JPS6178613A - Manufacture of polymer molded item - Google Patents

Manufacture of polymer molded item

Info

Publication number
JPS6178613A
JPS6178613A JP20132084A JP20132084A JPS6178613A JP S6178613 A JPS6178613 A JP S6178613A JP 20132084 A JP20132084 A JP 20132084A JP 20132084 A JP20132084 A JP 20132084A JP S6178613 A JPS6178613 A JP S6178613A
Authority
JP
Japan
Prior art keywords
polymer
mold
item
polymer item
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20132084A
Other languages
Japanese (ja)
Inventor
Isao Sasaki
笹木 勲
Koji Nishida
西田 耕二
Masaru Morimoto
勝 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20132084A priority Critical patent/JPS6178613A/en
Publication of JPS6178613A publication Critical patent/JPS6178613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to remove a polymer item from a mold without damaging the polymer item, by cooling and solidifying the polymer item confined in the mold while treating the polymer item with ultrasonic waves. CONSTITUTION:A mixture solution that contains a monomer that is a raw material for a polymer, a polymerization initiator and a polymerization regulator is confined in a vessel for producing a polymer item, and is heated under pressure to produce a polymer item. While the produced polymer item is irradiated with ultrasonic waves, the polymer item in the vessel is cooled and hardened, then the polymer item is removed. When the ultrasonic wave treatment is carried out, the vessel in which the polymer item is confined may be placed in a medium and irradiated with ultrasonic waves. The medium used is preferably water. The temperature at which the cooling and hardening is carried out under the irradiation of ultrasonic waves is preferably the transition temperature of the polymer or a temperature a little below the transition temperature of the polymer. The transition temperature refers generally to the glass transition temperature. Since while the polymer item is treated with ultrasonic waves, the polymer item is cooled from the melted state to or below the mold temperature and the glass transition temperature to be solidified, the removal of the polymer item is facilitated with avoiding the damage thereto.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋳型の形状安定性ならびに生産安定性に優れた
重合体底形物の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a polymer bottom shape having excellent mold shape stability and production stability.

〔従来の技術〕[Conventional technology]

底形金型内に加熱または加熱加圧雰囲気において、IM
遺された重合体の重合体製造用容器からの取り出しは底
形金型あるいに重合体製造用容器を含む内容物重合体を
冷却する方法を採用しているのが現状である。
IM in a heated or heated pressurized atmosphere inside the bottom mold.
At present, the remaining polymer is removed from the polymer manufacturing container by cooling the polymer contents including the bottom mold or the polymer manufacturing container.

これは一般に内容物である重合体の熱収縮率が成形金型
あるいは重合体製造用容器のそれより無視できないほど
大きな差を示し、七の結果、単純に冷却工程を経るだけ
で、容易に内容物を分離できるために、その取り出しに
大きな問題を生じないことが理由である。
This is because the thermal shrinkage rate of the polymer content generally shows a non-negligible difference from that of the mold or container used for producing polymers, and as a result of step 7, the content of the polymer can be easily reduced by simply going through a cooling process. The reason is that since the objects can be separated, there is no major problem in taking them out.

底形金型あるいに重合体製造用容器は金属あるいは硬質
ガラス製であり、重合体の熱収縮率はそれらの容器より
もくるかに大きいからである。しかし、前記の方法では
鋳型の形状を内容物重合体か復原しない場合がある。た
とえば剥離面での剥廃傷を持つような場合、金型及び重
合体製造用容器内面の平滑性が低いと熱収縮歪が生じ、
特に力学的強度が不足すると内容物重合体の冷却時に最
も弱い部分に応力が集中し、その結果内容物の破損が生
じる場合が多い。従って内容物重合体は成形金型内ある
いは重合体製造用容器内においてに満足な形状を加熱ま
たは加熱加圧状態で保持しているものの、取り出し工程
で破損するとい5M来となり、生産安定性が低下し、製
品奥部りに大きな悪影響を及ぼしているのが現状である
This is because bottom molds and containers for producing polymers are made of metal or hard glass, and the thermal shrinkage rate of polymers is much greater than that of those containers. However, in the above method, the shape of the mold may not be restored due to the content of the polymer. For example, if there is a peeling scratch on the peeling surface, heat shrinkage distortion will occur if the inner surface of the mold or polymer manufacturing container has low smoothness.
In particular, if the mechanical strength is insufficient, stress will concentrate on the weakest part when the polymer content is cooled, often resulting in damage to the content. Therefore, although the content polymer maintains a satisfactory shape in the molding mold or in the polymer production container under heating or heating and pressure, it may break during the removal process and the production stability may deteriorate. The current situation is that this is having a major negative impact on the depth of the product.

〔発明が屏決しよつとする問題点〕[Problems that the invention attempts to solve]

本発明の目的は重合体を鋳型内に封入された重合体の形
状を保持したまま敞9出し、生産安定性に優れた重合体
を製造することにある。
An object of the present invention is to produce a polymer with excellent production stability by ejecting the polymer while maintaining the shape of the polymer enclosed in a mold.

〔問題点を解決する念めの手段〕[A precautionary measure to resolve the problem]

本発明に加熱状態で封入された重合体を含む鋳型容器に
超音波を照射しながら内容物重合体を冷却固化した後、
鋳型形状に底形された重合体を取り出すことを特徴とす
る重合体内容物の製造方法にある。
After cooling and solidifying the polymer content while irradiating ultrasonic waves to the mold container containing the polymer sealed in a heated state according to the present invention,
A method for producing a polymer content, characterized by taking out a polymer shaped into a mold shape.

鋳型内に加熱または加熱加圧雰囲気で重合体を封入する
場合、浴融底形のよりに溶融重合体を油圧、空気圧、ス
クリュー回転児圧などにより金型内に圧入された状態に
超音波を照射しながら内容物重合体を冷却固化して取り
出すことは本発明に含まれる。
When enclosing a polymer in a mold in a heated or heated pressurized atmosphere, the molten polymer is pressed into the mold using oil pressure, air pressure, screw rotor pressure, etc. using ultrasonic waves. The present invention includes cooling and solidifying the polymer content while irradiating it and removing it.

また重合体の原料である単量体及び重合開始剤、重合度
調節剤を含む混合溶液を重合体製造用容器内に封入した
後、加熱または加熱加圧状態で製造された重合体に超音
波を照射しながら内容物重合体を冷却固化して敗り出す
ことは本発明に含まれる。
In addition, after sealing a mixed solution containing monomers, which are the raw materials for the polymer, a polymerization initiator, and a polymerization degree regulator in a polymer production container, the produced polymer is heated or heated and pressurized and then subjected to ultrasonic waves. It is included in the present invention that the polymer content is cooled and solidified while being irradiated.

超音波照射する場合、本発明における超音波とは振動数
か可聴周波数領域を越える弾性波を意味する。発生音波
としては水晶などの圧電振動子、チタン酸バリウムなど
の電歪振動子などが比較的高周波で用いられる。100
 M’fl*以下では磁歪振動子(ニッケル、フェライ
ト)が多く用いられる。
In the case of ultrasonic irradiation, the ultrasonic wave in the present invention means an elastic wave whose frequency exceeds the vibration frequency range or the audible frequency range. As the generated sound waves, piezoelectric vibrators such as crystal, electrostrictive vibrators such as barium titanate, etc. are used at relatively high frequencies. 100
Magnetostrictive vibrators (nickel, ferrite) are often used below M'fl*.

本発明における超音波はI KHzからI GHzが好
ましく、特に5 KFizからI MHzがより好まし
い。実用的な観点からは撮動子としては電歪振動子また
は磁歪振動子か好ましい。
The ultrasonic waves used in the present invention preferably range from I KHz to I GHz, particularly preferably from 5 KFiz to I MHz. From a practical standpoint, an electrostrictive vibrator or a magnetostrictive vibrator is preferable as the camera element.

照射する超音波の強さはIW/cyt”から1xv、’
何2 の範囲か好ましく、特に10W/口2から200
W/譚2の範囲が好ましい・ I KW/cm”以上であれば重合体そのものの破壊を
生ずる場合がある。I W/3”以下であると容器と重
合体内容物との充分な剥離性が認められないからである
The intensity of the ultrasonic waves to be irradiated is from IW/cyt" to 1xv,'
A range of 2 is preferable, especially 10W/mouth 2 to 200
A range of W/tan 2 is preferable. If it is more than I KW/cm", the polymer itself may be destroyed. If it is less than I W/3", there is sufficient releasability between the container and the polymer contents. This is because it is not recognized.

金属容器およびガラス容器と比較的I8!iK強度が溶
融状態から冷却固化工程において良好なものとしてポリ
メチルメタクリレート系樹脂、アクリロニトリル−ブタ
ジェン−スチレン系樹脂、ポリアセタール系樹脂、ポリ
カーボネート系樹脂、ポリエステル系樹脂、ボリアリレ
ート系樹脂などが上げられるが、このような場合、比較
的超音波出力は上記範囲の中で大きい万が良好な形状安
定化を得ることができる。
Comparatively I8 with metal containers and glass containers! Polymethyl methacrylate resins, acrylonitrile-butadiene-styrene resins, polyacetal resins, polycarbonate resins, polyester resins, and polyarylate resins have good iK strength in the cooling and solidification process from the molten state. In such a case, good shape stabilization can be obtained even if the ultrasonic output is relatively large within the above range.

−万、金属容器およびガラス容器と比較的密着強度が低
いポリエチレン、ポリプロビレ/、ポリスチレンなどの
非極性重合体の場合は超音波出力は上記範囲の中で低い
万でも良好な結果を得ることができる。
- In the case of non-polar polymers such as polyethylene, polypropylene/polystyrene, etc., which have relatively low adhesion strength to metal containers and glass containers, good results can be obtained even if the ultrasonic output is low within the above range. .

熱硬化性樹脂であるエポキシ系樹脂、フェノール系樹脂
、尿素及びメラミン系樹脂及び熱硬化性711コン樹脂
の中でエポキシ系樹脂及びフェノール系樹脂では比較的
高周波及び高出力の超音波処理が好ましい。
Among thermosetting resins such as epoxy resins, phenolic resins, urea and melamine resins, and thermosetting 711 resins, epoxy resins and phenolic resins are preferably treated with relatively high frequency and high power ultrasonic waves.

超音波処理の際に、封入された重合体を含む鋳型容器t
−媒体中で超音波照射してもよい。
During ultrasonication, the mold container t containing the encapsulated polymer
- Ultrasonic irradiation may be performed in the medium.

使用される媒体として框主に水媒体が好ましいが、アル
カリ水溶液、酸性水溶液でも使用することかできる。超
音波を照射しながら冷却固化する場合の温度框、重合体
の転位温度または転位温度よりやや低い温度か好ましい
The medium to be used is preferably an aqueous medium, but an alkaline aqueous solution or an acidic aqueous solution can also be used. When cooling and solidifying while irradiating ultrasonic waves, the temperature is preferably the transposition temperature of the polymer or a temperature slightly lower than the transposition temperature.

重合体の転位温度近傍で重合体比容積が大幅に変化する
ためである。
This is because the specific volume of the polymer changes significantly near the transposition temperature of the polymer.

転位温度は通常ガラス転位温度で示される。The transition temperature is usually expressed as the glass transition temperature.

ガラス転位温度以下ではガラス転位温度以上の重合体よ
り熱膨張係数が小さく、従って鋳型容器内に重合体が加
熱された状態では溶融状!!Iまたはガラス転位温度以
下に冷却固化することによって熱収縮か生じ、七の結果
鋳型形状に底形された重合体の取り出しが可能となる。
Below the glass transition temperature, the coefficient of thermal expansion is smaller than that of a polymer above the glass transition temperature. Therefore, when the polymer is heated in the mold container, it is in a molten state! ! Heat shrinkage occurs by cooling and solidifying below the glass transition temperature, and as a result of step 7, it becomes possible to take out the polymer shaped into the mold shape.

しかしながら剥離面(複雑な剥離傷を持つ場合などの面
の平滑性が欠如すると内容物重合体の破損が生じること
になる。超音波処理しながら溶融状態から金型温度及び
ガラス転位温度以下に冷却固化することによって上記取
り出しを容易にし、内容物重合体の破損からまぬがれる
ことができる。
However, if the peeled surface lacks smoothness (such as when the surface has complex peeling scratches), the polymer content will be damaged.While being treated with ultrasonic waves, the molten state is cooled to below the mold temperature and glass transition temperature. Solidification facilitates the removal and prevents damage to the polymer content.

実質的に超音波照射温度は内容物重合体の形態の変化を
生じるよプな温度、たとえばガラス転位温度などの近傍
であることが好ましいが、このような状!!lを持たな
い物質でも、溶融状態から冷却すること(より、内容物
樹脂の弾性軍が高くなれば十分に超音波処理効果がある
Practically speaking, it is preferable that the ultrasonic irradiation temperature be at a temperature that causes a change in the morphology of the polymer content, such as near the glass transition temperature. ! Even if a substance does not have l, it is possible to obtain a sufficient ultrasonic treatment effect by cooling it from a molten state (as long as the elasticity of the resin content becomes high).

従って、超音波処理後冷却固化することにより重合体の
破損を伴りことなく鋳型形状重合体を散り出すことが可
能となる。
Therefore, by cooling and solidifying after ultrasonic treatment, it becomes possible to eject the mold-shaped polymer without damaging the polymer.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳しく説明する。 The present invention will be explained in more detail with reference to Examples below.

超音波処理装置はチタン酸ジルコン酸鉛超音波振動子、
チタン酸バリウム超音波振動子、フェライト超音波振動
子を使用した。
The ultrasonic treatment device is a lead zirconate titanate ultrasonic vibrator,
A barium titanate ultrasonic transducer and a ferrite ultrasonic transducer were used.

実施例1 ポリメチルメタクリレート(三菱レイヨ/社製アクリペ
ッ)VH)ペレットを熱風乾燥機を使用して90℃で8
時間乾燥した後、30φスクリユ一型射出成形機(1オ
ンス Bk’1−50型山域精機製作所製)により平板
透明板を底形加工した。金型温度85℃、シリンダ一温
度250℃、射出圧力1400ゆ/側2とした。
Example 1 Polymethyl methacrylate (Mitsubishi Rayo/Acrypet VH) pellets were dried at 90°C using a hot air dryer.
After drying for a period of time, the flat transparent plate was processed into a bottom shape using a 30φ screw type injection molding machine (1 oz. Bk'1-50 type manufactured by Yamaguchi Seiki Seisakusho). The mold temperature was 85°C, the cylinder temperature was 250°C, and the injection pressure was 1400 Yu/side 2.

金型温度調節は金型内温水管流通方式として金型下部側
面に、チタン酸ジルコン酸鉛超音波振動子を設置し、発
振周波数45 KHz、超音波出力100Wとした。
The temperature of the mold was controlled by using an in-mold hot water pipe circulation method, and a lead titanate zirconate ultrasonic vibrator was installed on the lower side of the mold, with an oscillation frequency of 45 KHz and an ultrasonic output of 100 W.

金型内に溶融重合体が1400 ’に9/cm”射出圧
力で注入されると同時に85℃温水により金型内流通冷
却して金型P3溶融重合体を冷却固化しながら超音波照
射を5分間行なった。良好な形状安定性を保持した射出
放形品が得られた。同一条件で100枚作製したところ
、100枚ともに規格平板透明板(80X100X2+
w)  が得られた。
The molten polymer is injected into the mold at an injection pressure of 1400' and 9/cm'', and at the same time, 85°C hot water is passed through the mold to cool it, and while cooling and solidifying the molten polymer in mold P3, it is irradiated with ultrasonic waves for 50 minutes. An injection molded product with good shape stability was obtained. When 100 pieces were produced under the same conditions, all 100 pieces were standard flat transparent plates (80X100X2+
w) was obtained.

実施例2 実施例1と同様にポリメチルメタクリレートベレットを
成形した。金型温度30℃として超音波照射t−5分間
行ない、同様にして底形品を得た。100枚作製したと
ころ、100枚ともに規格平板透明板(80X100X
2*w)が得られた。
Example 2 A polymethyl methacrylate pellet was molded in the same manner as in Example 1. Ultrasonic irradiation was performed for t-5 minutes at a mold temperature of 30° C., and a bottom-shaped product was obtained in the same manner. When 100 sheets were made, all 100 sheets were standard flat transparent plates (80X100X
2*w) was obtained.

実施例3〜11 実施例1と同様にして表−1の重合体を使用して射出成
形した。結果を表−1に示す。
Examples 3 to 11 Injection molding was carried out in the same manner as in Example 1 using the polymers shown in Table 1. The results are shown in Table-1.

実施例12 モレキュラーシーブ(4A1716チツプ)上でメチル
メタクリレート重量体ti燥した後、アルゴンガス雰囲
気下で常圧蒸留した後に、乙2−アゾビスイソブチロニ
トリルLL01モル係、Cert−ドデフルメルカプタ
/α15モル%をメチルメタクリレート単量体VC溶解
した後に片側ピストン加圧移動円筒型/リンダ−セル(
ステンレス鋼製内面鏡面加工仕上げ)内に上記単量体混
合物を仕込み、移動可能ピスト/に単位面積当り20に
9の圧力を加えてオイルジャケット温度60℃で7Jn
熱重合した。
Example 12 After drying a heavy weight of methyl methacrylate on a molecular sieve (4A1716 chip) and distilling it under atmospheric pressure under an argon gas atmosphere, 1 mol of 2-azobisisobutyronitrile LL0 and Cert-dodeflumerca were added. After dissolving 15 mol% of methyl methacrylate monomer VC, one side of the piston was pressurized and moved into a cylindrical type/linda cell (
The above monomer mixture was charged into a stainless steel (inner surface mirror finished), a pressure of 20 to 9 per unit area was applied to the movable piston, and the oil jacket temperature was 60°C for 7Jn.
It was thermally polymerized.

重合収縮による重合反応転化率が100%に到達した後
にジャケットからピストン加圧移動ンリンダーセルをピ
ストン装着のiまとり出し、70℃温水中でチタン酸ジ
ルコ/酸鉛超音波振動子により見損周波数45 KHz
、超音波出力250Wで20分照射した◇ 加圧移動ピスト/上下をンリンダーセルから除去して7
IJンダーセル内で生成した高さ30国、直径2.9譚
の円筒状鋳型重合体が得られた。
After the polymerization reaction conversion rate due to polymerization shrinkage reached 100%, the piston pressurized Linder cell was removed from the jacket with the piston attached, and the missing frequency was 45 using a zirco titanate/lead acid ultrasonic vibrator in 70°C warm water. KHz
, irradiated with ultrasonic power of 250 W for 20 minutes ◇ Pressurized moving piston / upper and lower parts were removed from the printer cell 7
A cylindrical mold polymer with a height of 30 mm and a diameter of 2.9 mm was produced in IJ Darcel.

円筒状7リンダーセル鋳型内の形状をそのiま復元した
鋳型重合体であり、割れた9重合体中に気泡か入ったり
しない完全な鋳型重合体であった。100本製造した結
果、100本ともに規格の透明重合体が得られた。
It was a mold polymer that had completely restored the shape inside the cylindrical 7 Linder cell mold, and was a perfect mold polymer with no air bubbles in the cracked 9 polymer. As a result of manufacturing 100 bottles, a standard transparent polymer was obtained for all 100 pieces.

実施例15 モレキュラーシーブ(5A1/16チツカ上でスチレン
単量体を乾燥した後、アルゴンガス雰囲気で常圧蒸留し
九後に Z 2/−アゾビスイソブチロニトリル(10
2モル%、tert−ドデシルメルカプタン[L1モル
%をスチレン単量体に溶解した後に実施例12と同様に
オイルジャケット付片側ピストン別圧移動円筒型シリン
ダーセル(ステンレス鋼製円面鏡面加工仕上げ)内に上
記単量体混合物を仕込み移動可能ピストンに単位面積当
920時の圧力を加えてオイルジャケット温度70℃で
加熱重合した。
Example 15 After drying the styrene monomer on a molecular sieve (5A1/16), it was distilled under atmospheric pressure in an argon gas atmosphere, and then Z2/-azobisisobutyronitrile (10
After dissolving 2 mol% and 1 mol% of tert-dodecyl mercaptan [L] in styrene monomer, it was prepared in the same manner as in Example 12 in a cylindrical cylinder cell (made of stainless steel with a circular mirror finish) with an oil jacket and a separate pressure moving piston. The above monomer mixture was charged and polymerized by heating at an oil jacket temperature of 70°C by applying a pressure of 920 hours per unit area to a movable piston.

重合収縮による重合反応転化率が100%に到達した後
にジャケットからピストン加圧移動シリンダーセルを散
り出し、70℃温水中でチタン酸ジルコン酸鉛超音波振
動子により発振周波数45 KHz、超音波出力250
Wで20分照射した。
After the polymerization reaction conversion rate due to polymerization shrinkage reached 100%, the piston pressurized moving cylinder cell was released from the jacket, and the oscillation frequency was 45 KHz and the ultrasonic output was 250 using a lead titanate zirconate ultrasonic vibrator in 70°C hot water.
It was irradiated with W for 20 minutes.

移動ピストンをシリンダーセルから除去してシリンダー
セル内で生底した高さ30cM、直径2.95の円筒状
鋳型重合体が得られた。
The moving piston was removed from the cylinder cell, resulting in a cylindrical mold polymer with a height of 30 cm and a diameter of 2.95 cm, which was green-bottomed within the cylinder cell.

円筒状シリンダーセル鋳型内の形状をそのまま表示した
鋳型重合体であり、ワしたり気泡がセル中央部に入った
りしない完全な鋳型重合体であった。100本製造した
結果、100本ともに規格の透明重合体が得られた。
It was a mold polymer that displayed the shape inside the cylindrical cylinder cell mold as it was, and was a perfect mold polymer that did not wrinkle or have air bubbles enter the center of the cell. As a result of manufacturing 100 bottles, a standard transparent polymer was obtained for all 100 pieces.

実施@14 実施例12.13で使用したメタクリレートスチレン単
量体からなる混合物(重量比1/1)を原料として、実
施例12と同様の方法により円筒状鋳型共重合体を得た
Implementation@14 A cylindrical template copolymer was obtained in the same manner as in Example 12 using the mixture of methacrylate styrene monomers (weight ratio 1/1) used in Example 12.13 as a raw material.

実施例15 モレキュラーシーブ(4A  1716チツプ)上でア
クリロニトリル単量体を乾燥したのちアルゴンガス雰囲
気で常圧蒸留したのち、実施例13で使用したスチレン
単量体との混合物(重量比3ニア)として、原料とし実
施例13と同様の方法により円筒状鋳型共重合体を得た
Example 15 After drying the acrylonitrile monomer on a molecular sieve (4A 1716 chip) and distilling it under normal pressure in an argon gas atmosphere, it was mixed with the styrene monomer used in Example 13 (weight ratio 3 nia). A cylindrical template copolymer was obtained in the same manner as in Example 13 using the following materials.

実施例16 モレキュラーシーブ(4ム 1/i 6チツプ)上でメ
チルアクリレート単量体を乾燥したのち、アルゴンガス
雰囲気下で常圧蒸留したメチルアクリレート単量体と実
施例12で便用したメチルメタクリレート単量体の混合
物(重量比Sニア)t−原料として、実施例12と一禄
の方法で円筒状鋳型共重合体を得た。
Example 16 Methyl acrylate monomer was dried on a molecular sieve (4 ml 1/i 6 chips) and then distilled under normal pressure under an argon gas atmosphere, and methyl methacrylate used in Example 12. A cylindrical template copolymer was obtained as a monomer mixture (weight ratio near S) by the method of Example 12 and Iroku.

実施例17 モレキュラーシーブ(4ム 1/16チツプ)上で乾燥
したエチレングリコールジメタクリレート全アルゴンガ
ス雰囲気下で常圧蒸留したのち、実施例12で使用した
メチルメタクリレート単量体との混合物(重量比1:9
)を原料にして、実施例12と同様の方法で円筒状鋳型
架橋共重合体全得た。
Example 17 Ethylene glycol dimethacrylate dried on molecular sieves (4 ml 1/16 chips) was distilled under atmospheric pressure under a total argon gas atmosphere, and then a mixture with the methyl methacrylate monomer used in Example 12 (weight ratio 1:9
) was used as a raw material, and the entire cylindrical template crosslinked copolymer was obtained in the same manner as in Example 12.

実施例18 モレキュラーシーブ(4A  1/16チツプ)上で乾
燥したジビニルペ/ゼンをアルゴン雰囲気下で常圧蒸留
したのち、実施例15で使用したスチレン単量体との混
合物(重量比1:9)を原料として、実施例15と同様
の方法で円筒状鋳型架橋共重合体を得た。
Example 18 Divinylpe/zene dried on a molecular sieve (4A 1/16 chip) was distilled under normal pressure under an argon atmosphere, and then mixed with the styrene monomer used in Example 15 (weight ratio 1:9). A cylindrical template crosslinked copolymer was obtained in the same manner as in Example 15 using as a raw material.

実施例19 実施例12と同様の方法でメチルメタクリレート単量体
を得たのち、冷却wつき攪拌容器内に前記メチルメタク
リレート単量体を仕込み、70℃温水浴中で加熱攪拌し
たのちO,OO5モル僑の2.2′−アゾビスイソブチ
ロニトリルを県別して重合t−開始させたのち重合発熱
によりメチルメタクリレート単量体が急激に重合反応し
た。
Example 19 After obtaining a methyl methacrylate monomer in the same manner as in Example 12, the methyl methacrylate monomer was charged into a stirring vessel with a cooling w, and after heating and stirring in a 70°C hot water bath, O, OO5 After t-initiating the polymerization of 2,2'-azobisisobutyronitrile, the methyl methacrylate monomer rapidly polymerized due to the exothermic polymerization.

沸騰してピーク温度に達した後に冷却して重合体言v工
55%メチルメタクリレートシラツブを得た。得られた
シラツブを50μmのフィルターでr過したのち、1c
rn厚さ2枚のガラス板間に塩化ビニル製亘径10朗ガ
スケットチューブをガラス板セル間のふちに設置したセ
ル内に、上記メチルメタクリレート/ラッグ溶液にさら
に:2,2’−アゾビスイソブチロニトリル[1005
モル%を溶鱗して仕込んだのち、2枚のガラス板を固定
して70T:温水中でセルキャスト重合し    □た
。重合転化率が90%以上に達した後に120℃、2時
間加熱した後、70℃温水中に設置してチタン酸ジルコ
ン酸鉛超音波振動子により発振周波数45 KHz、超
音波出力250Wで20分間照射した。
After boiling and reaching a peak temperature, the mixture was cooled to obtain a 55% methyl methacrylate silub. After passing the obtained sillage through a 50 μm filter, 1c
Into the above methyl methacrylate/Lag solution was added: 2,2'-azobisiso Butyronitrile [1005
After melting and charging mol%, two glass plates were fixed and cell cast polymerization was carried out in 70T warm water. After the polymerization conversion rate reached 90% or more, it was heated at 120°C for 2 hours, then placed in hot water at 70°C and heated with a lead titanate zirconate ultrasonic vibrator at an oscillation frequency of 45 KHz and an ultrasonic output of 250 W for 20 minutes. Irradiated.

板厚7.5mの透明樹脂板が得られ、100板製造して
100枚ともに規格の透明重合体が得られた。
A transparent resin plate with a thickness of 7.5 m was obtained, and 100 plates were manufactured, and all 100 plates were made of standard transparent polymer.

比較例1 実施例12と同様の方法により単量体を仕込み重合して
、超音波処理なしで重合体をとり出したところ、円筒状
鋳型重合体の下部において割れが発生した。10本製造
したところ10本ともに円筒状鋳型重合体に割れが発生
した。
Comparative Example 1 When monomers were charged and polymerized in the same manner as in Example 12 and the polymer was taken out without ultrasonic treatment, cracks occurred at the lower part of the cylindrical mold polymer. When 10 pieces were manufactured, cracks occurred in the cylindrical mold polymer in all 10 pieces.

比較例2 ′″Jr:施例15と同様の方法により単量体を仕込み
重合して超音波処理なしで重合体t−yり出したところ
、円筒状鋳型重合体の下部において割れが発生した。1
0不製造したところ10本ともに円筒状鋳型重合体に割
れが発生した。
Comparative Example 2 ''Jr: When monomers were charged and polymerized using the same method as in Example 15 and the polymer was extruded without ultrasonic treatment, cracks occurred at the bottom of the cylindrical mold polymer. .1
When 0 pieces were not manufactured, cracks occurred in the cylindrical mold polymer for all 10 pieces.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、重合体の形状を保持したまま、
破損することなく容易に底形された重合体を鋳型から取
p出丁ことができ、生産費に性よく、重合体底形物を製
造することができる。
According to the method of the present invention, while maintaining the shape of the polymer,
The shaped polymer can be easily removed from the mold without being damaged, and the shaped polymer can be manufactured at low production costs.

Claims (1)

【特許請求の範囲】[Claims] 加熱状態で封入された重合体を含む鋳型容器に超音波を
照射しながら内容物重合体を冷却固化した後、鋳型形状
に成形された重合体を取り出すことを特徴とする重合体
成形物の製造方法。
Manufacture of a polymer molded product characterized by cooling and solidifying the polymer content while irradiating ultrasonic waves to a mold container containing a polymer sealed in a heated state, and then taking out the polymer molded into a mold shape. Method.
JP20132084A 1984-09-26 1984-09-26 Manufacture of polymer molded item Pending JPS6178613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20132084A JPS6178613A (en) 1984-09-26 1984-09-26 Manufacture of polymer molded item

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20132084A JPS6178613A (en) 1984-09-26 1984-09-26 Manufacture of polymer molded item

Publications (1)

Publication Number Publication Date
JPS6178613A true JPS6178613A (en) 1986-04-22

Family

ID=16439050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20132084A Pending JPS6178613A (en) 1984-09-26 1984-09-26 Manufacture of polymer molded item

Country Status (1)

Country Link
JP (1) JPS6178613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770119A (en) * 1992-09-18 1998-06-23 Johnson & Johnson Vision Products, Inc. Laser demolding method
US5935492A (en) * 1994-06-10 1999-08-10 Johnson & Johnson Vision Products, Inc. Method and apparatus for demolding ophthalmic contact lenses

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770119A (en) * 1992-09-18 1998-06-23 Johnson & Johnson Vision Products, Inc. Laser demolding method
US5935492A (en) * 1994-06-10 1999-08-10 Johnson & Johnson Vision Products, Inc. Method and apparatus for demolding ophthalmic contact lenses

Similar Documents

Publication Publication Date Title
JPS6144602A (en) Manufacture of decorative material
JPS6178613A (en) Manufacture of polymer molded item
US3298065A (en) Apparatus for applying ultrasonic vibration to thermoplastic polymers during forming
JPS6144747A (en) Manufacture of artificial marble
KR940010217B1 (en) Resin composition for artificial marble
US2548438A (en) Multicellular acrylic resin
JP2842709B2 (en) Manufacturing method of plastic molded products
SU581850A3 (en) Method of injection moulding of articles
US2665452A (en) Method of producing transparent polystyrene sheets
JPH1044250A (en) Resin laminate and its production
JPS62280008A (en) Method for molding disc board
US6565778B2 (en) Method for making prototype molds by recycled material
JPS5940622B2 (en) Foamed resin composite molded product
JP2017168436A (en) Heat treatment device, heat insulating housing box for heat treatment device, and heat treatment method
JP3494760B2 (en) Method for producing flat molded product
JP3525586B2 (en) Injection molding method for optical products
JPS6123601A (en) Cast polymerization
JPH02147622A (en) Curable resin composition, artificial marble produced by molding and curing the same composition and production thereof
KR20050093204A (en) Process of manufacturing acrylate samples
JPH1158376A (en) Frp molding material composition
JPS5845443B2 (en) Methacrylic powder
Liu et al. Improving weldline strengths of injection moulded parts by ultrasonic oscillation
RU2384592C1 (en) Method of processing polyethyleneterephthalate wastes into powder product
JPS63280701A (en) Production of molded article with improved releasability
SU837968A1 (en) Method of porous plastic material production