に前記各ループ冷却系管路に直列に配置さに
前記1次冷却系管路の破断時にその管路のガス流を制限
するガフ、流量側p1機構を設置したことにより、炉の
運転中し)ずれかのループの1次冷却系管路に万一の破
断事故発生に際して、他の健全なループを運転して炉内
に強制ガス循環を行った場合に破断側ループにガスバイ
パス流の生しるのを抑制することができ、これにより炉
心部を流れるガス流量を十分に確保し、運転停止後の原
子炉を早急にガス冷却して低温に導くことができる。
FIG. 1 is a schematic configuration diagram of an umbrella body of a gas-cooled nuclear reactor equipped with a gas flow rate restriction mechanism according to an embodiment of the present invention; FIG.
3, 4, 5, and 6 each show the structure of different embodiments of the gas flow rate limiting mechanism,
In FIG. 1, for each primary cooling system pipe line 6 connected to the pressure vessel 1, a gas flow rate ratio mechanism indicated by the reference numeral 12 is installed inside the pressure vessel 1, facing the open end of the inlet pipe 9. ing. This gas flow rate restriction mechanism 12 is configured so that, when a rupture accident occurs in one of the plurality of loops of primary cooling system piping, the gas flow is passed through other healthy loops other than the loop in which the accident occurred. It serves to limit the bypass flow in which the supplied gas leaks to the outside through the fracture location.Next, several embodiments of this gas flow rate limiting mechanism will be described with reference to the drawings. First, the embodiments shown in FIGS. 2 and 3 show a gas flow rate limiting mechanism that is a sliding shutter mechanism.
Sliding type shaft installed in 3) anti-14a, 1
4b, and the rack-pinion mechanism 15
The drive device 16 is configured to open and close in the direction of the arrow through the drive device 16. Shutter 14a. 14b has a shape in which four semicircular parts corresponding to the outer shape of the outlet pipe 10 are cut out at the end, and is normally retracted to the solid line position, and by giving a command to the drive device 16,
It slides to the chain line position and operates to close the open end of the inlet pipe 9. With the above configuration, if a rupture occurs in the pipe line of the primary cooling system loop currently in operation of the furnace, a command is given to the drive device 16 of the gas flow rate restriction mechanism 12 of the loop where the rupture accident occurred. When the shutter plate is closed, the gas flow introduced into the pressure vessel through other healthy loops will not leak out of the system through the inlet pipe of the rupture loop, but will circulate through the reactor core and directly flow into the reactor core. Gas cooled. Note that since the gas flow that has passed through the reactor core directly passes through the high-temperature plenum and returns to the exit pipe 10 of the healthy loop, there is almost no possibility that outside air from outside the pressure vessel will be sucked in through the exit pipe of the broken loop. In the embodiments shown in FIGS. 4 and 5, rotating shutter plates 17a, 17 are used instead of the sliding shutter plates of the previous embodiments.
b is configured to be rotated 180 degrees as shown by the arrow between the open position shown by the solid line and the closed position shown by the chain line for opening and closing operations by the driving device 16. The embodiment shown in FIG. 6 differs from each of the above-described embodiments in that a fixed throttle mechanism 18, which serves as a gas flow rate limiting mechanism and serves as a ring-shaped orifice surrounding the outer periphery of the outlet pipe 10, is installed at the open end of the inlet pipe 9. . This fixed throttle mechanism 18 is set so that the throttle flow path resistance between it and the outer circumferential surface of the outlet pipe 10 is greater than the flow path resistance passing through the reactor core 2 shown in FIG. . This suppresses the occurrence of gas bypass flow as shown by the dotted arrow in Figure 7 when forced gas circulation is performed through other healthy loops when the rupture rate of 4 occurs in the primary cooling system pipes. This means that the flow rate of gas flowing through the reactor core can be secured. Although this embodiment is somewhat inferior in gas flow suppression effect as compared to the previously described embodiments, it does not require any moving parts or their driving devices, and therefore does not require maintenance and can provide high reliability. Also, during normal furnace operation, this fixed throttle mechanism 18 acts and the pressure loss in the gas circulation system increases to some extent, but this point can be prevented by setting the discharge pressure of the gas circulation machine to a somewhat high level. It is possible to perform gas circulation within the furnace without having to do so. In each of the above embodiments, the gas flow rate limit I! Construction force (both examples are shown in which it is installed on the outlet pipe side of the primary cooling system pipe, but this gas flow restriction mechanism number is installed on the outlet pipe side of the primary cooling system pipe, or between the inlet pipe and the outlet. Similar effects can be obtained even if the system is installed on both sides of the pipe. [Effects of the Invention] As described above, according to the present invention, the primary cooling system with multiple loops connected to the pressure vessel Regarding the pipelines, a gaff and a flow rate side p1 mechanism are arranged in series with each of the loop cooling system pipelines on the inner side of the pressure vessel to restrict the gas flow in the pipeline when the primary cooling system pipeline is broken. By installing this system, in the event that a rupture occurs in the primary cooling system pipe of one of the loops during operation of the furnace, other healthy loops are operated to perform forced gas circulation inside the furnace. It is possible to suppress the generation of gas bypass flow in the loop on the rupture side, thereby ensuring a sufficient flow rate of gas flowing through the reactor core, and quickly cooling the reactor with gas after shutdown to bring it to a low temperature. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例によるガス流量制限機構を設
置したガス冷却型原子炉の概略構成図、第2図,第3図
、および第4図,第5図はそれぞれ第1図におけるガス
流量制限機構の異なる実施例の構成を示す縦断面図およ
び平面図、第6図は更に異なる実施例の構成断面図、第
7図は従来におけるガス冷却型原子炉の構成断面図であ
る。 1:圧力容器、2:炉心部、6:1次冷却系管路、9:
入口管、10:出口管、12:ガス流量制限側L14a
, 14bニスライド式シャッタ板、16Fシヤツタ板
の駆動装置、17a, 17b :回転式シャッタ板、
18:固定絞り機構。
FIG. 1 is a schematic configuration diagram of a gas-cooled nuclear reactor equipped with a gas flow rate restriction mechanism according to an embodiment of the present invention, and FIGS. FIG. 6 is a longitudinal cross-sectional view and a plan view showing the structure of different embodiments of the flow rate restriction mechanism, FIG. 6 is a cross-sectional view of the structure of a further different embodiment, and FIG. 7 is a cross-sectional view of the structure of a conventional gas-cooled nuclear reactor. 1: Pressure vessel, 2: Reactor core, 6: Primary cooling system pipes, 9:
Inlet pipe, 10: Outlet pipe, 12: Gas flow rate restriction side L14a
, 14b Ni-slide shutter plate, 16F shutter plate drive device, 17a, 17b: rotating shutter plate,
18: Fixed aperture mechanism.

Claims (1)

【特許請求の範囲】 1)炉心部を収容した圧力容器に複数ループの1次冷却
系管路を接続配管したガス冷却型原子炉において、圧力
容器の内方側に前記各ループの1次冷却系管路に直列に
配置され、前記1次冷却系管路の破断時にその管路のガ
ス流を制限するガス流量制限機構を設置したことを特徴
とするガス冷却型原子炉。 2)特許請求の範囲第1項に記載のガス冷却型原子炉に
おいて、ガス流量制限機構は、圧力容器から引き出した
1次冷却系管路の入口、出口管の少なくとも一方側に対
応して設置されていることを特徴とするガス冷却型原子
炉。 3)特許請求の範囲第1項に記載のガス冷却型原子炉に
おいて、ガス流量制限機構は、1次冷却系管路の破断事
故の発生時にその破断事故発生管路の圧力容器への開口
端を閉塞するよう動作するシャッタ板とシャッタ板駆動
装置とからなるシャッタ機構であることを特徴とするガ
ス冷却型原子炉。 4)特許請求の範囲第1項に記載のガス冷却型原子炉に
おいて、ガス流量制限機構は、その絞り抵抗が炉心部を
通るガス流路抵抗よりも大に設定された固定絞り機構で
あることを特徴とするガス冷却型原子炉。
[Claims] 1) In a gas-cooled nuclear reactor in which a plurality of loops of primary cooling system pipes are connected to a pressure vessel housing a reactor core, the primary cooling system of each loop is connected to the inside of the pressure vessel. 1. A gas-cooled nuclear reactor, characterized in that a gas flow rate limiting mechanism is installed in series with a system pipe and limits the gas flow in the pipe when the primary cooling system pipe is broken. 2) In the gas-cooled nuclear reactor according to claim 1, the gas flow rate restriction mechanism is installed corresponding to at least one side of the inlet and outlet pipes of the primary cooling system pipe line drawn out from the pressure vessel. A gas-cooled nuclear reactor characterized by: 3) In the gas-cooled nuclear reactor according to claim 1, when a rupture accident occurs in the primary cooling system pipe, the gas flow rate restriction mechanism closes the opening end of the rupture accident pipe to the pressure vessel. 1. A gas-cooled nuclear reactor characterized by a shutter mechanism consisting of a shutter plate and a shutter plate drive device that operate to close the reactor. 4) In the gas-cooled nuclear reactor according to claim 1, the gas flow rate limiting mechanism is a fixed throttle mechanism whose throttle resistance is set to be greater than the gas flow path resistance through the reactor core. A gas-cooled nuclear reactor featuring:
JP59122563A 1984-06-14 1984-06-14 Gas cooling type reactor Pending JPS61795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122563A JPS61795A (en) 1984-06-14 1984-06-14 Gas cooling type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122563A JPS61795A (en) 1984-06-14 1984-06-14 Gas cooling type reactor

Publications (1)

Publication Number Publication Date
JPS61795A true JPS61795A (en) 1986-01-06

Family

ID=14838982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122563A Pending JPS61795A (en) 1984-06-14 1984-06-14 Gas cooling type reactor

Country Status (1)

Country Link
JP (1) JPS61795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868359A (en) * 1986-08-07 1989-09-19 Hitachi Heating Appliances, Co., Ltd. Radiation sealed door in a microwave heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868359A (en) * 1986-08-07 1989-09-19 Hitachi Heating Appliances, Co., Ltd. Radiation sealed door in a microwave heating apparatus

Similar Documents

Publication Publication Date Title
KR100935089B1 (en) Passive safety-grade decay heat removal system from a sodium freezing issue at the intermediate heat removal sodium loop
US5043136A (en) Passive cooling safety system for liquid metal cooled nuclear reactors
JPS6186682A (en) Nuclear reactor device
US4382908A (en) After-heat removal system for a gas-cooled nuclear reactor
JPS6186677A (en) Method and device for improving safety of pressure vessel for nuclear reactor
US3357892A (en) Gas cooled nuclear reactor
JPS61795A (en) Gas cooling type reactor
JPS61148388A (en) Nuclear reactor device
JPS6095390A (en) Heat exchange device for removing core collapse heat
US3305451A (en) Nuclear reactors
WO2022122057A1 (en) Passive system with increased reliability for decay-heat removal from a nuclear reactor and method carried out on the system
KR101501457B1 (en) Apparatus for breaking siphon effect of reactor pool and control method therefor
JPH02210295A (en) Auxiliary reactor core cooling device
JP2023124344A (en) Decay heat removal system heat exchanger structure of fast reactor
JPH0316515B2 (en)
JPH07209470A (en) Decay heat removing device for fast reactor
JPH0498199A (en) Excessive heat elimination system for emergency of fast reactor
JPS58223789A (en) Tank type fast breeder
RU2243602C1 (en) Operating process of nuclear reactor cooling circuit
JPS6219677B2 (en)
JPS6038691A (en) Cooling system of auxiliary machinery for nuclear reactor
JPS60201290A (en) Cooling facility on stoppage of nuclear reactor
JPS6361633B2 (en)
JPS60133394A (en) Recirculating device for refrigerant for boiling-water type reactor
JPH04307397A (en) Tank-type high-speed reactor