JPS6178897A - Catalytic cracking of heavy hydrocarbon oil - Google Patents

Catalytic cracking of heavy hydrocarbon oil

Info

Publication number
JPS6178897A
JPS6178897A JP19973384A JP19973384A JPS6178897A JP S6178897 A JPS6178897 A JP S6178897A JP 19973384 A JP19973384 A JP 19973384A JP 19973384 A JP19973384 A JP 19973384A JP S6178897 A JPS6178897 A JP S6178897A
Authority
JP
Japan
Prior art keywords
cracking
particles
heavy hydrocarbon
mixture
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19973384A
Other languages
Japanese (ja)
Inventor
Goro Sato
護郎 佐藤
Masamitsu Ogata
政光 緒方
Tatsuo Masuda
増田 立男
Takanori Ida
井田 孝徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
JGC Catalysts and Chemicals Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Catalysts and Chemicals Industries Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP19973384A priority Critical patent/JPS6178897A/en
Priority to DE8585201499T priority patent/DE3570689D1/en
Priority to EP85201499A priority patent/EP0176150B2/en
Priority to US06/777,891 priority patent/US4692236A/en
Publication of JPS6178897A publication Critical patent/JPS6178897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To effect catalytic cracking of a stock oil efficiently, maintaining high yields of gasoline for a long period of time, by bringing a heavy hydrocarbon oil into contact with a mixture of particles comprising a specified cracking catalyst and alumina powders under cracking conditions. CONSTITUTION:A high-grade heavy hydrocarbon oil or a low-grade heavy hydrocarbon oil having a metal content of about 50ppm (on a metal basis) is brought into contact with a mixture of particles which consists of 80-20wt% cracking catalyst obtained, for example, by dispersing at least 10wt%, based on the mixture of particles, crystalline aluminosilicate in a matrix comprising a porous inorganic oxide, and 20-80wt% Al2O3 particles having an average particle diameter of 20-80mum and a bulk density of 0.60-1.20g/ml, prepared by burning Al(OH)3 of an average particle diameter of 20-80mum, obtained by the Bayer process, under cracking conditions, such as 460-540 deg.C, a WHSV of 4-20hr<-1>, and a ratio of cat/oil of 4-12, to cause catalytic cracking. After cracking, the mixture of particles is treated at 600-750 deg.C for about 50min to be regenerated, and is repeatedly used (about 15 times).

Description

【発明の詳細な説明】 本発明は重質炭化水素油の接触分解法に関するものであ
って、さらに詳しくはバナジウム。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for catalytic cracking of heavy hydrocarbon oils, and more particularly to vanadium.

ニッケル、鉄などの金属を多量に含有する低品位な重質
炭化水素油を、結晶性アルミノシリケート含有クラッキ
ング触媒とアルミナ粒子との混合物の存在下に接触分解
する方法に係る。
The present invention relates to a method of catalytically cracking a low-grade heavy hydrocarbon oil containing a large amount of metals such as nickel and iron in the presence of a mixture of a crystalline aluminosilicate-containing cracking catalyst and alumina particles.

ガソリンの製造を目的とする炭化水素油の接触分解法は
、結晶性アルミノシリケートをマトリックスに分散させ
てなるクラッキング触媒を使用して実施するのが従来の
慣例であって、こうした接触分解法は、金属汚染物の量
が比較的少ない炭化水素油を原料とする限り、その原料
油が重質炭化水素油である場合でも、一応の成果を収め
ている6然るに、近年の石油事情の悪化は、バナジウム
、ニッケル、鉄などの金属を多量に含む低品位の重質炭
化水素油を、そのまま接触分解しなければならない事態
を生んでいるが、そうした低品位の重質炭化水素油を対
象とした場合には、上記の如き従来の接触分解法は必ず
しも好結果をもたらさない。
Conventionally, catalytic cracking of hydrocarbon oil for the purpose of producing gasoline is carried out using a cracking catalyst consisting of crystalline aluminosilicate dispersed in a matrix. As long as the raw material is a hydrocarbon oil with a relatively small amount of metal contaminants, even if the raw material oil is a heavy hydrocarbon oil, some results have been achieved.6 However, the deterioration of the oil situation in recent years has led to This creates a situation where low-grade heavy hydrocarbon oil containing large amounts of metals such as vanadium, nickel, and iron must be subjected to catalytic cracking. In this case, the conventional catalytic cracking methods described above do not necessarily give good results.

すなわち、多量の金属汚染物を含有する低品位の重質炭
化水素油を、従来慣用の結晶性アルミノシリケート含有
クララキン触媒で処理した場合には、触媒のクラッキン
グ活性が金属の沈着によって損われるばかりでなく、金
属の沈着量が多くなる関係で脱水素反応が促進され、そ
の結果、水素及びコークの生成量が増加してガソリン収
率が低下してしまうのである。そして触媒へ沈着する金
属が多くなると、結晶性アルミノシリケートが結晶破壊
を起してクラッキング活性がさらに劣化することさえあ
る。
In other words, when a low-grade heavy hydrocarbon oil containing a large amount of metal contaminants is treated with a conventional crystalline aluminosilicate-containing Clarakin catalyst, the cracking activity of the catalyst is only impaired by metal deposition. Instead, the dehydrogenation reaction is promoted due to the increased amount of metal deposited, and as a result, the amount of hydrogen and coke produced increases, resulting in a decrease in gasoline yield. When a large amount of metal is deposited on the catalyst, the crystalline aluminosilicate may undergo crystal destruction, further deteriorating the cracking activity.

このため、従来は多量の金属を含有する重質炭化水素油
を接触分解する場合の方策として、触媒粒子1個当りに
沈着する金属量を低く抑えるために、クラッキング触媒
の使用量を増加させるとか、あるいは金属の沈着量が比
較的少ない使用済みクラッキング触媒を混用する方法が
採用されているほか、原料油中にアンチモン化合物を添
加して、金属の沈着に起因するクラッキング触媒の活性
低下を抑制する方法なども採用されて来た。しかし、こ
れらの従来法は、運転コストが嵩む点で必ずしも賞月で
きない。なお、クラッキング活性の増大を図る目的で、
触媒中の結晶性アルミノシリケート含量を増加させるこ
とは、コーク及びガス状成分の副生を助長し、ガソリン
収率を減少させることになるので好ましくない。
For this reason, conventional measures for catalytic cracking of heavy hydrocarbon oils containing large amounts of metals include increasing the amount of cracking catalyst used in order to keep the amount of metal deposited per catalyst particle low. Alternatively, a method is adopted in which a used cracking catalyst with a relatively small amount of metal deposits is used in combination, and an antimony compound is added to the feedstock oil to suppress the decrease in cracking catalyst activity caused by metal deposition. methods have also been adopted. However, these conventional methods are not always successful due to the high operating costs. In addition, for the purpose of increasing cracking activity,
Increasing the content of crystalline aluminosilicate in the catalyst is undesirable because it promotes the by-production of coke and gaseous components and reduces gasoline yield.

本発明は上述したような従来法とは異なる手段で、多量
の金属を含有する低品位の重質炭化水素油でも、長期に
亘って高いガソリン収率を維持しつつ接触分解すること
ができる方法を提案するものであって、その方法は、多
量の金属を含有する低品位の重質炭化水素油を接触分解
するに際し、従来慣用のクラッキング触媒にアルミナ粒
子を混用すると、原料油中の金属汚染物は優先的にアル
ミナ粒子に捕捉され、アルミナ粒子と共存するクラッキ
ング触媒は金属汚染物で被毒される程度が著しく軽減さ
れるとの新知見に基づいている。
The present invention is a method that is different from the conventional methods described above, and is capable of catalytically cracking even low-grade heavy hydrocarbon oil containing a large amount of metal while maintaining a high gasoline yield over a long period of time. This method proposes a method for catalytic cracking of low-grade heavy hydrocarbon oil containing large amounts of metals, and when alumina particles are mixed with a conventional cracking catalyst, metal contamination in the feedstock oil is reduced. This is based on the new findings that the metal contaminants are preferentially captured by the alumina particles, and that the cracking catalyst that coexists with the alumina particles is significantly less poisoned by metal contaminants.

而して本発明に係る重質炭化水素油の接触分解法は、結
晶性アルミノシリケートを含有するクラッキング触媒と
、アルミナ粒子とを80/20〜20/80の重量比で
混合した粒子混合物に1重質炭化水素油をクラッキング
条件下で接触させることからなる。
In the catalytic cracking method for heavy hydrocarbon oil according to the present invention, a cracking catalyst containing crystalline aluminosilicate and alumina particles are added to a particle mixture in a weight ratio of 80/20 to 20/80. It consists of contacting heavy hydrocarbon oils under cracking conditions.

本発明に於て、結晶性アルミノシリケート含有クラッキ
ング触媒としては、多孔性無機酸化物からなるマトリッ
クスに結晶性アルミノシリケートを分散された従来のク
ラッキング触媒がいずれも使用可能であるが、最も一般
的にはシリカ又はシリカ・アルミナに、アンモニウムイ
オン交換又は希土類交換されたフォージャサイトを分散
させた触媒が使用される。マトリックスに分散せしめら
爪る結晶性アルミノシリケートの量は、従来触媒の場合
、10〜50重量%、より一般的には20〜40重量%
程度である。しかし。
In the present invention, any conventional cracking catalyst in which crystalline aluminosilicate is dispersed in a matrix made of porous inorganic oxide can be used as the crystalline aluminosilicate-containing cracking catalyst, but the most commonly used cracking catalyst is A catalyst is used in which ammonium ion-exchanged or rare earth-exchanged faujasite is dispersed in silica or silica-alumina. The amount of crystalline aluminosilicate dispersed in the matrix ranges from 10 to 50% by weight for conventional catalysts, more typically from 20 to 40% by weight.
That's about it. but.

本発明ではクラッキング触媒と共にアルミナ粒子を使用
する関係上1両者の混合比(これについては後述する)
を考慮して、結晶性アルミノシリケートの量が、クラッ
キング触媒とアルミ゛す粒子の混合物基準で、10〜5
0重量%、好ましくは20〜40重量%になるように、
予めクラッキング触媒中の結晶性アルミノシリケート量
を調整しておくことを可とする。
In the present invention, since alumina particles are used together with a cracking catalyst, the mixing ratio of both (1) (this will be described later)
Taking into account the amount of crystalline aluminosilicate, based on the mixture of cracking catalyst and aluminum particles,
0% by weight, preferably 20-40% by weight,
It is possible to adjust the amount of crystalline aluminosilicate in the cracking catalyst in advance.

クラッキング触媒と併用されるアルミナ粒子は、流動触
媒として通常使用される活性アルミナで差支えないが、
その平均粒子径と嵩密度は。
The alumina particles used in combination with the cracking catalyst may be activated alumina commonly used as a fluidized catalyst, but
What is its average particle size and bulk density?

併用されるクラッキング触媒のそれらと同程度であるこ
とが好ましく、この意味で本発明のアルミナ粒子として
は、平均粒子径20〜80μ、好ましくは40〜70μ
の範囲にあり、嵩密度が0.60〜1.20g/mQの
範囲にあるものが適当である。
It is preferable that the alumina particles of the present invention have an average particle diameter of 20 to 80μ, preferably 40 to 70μ.
It is suitable that the bulk density is in the range of 0.60 to 1.20 g/mQ.

そしてアルミナ粒子は少なくとも0.2cc/gの吸油
量を有するものが好ましい。このようなアルミナ粒子は
、例えば、アルミン酸ソーダ水溶液と硫酸アルミニウム
水溶液との中和反応でアルミナ水和物を調製し、洗浄に
よってこれから副生塩を除去した後、必要に応じてアル
ミナ水和物を酸で解膠し、次いでこれを噴霧乾燥後、焼
成することによって容易に得ることができる。
Preferably, the alumina particles have an oil absorption of at least 0.2 cc/g. Such alumina particles can be prepared by, for example, preparing alumina hydrate through a neutralization reaction between a sodium aluminate aqueous solution and an aluminum sulfate aqueous solution, removing by-product salts from this by washing, and then converting the alumina hydrate into alumina hydrate as needed. It can be easily obtained by peptizing it with an acid, then spray drying it, and then calcining it.

また、バイヤー法で得られる平均粒子径20〜80μの
水酸化アルミニウムを焼成したものも本発明のアルミナ
粒子として適当であり、このものは′M造ココスト安い
点で有利である。
Further, calcined aluminum hydroxide having an average particle diameter of 20 to 80 μm obtained by the Bayer method is also suitable as the alumina particles of the present invention, and this material is advantageous in that the manufacturing cost is low.

本発明の於て2クラッキング触媒とアルミナ粒子との混
合割合は1重量比で80/20〜20/80の範囲にあ
ることが必要である。この範囲よりアルミナ粒子の量が
少ない場合は、M料油中の金属汚染物をアルミナ粒子に
よって優先的に充分捕捉することができず、逆にこの範
囲よりクラッキング触媒の量が少ない場合は、当然のこ
となから、クラッキング活性が低下して原料油を充分に
接触分解することができない。従って、本発明の方法を
実施するに際しては、原料油に含まれる金属汚染物の量
を勘案し7その量が多い場合はクラッキング触媒とアル
ミナ粒子の混合物に於けるアルミナ粒子の割合を増大さ
せ。
In the present invention, it is necessary that the mixing ratio of the 2-cracking catalyst and the alumina particles is in the range of 80/20 to 20/80 in weight ratio. If the amount of alumina particles is less than this range, the metal contaminants in the M feed oil cannot be sufficiently captured preferentially by the alumina particles, and conversely, if the amount of cracking catalyst is less than this range, naturally Therefore, the cracking activity decreases and the feedstock oil cannot be sufficiently catalytically cracked. Therefore, when carrying out the method of the present invention, the amount of metal contaminants contained in the feedstock oil should be taken into account.7 If the amount is large, the proportion of alumina particles in the mixture of cracking catalyst and alumina particles should be increased.

クラッキング触媒量の相対的な減少に伴って生ずるであ
ろうクラッキング活性の低下を、クラッキング触媒中に
分散せしめる結晶性アルミナシリケートの増量によって
補うことを可とする。
It is possible to compensate for the decrease in cracking activity that would occur with a relative decrease in the amount of cracking catalyst by increasing the amount of crystalline alumina silicate dispersed in the cracking catalyst.

クラッキング条件としては従来当業界で慣用されている
クラッキング条件が本発明でも採用可能であって、そう
したクラッキング条件の典型例を例示すれば5次の通り
である0反応温度460〜540℃+ WHS V  
4〜20hr −’ 、 cat10il比4〜12゜ また、炭化水素の接触分解法に於ては、コークの析出に
よって不活性化したクラッキング触媒を、カーボンバー
ニングによって再生し、クラッキング反応に再使用する
のが通例であるが。
As cracking conditions, cracking conditions conventionally used in the industry can be adopted in the present invention, and typical examples of such cracking conditions are as follows: 0 reaction temperature 460-540°C + WHS V
4 to 20 hr -', cat10il ratio 4 to 12° Also, in the catalytic cracking method of hydrocarbons, the cracking catalyst that has been inactivated by coke precipitation is regenerated by carbon burning and reused in the cracking reaction. Although it is customary.

本発明の方法でも従来の再生装置及び再生条件を使用し
て使用済みのクラッキング触媒及びアルミナ粒子を再生
し、これを再使用することができる。この再生は通常6
00〜750℃で行なわれる。
The method of the present invention also uses conventional regeneration equipment and regeneration conditions to regenerate and reuse spent cracking catalyst and alumina particles. This playback is usually 6
It is carried out at a temperature of 00 to 750°C.

本発明の接触分解法は、金属汚染物の含量が少ない比較
的高品位の重質炭化水素油を原料油に使用する場合でも
有効であるが1本発明の有利性が最も顕著に呪われるの
は、金属汚染物を多量に含有する低品位の重質炭化水素
を接触分解する場合であって1本発明の方法によれば。
Although the catalytic cracking method of the present invention is effective even when relatively high-grade heavy hydrocarbon oil with a low content of metal contaminants is used as feedstock oil, the advantage of the present invention is most notably cursed. According to the method of the present invention, when low-grade heavy hydrocarbons containing a large amount of metal contaminants are catalytically cracked.

金属含有量が総量で50pρm程度(金属換算)の重質
炭化水素油から高収率でガソリンを得ることができる。
Gasoline can be obtained in high yield from heavy hydrocarbon oil with a total metal content of about 50 ppm (metal equivalent).

この点をさらに詳述すると、クラッキング触媒と混用さ
れるアルミナ粒子は、クラッキング触媒の構成成分どな
る結晶性アルミノンリケーF・、シリカ、シ11力・ア
ルミナなどに比1咬して、バナジウム、ニッケルなどの
金ELxtとの親和性が強いため、原料油中の金属類は
優先的にアルミナ粒子に沈着し、高温にさらされる間に
アルミナと反応して不活性化される。このため、沈着金
属に原因する脱水素反応は抑制され、その結果としてコ
ーク及び水素その他のガス状成分の訃1生が抑えられる
。一方、クラッキング触媒の側から言えば、アルミナ粒
子が共存しているが故に、当該触媒への金属の沈着は大
幅に減少し、従ってクラッキング触媒本来の触媒活性を
長期17U高水準に維持することができるのである。
To explain this point in more detail, the alumina particles mixed with the cracking catalyst are 1 bit more vanadium, nickel, etc. Because of its strong affinity with gold ELxt, metals in the feedstock oil are preferentially deposited on alumina particles, and are inactivated by reacting with the alumina during exposure to high temperatures. Therefore, the dehydrogenation reaction caused by the deposited metal is suppressed, and as a result, the production of coke, hydrogen, and other gaseous components is suppressed. On the other hand, from the cracking catalyst side, due to the coexistence of alumina particles, metal deposition on the catalyst is significantly reduced, and therefore the original catalytic activity of the cracking catalyst can be maintained at a high level for a long period of time. It can be done.

進んで実施例を示して本発明をさらに具体的に説明する
The present invention will now be described in more detail with reference to Examples.

実施例1 〔クラッキング触媒の調製〕 市販3帯水硝子を希釈してSin、濃度12.73vし
%の水硝子溶液を調製した。この水硝子溶液と濃度25
%の硫酸をそれぞれ20Ω/分、5.6Ω/分の割合で
同一容器に[0分間注加してシリカヒドロシルを得た。
Example 1 [Preparation of Cracking Catalyst] Commercially available 3 water glass was diluted to prepare a water glass solution with a concentration of 12.73% Sin. This water-glass solution and concentration 25
% sulfuric acid was poured into the same container at a rate of 20 Ω/min and 5.6 Ω/min for 0 min to obtain silica hydrosil.

このシリカヒドロシルにカオリンを最終組成物の重量基
準で30%混合し、さらに希土類交換Y型ゼオライト(
交換率67%)の30wt%水性スラリーを、最終組成
物の重量基準でゼオライト量が50%になるよう混合し
、この混合物を噴霧乾燥後、洗浄、乾燥してクラッキン
グ触媒Aを得た。この触媒の平均粒子径は57μで、嵩
密度は0.80g/mαであった。
This silica hydrosil is mixed with 30% kaolin based on the weight of the final composition, and rare earth exchanged Y-type zeolite (
A 30 wt % aqueous slurry with an exchange rate of 67% was mixed so that the amount of zeolite was 50% based on the weight of the final composition, and this mixture was spray dried, washed and dried to obtain cracking catalyst A. The average particle diameter of this catalyst was 57μ, and the bulk density was 0.80g/mα.

〔アルミナ粒子の調製〕[Preparation of alumina particles]

バイヤー法で得られた平均粒子径70μの水酸lヒアル
ミニラムを550℃で3時間焼成して嵩密度0.76g
/m Q 、吸油量0.42cc/Hのアルミナ粒子を
得た。
Hyaluminum hydroxide with an average particle size of 70μ obtained by the Bayer method was calcined at 550°C for 3 hours to obtain a bulk density of 0.76g.
/m Q and an oil absorption of 0.42 cc/H were obtained.

〔接触分解〕[Catalytic cracking]

上記のクラッキング触媒とアルミナ粒子をそれぞれ篩分
けしてクラッキング触媒は55μ以上の粒子を除去し、
アルミナ粒子は55μ以下の粒子を除去した後、それぞ
れの残りを100%水蒸気中770℃で6時間処理し1
次いで空気中600°Cで1時間焼成した。しかる後、
これらのクラッキング触媒とアルミナ粒子を所定の割合
に混合し、その粒子混合物を用いて次のような接触分解
反応を行なった。
The above-mentioned cracking catalyst and alumina particles are each sieved to remove cracking catalyst particles with a size of 55μ or more,
After removing alumina particles of 55μ or less, the remaining particles were treated in 100% steam at 770°C for 6 hours.
Then, it was fired in air at 600°C for 1 hour. After that,
These cracking catalysts and alumina particles were mixed at a predetermined ratio, and the following catalytic cracking reaction was carried out using the particle mixture.

水素化処理された減圧1油(DSVGO)に、ニッケル
及びバナジウムの含量がそれぞれ200ppmとなるよ
うナフテン酸ニッケル及びナフテン酸バナジウムを添加
したものを原料油に用い。
Hydrotreated reduced pressure 1 oil (DSVGO) to which nickel naphthenate and vanadium naphthenate were added so that the nickel and vanadium contents were 200 ppm each was used as the feedstock oil.

反応条件としては反応温度482°C1空間速度16h
r −” 、粒子混合物/原料油の重量比3を採用して
75秒間接解分解反応を行なった後、反応帯域内の粒子
混合物を空気中630℃で50分間処理して再生し、次
いで再び上記の接触分解反応を行なう反応−再生操作を
14回繰返し、15回目の反応に於ける接舷分解成績を
評価し2、さらに15回目の反応を終了した時点での粒
子混合物への全屈沈着量を測定した。結果を第1表に示
す。
The reaction conditions are reaction temperature: 482°C, space velocity: 16h.
r −”, a particle mixture/feedstock oil weight ratio of 3 was adopted to carry out the decomposition reaction for 75 seconds, and then the particle mixture in the reaction zone was treated in air at 630 °C for 50 minutes to regenerate, and then regenerated again. The reaction-regeneration operation for performing the above catalytic cracking reaction was repeated 14 times, the results of the catalytic cracking in the 15th reaction were evaluated2, and the total flexural deposition in the particle mixture was further determined at the end of the 15th reaction. The results are shown in Table 1.

第1表 *C5゛ガソリン:沸点範囲C5〜204℃実施例2 実施例1で使用したクラッキング触媒に代えて、下記の
触媒を使用した以外は、実施例1と全く同様な条件及び
手順で接触分解反応を行なった。結果を第2表に示す。
Table 1 *C5゛Gasoline: boiling point range C5~204℃Example 2 Contact was carried out under exactly the same conditions and procedures as in Example 1, except that the following catalyst was used in place of the cracking catalyst used in Example 1. A decomposition reaction was carried out. The results are shown in Table 2.

〔クラッキング触媒の調製〕[Preparation of cracking catalyst]

実施例1と同様にして調製したシリカヒドロシルにカオ
リンを最終組成物の重量基準で、それぞれ52%、33
%、25%となるようにした以外は触媒Aと同様にして
クラッキング触媒B、C。
Kaolin was added to the silica hydrosil prepared as in Example 1 by 52% and 33%, respectively, based on the weight of the final composition.
%, cracking catalysts B and C were prepared in the same manner as catalyst A except that they were changed to 25%.

Eを調製した。また、シリカヒドロシルにカオリンを加
えることなく希土類交換Y型ゼオライトだけを最終組成
物を重量基準で90%となるように加えてクラッキング
触媒りを調製した。
E was prepared. A cracking catalyst was also prepared by adding only rare earth-exchanged Y-type zeolite to silica hydrosil without adding kaolin so that the final composition was 90% by weight.

(以下余白) 第2表 第2表かられかるように、クラッキング触媒及びアルミ
ナ粒子の混合物中のゼオライト量を一定にして活性を比
較すると、本発明の方法ではクラッキング触媒への全屈
沈着量が少ないため、活性の低下が少ない。
(Left below) Table 2 As can be seen from Table 2, when comparing the activities with a constant amount of zeolite in the mixture of cracking catalyst and alumina particles, the method of the present invention shows that the amount of total deposition on the cracking catalyst is Since the amount is small, there is little decrease in activity.

比較例 実施例1で使用したアルミナ粒子に代えて下記の如きシ
リカ粒子、使用済みクラッキング触媒又はシリカ−アル
ミナ粒子を使用した以外は、実施例Iと全く同様な条件
及び手順で接触分解反応を行ない。第3表に示す結果を
得た。但し、粒子混合比はいずれの場合も50150と
した。
Comparative Example A catalytic cracking reaction was carried out under exactly the same conditions and procedures as in Example I, except that the following silica particles, used cracking catalyst, or silica-alumina particles were used in place of the alumina particles used in Example 1. . The results shown in Table 3 were obtained. However, the particle mixing ratio was 50150 in all cases.

〔シリカ粒子〕[Silica particles]

Sin、濃度12.73wt%の水硝子水溶液と濃度2
5%の硫酸を混合してシリカヒドロシルを調製し、これ
を噴霧乾燥後、洗浄して乾燥し1次いで550°Cで3
時間焼成して平均粒子径70μ、嵩密度0.71g/m
Qのシリカ粒子を得た、このシリカ粒子を篩分けして5
5μ以下の粒子を除去し、残りを100%水蒸気中77
0°Cで6時間処理した後、空気中600℃で1時間焼
成した実験に供した。
Sin, a water-glass aqueous solution with a concentration of 12.73 wt% and a concentration of 2
Silica hydrosil was prepared by mixing 5% sulfuric acid, which was spray-dried, washed and dried, then heated at 550 °C for 3
After firing for a time, the average particle size is 70μ, and the bulk density is 0.71g/m.
Silica particles of Q were obtained.These silica particles were sieved to 5
Remove particles of 5μ or less and store the rest in 100% water vapor.
After being treated at 0°C for 6 hours, it was subjected to an experiment in which it was fired in air at 600°C for 1 hour.

〔使用済みクラッキング触媒〕[Used cracking catalyst]

実M21fに於て使用済みのクラッキング触媒(平均粒
子径75μ、嵩密度0.81g/m Q )を600℃
で1時間焼成して実験に吏用した。この使用済み触媒は
ニッケルを235ppm、バナジウムを438ppm含
有するものであった。
In actual M21f, used cracking catalyst (average particle size 75 μ, bulk density 0.81 g/m Q) was heated at 600°C.
It was baked for 1 hour and used in experiments. This used catalyst contained 235 ppm of nickel and 438 ppm of vanadium.

〔シリカ−アルミナ粒子の調製〕[Preparation of silica-alumina particles]

市販3量水硝子を希釈し、Sin2濃度11.2%の水
鎖子溶液を調製した。またこれとは別に10.5%の硫
酸アルミニウム溶液を調製した。この水硝子溶液と硫酸
アルミニウム溶液をそれぞれ20Q/分、10Q/分の
割合で混合してゲルを調製した。このゲルを65℃で3
.5時間熱成し水硝子にてp)lを5.8として安定化
させた。このゲルを熱風u度220℃で噴霧乾燥後、洗
浄、乾燥してシリカ−アルミナ粒子を調製した。
A water strand solution having a Sin2 concentration of 11.2% was prepared by diluting a commercially available 3-volume water vitreous solution. Separately, a 10.5% aluminum sulfate solution was prepared. A gel was prepared by mixing the water vitreous solution and the aluminum sulfate solution at a rate of 20 Q/min and 10 Q/min, respectively. This gel was heated at 65°C for 3
.. The mixture was heated for 5 hours and stabilized with water glass to a p)l value of 5.8. This gel was spray dried with hot air at 220°C, washed and dried to prepare silica-alumina particles.

このシリカ−アルミナ粒子を篩分けして55μ以下の粒
子を除去し、残りを100%水蒸気中770°Cで6時
間処理した後、空気中で1時間焼成して実験に供した。
The silica-alumina particles were sieved to remove particles of 55 μm or less, and the remaining particles were treated in 100% steam at 770° C. for 6 hours, then calcined in air for 1 hour, and used for experiments.

Claims (1)

【特許請求の範囲】 1、結晶性アルミノシリケートを含有するクラッキング
触媒と、アルミナ粒子とを80/20〜20/80の重
量比で混合した粒子混合物に、重質炭化水素油をクラッ
キング条件下で接触させる重質炭化水素油の接触分解法
。 2、前記の粒子混合物に含まれる結晶性アルミノシリケ
ート量が粒子混合物の重量基準で少なくとも10%であ
る特許請求の範囲第1項記載の方法。 3、前記粒子混合物中のアルミナ粒子として、平均粒子
径が20〜80μであり、嵩密度が0.60〜1.20
g/mlであるアルミナを使用する特許請求の範囲第1
項記載の方法。
[Claims] 1. Heavy hydrocarbon oil is added to a particle mixture of a cracking catalyst containing crystalline aluminosilicate and alumina particles in a weight ratio of 80/20 to 20/80 under cracking conditions. A method for catalytic cracking of heavy hydrocarbon oils. 2. The method of claim 1, wherein the amount of crystalline aluminosilicate contained in the particle mixture is at least 10%, based on the weight of the particle mixture. 3. The alumina particles in the particle mixture have an average particle diameter of 20 to 80μ and a bulk density of 0.60 to 1.20.
Claim 1 using alumina that is g/ml
The method described in section.
JP19973384A 1984-09-25 1984-09-25 Catalytic cracking of heavy hydrocarbon oil Pending JPS6178897A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19973384A JPS6178897A (en) 1984-09-25 1984-09-25 Catalytic cracking of heavy hydrocarbon oil
DE8585201499T DE3570689D1 (en) 1984-09-25 1985-09-18 Catalytic cracking, process for heavy oil
EP85201499A EP0176150B2 (en) 1984-09-25 1985-09-18 Catalytic cracking, process for heavy oil
US06/777,891 US4692236A (en) 1984-09-25 1985-09-19 Catalytic cracking process for heavy oil with mixture of alumina and zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19973384A JPS6178897A (en) 1984-09-25 1984-09-25 Catalytic cracking of heavy hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPS6178897A true JPS6178897A (en) 1986-04-22

Family

ID=16412715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19973384A Pending JPS6178897A (en) 1984-09-25 1984-09-25 Catalytic cracking of heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS6178897A (en)

Similar Documents

Publication Publication Date Title
US4340465A (en) Dual component crystalline silicate cracking catalyst
US6022471A (en) Mesoporous FCC catalyst formulated with gibbsite and rare earth oxide
EP0083163B1 (en) Heavy hydrocarbon conversion catalyst and process using same
US3210267A (en) Catalytic cracking of hydrocarbons with the use of a crystalline zeolite catalyst containing rare earths and a porous matrix
US3459680A (en) Crystalline zeolite composite for catalytic hydrocarbon conversion
EP0176150B1 (en) Catalytic cracking, process for heavy oil
CA1058603A (en) High activity amorphous silica-alumina catalyst
US4339354A (en) Hydrocarbon conversion catalysts
US4376039A (en) Hydrocarbon conversion catalysts and processes utilizing the same
EP0155824B1 (en) Method for preparing hydrocarbon catalytic cracking catalyst compositions
JP2000514863A (en) Catalysts for optimal resid cracking of heavy feedstocks.
US4920087A (en) Vanadium scavenging compositions
JPH08173816A (en) Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production
JP3138459B2 (en) Catalytic cracking
US4312743A (en) FCC Process using catalyst produced from used FCC catalyst
EP0155851B1 (en) Hydrocarbon catalytic cracking catalyst compositions
JPS6178897A (en) Catalytic cracking of heavy hydrocarbon oil
JP3949336B2 (en) Process for producing catalyst composition for catalytic cracking of hydrocarbons
JPS61204042A (en) Vanadium resistant zeolite fluidized cracking catalyst
JP2933708B2 (en) Modified Y-type zeolite, process for producing the same, and catalyst composition for catalytic cracking of hydrocarbons using the same
US4261861A (en) FCC Catalyst production from used FCC catalyst
JPH0516908B2 (en)
US4636484A (en) Method for the preparation of catalyst composition for use in cracking hydrocarbons
JP2750371B2 (en) Catalytic cracking catalyst composition and catalytic cracking method of heavy hydrocarbon oil using the same
JP2740800B2 (en) Catalyst composition for catalytic cracking of hydrocarbons