JPS6178465A - Formation of low reflective surface - Google Patents

Formation of low reflective surface

Info

Publication number
JPS6178465A
JPS6178465A JP20051384A JP20051384A JPS6178465A JP S6178465 A JPS6178465 A JP S6178465A JP 20051384 A JP20051384 A JP 20051384A JP 20051384 A JP20051384 A JP 20051384A JP S6178465 A JPS6178465 A JP S6178465A
Authority
JP
Japan
Prior art keywords
reflectance
length
fibers
diameter
electrostatic flocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20051384A
Other languages
Japanese (ja)
Other versions
JPS6151954B2 (en
Inventor
Tomonao Hayashi
林 友直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU KAGAKU KENKYUSHO
Original Assignee
UCHU KAGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU KAGAKU KENKYUSHO filed Critical UCHU KAGAKU KENKYUSHO
Priority to JP20051384A priority Critical patent/JPS6178465A/en
Publication of JPS6178465A publication Critical patent/JPS6178465A/en
Publication of JPS6151954B2 publication Critical patent/JPS6151954B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To markedly lower reflectivity by efficiently scattering and absorbing the electromagnetic wave incident to a surface between erected fibers, by applying stable carbon fibers to the surface of a material such as a metal or plastic by electrostatic flocking. CONSTITUTION:A carbon fiber to be used has a diameter of 3-15mum, a length of 20-500mum and the ratio of the length to the diameter of 3-50. This carbon fiber is applied to the surface of a metal such as aluminum or titanium or plastic such as vinyl chloride or FRP by electrostatic flocking under such a condition that the distance between electrodes is 2-30cm and the intensity of an electric field is 2-25kV/cm. The reflectivity of thus obtained surface to an electromagnetic wave from a near ultraviolet region to an infrared region is about 0.01-0.02 and is hardly dependent on an incident angle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はカーボン短繊維を静電植毛方式を用いて金属、
プラスチック等の材料表面に植え付けることにより、近
紫外から赤外域の電磁波の反射率が著しく低く、かつそ
の反射率が入射角にほとんど依存しない低反射性表面を
形成する方法に閃するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention uses electrostatic flocking method to fabricate short carbon fibers into metals,
The idea is to develop a method of forming a low-reflectivity surface that has an extremely low reflectance of electromagnetic waves in the near-ultraviolet to infrared region, and whose reflectance is almost independent of the angle of incidence, by implanting it on the surface of a material such as plastic.

(従来の技術) 通常、人工衛生等の宇宙機は、ミッションの全期間にお
いて塔載機器が正常に動作し得る許容温・度範囲を維持
するため、その表面に塗料、蒸着、酸化、テープ等の種
々の熱制御コーティングが施される。これらの熱制御コ
ーティングは、表面の放射特性(太陽光吸収率、放射率
)によって入熱および放熱量を規制し、宇宙機の温度を
制御するものであり、一般に宇宙機に要求される温度域
等により適切なコーティングが選定される。これらの熱
制御コーティングのうち、太陽光吸収率の高くかつ放射
率の高い表面、すなわち太陽光スペクトル域から赤外域
の電磁波に対する反射率の低い表面が要求される際には
、従来では黒色塗料、あるいは黒色に発色させた陽極酸
化等が用いられてきた。
(Conventional technology) Spacecraft for artificial sanitary purposes usually use paint, vapor deposition, oxidation, tape, etc. on the surface of spacecraft to maintain the permissible temperature/degree range in which on-board equipment can operate normally during the entire mission. Various thermal control coatings are applied. These thermal control coatings regulate the amount of heat input and radiation based on the radiation characteristics of the surface (solar absorption rate, emissivity) and control the temperature of the spacecraft, and generally fall within the temperature range required for spacecraft. An appropriate coating is selected by Among these thermal control coatings, when a surface with high solar absorption and high emissivity is required, that is, a surface with low reflectance to electromagnetic waves from the solar spectral range to the infrared range, black paint, Alternatively, anodic oxidation that produces a black color has been used.

しかしこれらのコーティングには次に示す問題点がある
。まず第1に、宇宙空間において紫外線、電子線、陽子
線等の照射を受けて劣化し、その放射特性が変化する。
However, these coatings have the following problems. First of all, it deteriorates when exposed to ultraviolet rays, electron beams, proton beams, etc. in space, and its radiation characteristics change.

第2に、電磁波の入射角が大きくなるとその表面の反射
率が大きくなる。これらの特性値の変化により宇宙機が
′ll遇する温度幅が広くなり、当初の許容温度範囲を
満足しなくなる0 またカメラ、分光器等の光学機器では、迷光を防止する
ためフード等の表面に反射率の低い黒色塗料の塗布、あ
るいはフェルト等の貼付は等を行なっている。しかし高
精度の光学i器では相当に低い反射率が要求され、前記
の方法で得られる表面では不十分であり、さらに低い反
射率を呈する表面が望まれる。
Second, as the angle of incidence of electromagnetic waves increases, the reflectance of the surface increases. Due to changes in these characteristic values, the temperature range that the spacecraft experiences becomes wider, and the initially permissible temperature range is no longer satisfied.In addition, in optical equipment such as cameras and spectrometers, the surfaces of hoods, etc. are used to prevent stray light. We apply black paint with low reflectance or attach felt etc. to the surface. However, high-precision optical instruments require a considerably low reflectance, and the surfaces obtained by the methods described above are insufficient, and surfaces with even lower reflectances are desired.

このように近紫外から赤外域の電磁波に対して著しく低
い反射率を呈し得る満足な表面の形成方法は未だ見出さ
れていない。
As described above, a method for forming a satisfactory surface that can exhibit a significantly low reflectance to electromagnetic waves in the near-ultraviolet to infrared region has not yet been found.

(発明が解決しようとする問題点) 従って本発明の目的は近紫外から赤外域の電磁波に対し
て著しく低い反射率が要求される人工衛昌等の宇宙機器
表面あるいはカメラ等の光学機器フード表面等に適用し
得る低反射性表面の形成方法を提供することにある。
(Problems to be Solved by the Invention) Therefore, the purpose of the present invention is to provide space equipment surfaces such as artificial satellites or optical equipment hood surfaces such as cameras that require extremely low reflectance to electromagnetic waves in the near-ultraviolet to infrared range. An object of the present invention is to provide a method for forming a low-reflectivity surface that can be applied to, etc.

(問題点を解決するための手段) 本発明者等は前記従来のコーティング法の欠点をなくシ
、低反射性表面を形成せしめる方法を鋭、意研究した結
果、金属、プラスチック等の材料表面にカーボン短繊維
を静電植毛を用いて植え付けることにより、表面に入射
した電磁波がこの直立した繊維間で効率良く散乱、吸収
されて反射率が著しく低下し、かつその反射率は入射角
にほとんど依存しないことを見出した。
(Means for Solving the Problems) As a result of intensive research into a method for eliminating the drawbacks of the conventional coating methods and forming a low-reflectivity surface, the present inventors found that By planting short carbon fibers using electrostatic flocking, electromagnetic waves incident on the surface are efficiently scattered and absorbed between these upright fibers, resulting in a significant decrease in reflectance, and the reflectance is almost dependent on the angle of incidence. I found out that it doesn't.

すなわち、本発明の低反射性表面の形成方法は、直径3
〜15.un、長さ20〜5oO,pm、直径に対する
長さの比が3〜50のカーボン繊維を、′電極間距離2
〜aocms電界強度2〜25 KV/cmのもとで、
静電植毛により金属、例えばアルミニウム、ベリリウム
、チタン等またはプラスチック例えばポリ塩化ビニル、
テフロン、ガラス繊維強化プラスチック(FRP) 、
カーボン繊維強化プラスチック(arRP)、カプトン
等の如きプラスチック等の表面に植え付けることを特徴
とする。
That is, the method for forming a low-reflectivity surface of the present invention applies to
~15. carbon fibers with a length of 20 to 5 oO, pm and a length to diameter ratio of 3 to 50, with a distance between electrodes of 2
~aocms electric field strength 2-25 KV/cm,
By electrostatic flocking metals such as aluminium, beryllium, titanium etc. or plastics such as polyvinyl chloride,
Teflon, glass fiber reinforced plastic (FRP),
It is characterized by being planted on the surface of plastics such as carbon fiber reinforced plastics (arRP), Kapton, etc.

本発明に用いられるカーどン繊維はそれ自体の反射率が
低いこと、強度が大で耐摩耗性に優れていること、紫外
線等による劣化が極めて小さいこと等の利点を有してお
り、また適度な導電性を持つために合成繊維等では必要
な静電植毛時の電着処理が不要である。ただしカーボン
繊維で表面を単に被覆するのみでは、本発明によって得
られる表面のような利点は持ち得す、静電植毛により短
繊維を表面に直立させることによってはじめて優れた表
面となるのである。
The cardon fiber used in the present invention has advantages such as its own low reflectance, high strength and excellent abrasion resistance, and extremely low deterioration due to ultraviolet rays, etc. Because it has moderate conductivity, it does not require electrodeposition treatment during electrostatic flocking, which is required for synthetic fibers. However, simply coating the surface with carbon fibers does not provide the advantages of the surface obtained by the present invention; an excellent surface can only be obtained by making the short fibers stand upright on the surface using electrostatic flocking.

本発明に用いられるカーボンfJti &の直径は、3
〜15μm1好ましくは5〜12μmで、長さは20〜
500μm1好ましくはso〜aooPmであり、直径
に対する長さの比は8〜50.好ましくは10〜30の
範囲が適当である。上記範囲より長くて細いときには短
繊維のからみ合いが甚だしく、静7IL植毛時の短繊維
の飛昇状態が極めて悪くなる。また上記範囲より短くて
太いときには、植毛した表面の反射率が高くなる。
The diameter of the carbon fJti & used in the present invention is 3
~15 μm 1 preferably 5-12 μm, length 20-12 μm
500 μm 1 preferably so to aooPm, and the length to diameter ratio is 8 to 50. Preferably, a range of 10 to 30 is appropriate. When the length is longer and thinner than the above range, the entanglement of the short fibers becomes severe, and the flying condition of the short fibers during static 7IL flocking becomes extremely poor. Furthermore, when the hair is shorter and thicker than the above range, the reflectance of the flocked surface becomes high.

また静電植毛時の電極間距離は2〜3Qcm、好ましく
は8〜20C,Illで、電界強度は2〜25Kv/c
rn1好ましくは3〜10KV/c、11の範囲が適当
である。
In addition, the distance between the electrodes during electrostatic flocking is 2 to 3 Qcm, preferably 8 to 20 C, Ill, and the electric field strength is 2 to 25 Kv/c.
rn1 is preferably 3 to 10 KV/c, and a range of 11 is suitable.

電極間距離が2 cm+未満では加工むらが著しく、ま
た30cmより大では印加τ圧圧が極めて大きくなり・
印加装置が過大になる。一方、%、電界強度2 KV/
C1n未満ではカー6ボン繊維の植毛対象表面への飛昇
割合が小さくなり、また2 5 Kv/cmより大では
コロナ放電を生じやすい。
If the distance between the electrodes is less than 2 cm+, processing unevenness will be significant, and if it is greater than 30 cm, the applied τ pressure will be extremely large.
The application device becomes too large. On the other hand, %, electric field strength 2 KV/
If it is less than C1n, the ratio of carbon fibers flying up to the surface to be flocked becomes small, and if it is more than 2 5 Kv/cm, corona discharge tends to occur.

(作 用) 上記構成とすることにより本発明の方法により得られる
表面は、第1に近紫外から赤外域の電磁波に対する反射
率が0.01〜0.02程度と著しく低い。第2にその
反射率が入射角にほとんど依存しない。第3に紫外線等
による劣化が小さい。
(Function) First, the surface obtained by the method of the present invention with the above configuration has a significantly low reflectance of about 0.01 to 0.02 for electromagnetic waves in the near-ultraviolet to infrared region. Second, its reflectance is almost independent of the angle of incidence. Thirdly, there is little deterioration due to ultraviolet rays, etc.

(実施例) 以下実施例をあげて本発明をさらに具体的に説明するが
、本発明はこれらの実施例によって限定されるものでは
なく、種々応用実施できる。
(Examples) The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples and can be applied and implemented in various ways.

実施例1 直径約6μm1長さ100〜300μmのカーボン短繊
維を、1JL極間距離4CTnSuU界強度3 、5 
KVAmの条件下で、α−シアノアクリレート系接着剤
を塗布したアルミニウム板上に静tiLM毛により植え
付けた。これによりアルミニウム板表面の26,6・%
に相当する面積がカーボン短繊維で覆われた。
Example 1 Carbon short fibers with a diameter of about 6 μm, a length of 100 to 300 μm, 1 JL interpolar distance, 4 CTnSuU field strength, 3,5
Plants were planted with static tiLM bristles on aluminum plates coated with α-cyanoacrylate adhesive under KVAm conditions. As a result, 26.6% of the aluminum plate surface
An area equivalent to

本試料表面の入射角5の光に対する分光反射率は、第1
図の曲s1に示すように、波長範囲0.8〜1.6 μ
mにおいて0.012〜0.023と極めて低いもので
あった。また光の入射角を60まで変化させてもその反
射率はほとんど変化しなかった。
The spectral reflectance of the surface of this sample for light at an incident angle of 5 is the first
Wavelength range 0.8~1.6 μ, as shown in song s1 in the figure.
m was extremely low at 0.012 to 0.023. Further, even when the incident angle of light was changed up to 60 degrees, the reflectance hardly changed.

なお分光反射率の測定は、モノクロメータと積分球を用
いて行なった。
Note that the spectral reflectance was measured using a monochromator and an integrating sphere.

比較例1 実施例1と同じカーボン短繊維を、α−シアノアクリレ
ート系接着剤を塗布したアルミニウム板上に落下散布し
た。この試料表面の入射角5°の光に対する分光反射率
は、第1図の曲線2に示すように波長範囲0.3〜1.
6μmにおいて0.035〜0.090と、実施例1に
比べ繊維が直立していないため非常に高い値であった。
Comparative Example 1 The same short carbon fibers as in Example 1 were dropped and scattered onto an aluminum plate coated with an α-cyanoacrylate adhesive. The spectral reflectance of the sample surface for light at an incident angle of 5° is within the wavelength range of 0.3 to 1.5°, as shown by curve 2 in FIG.
At 6 μm, the value was 0.035 to 0.090, which was a very high value because the fibers were not erect compared to Example 1.

比較例2 低反射性黒色塗料(3M製Velvet Coatin
gaextel )を膜厚約400μmでアルミニウム
板上にスプレー塗装した。この試料表面の入射角5の・
光に対する分光反射率は、第1図の曲線8に示すように
波長範囲0.3〜1.6μmにおいて0.038〜0.
039であった。また、光の入射角を60 にすると、
5 の入射角の時に比べ反射率が高くなり、上記波長範
囲で積分した反射率が40%程度増加した。
Comparative Example 2 Low reflective black paint (3M Velvet Coatin)
gaextel) was spray-coated onto an aluminum plate to a film thickness of approximately 400 μm. The angle of incidence of this sample surface is 5.
The spectral reflectance of light is 0.038 to 0.03 in the wavelength range of 0.3 to 1.6 μm, as shown by curve 8 in FIG.
It was 039. Also, if the incident angle of light is set to 60 degrees,
The reflectance was higher than when the incident angle was 5.5, and the reflectance integrated over the above wavelength range increased by about 40%.

(発明の効果) 以上説明したように、本発明によれば、金属、プラスチ
ックス等の表面にカーボン短繊維の静電植毛を施すこと
により、近紫外から赤外域の電磁波の反射率が著しく小
さく、かつその反射率が入射角にほとんど依存しない表
面を形成するごとが可能であり、宇宙機器における熱制
御コーティング、ならびにカメラ等の光学機器フード表
面等の反射特性調節等に寄与する技術として極めて有益
である。
(Effects of the Invention) As explained above, according to the present invention, by applying electrostatic flocking of short carbon fibers to the surface of metals, plastics, etc., the reflectance of electromagnetic waves in the near-ultraviolet to infrared region is significantly reduced. It is possible to form a surface whose reflectance is almost independent of the angle of incidence, and is extremely useful as a technology that contributes to thermal control coatings in space equipment and adjustment of the reflective properties of optical equipment hood surfaces such as cameras. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例および比較例の試料の波長と分光反射
率との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between wavelength and spectral reflectance of samples of Examples and Comparative Examples.

Claims (1)

【特許請求の範囲】[Claims] 1、直径3〜15μm、長さ20〜500μm、直径に
対する長さの比3〜50のカーボン繊維を、電極間距離
2〜30cm、電界強度2〜25KV/cmのもとで静
電植毛により、金属、プラスチック等の材料表面に植え
付けることを特徴とする低反射性表面の形成方法。
1. Carbon fibers with a diameter of 3 to 15 μm, a length of 20 to 500 μm, and a length-to-diameter ratio of 3 to 50 are electrostatically flocked under an electrode distance of 2 to 30 cm and an electric field strength of 2 to 25 KV/cm. A method for forming a low-reflectivity surface, which is characterized by implanting it on the surface of a material such as metal or plastic.
JP20051384A 1984-09-27 1984-09-27 Formation of low reflective surface Granted JPS6178465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20051384A JPS6178465A (en) 1984-09-27 1984-09-27 Formation of low reflective surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20051384A JPS6178465A (en) 1984-09-27 1984-09-27 Formation of low reflective surface

Publications (2)

Publication Number Publication Date
JPS6178465A true JPS6178465A (en) 1986-04-22
JPS6151954B2 JPS6151954B2 (en) 1986-11-11

Family

ID=16425558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20051384A Granted JPS6178465A (en) 1984-09-27 1984-09-27 Formation of low reflective surface

Country Status (1)

Country Link
JP (1) JPS6178465A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110072A (en) * 1990-08-31 1992-04-10 Nkk Corp Production of frosted coated metallic sheet
JPH0556524U (en) * 1992-01-10 1993-07-27 橋本フォーミング工業株式会社 Contact member for vehicle window glass
JP2019104378A (en) * 2017-12-12 2019-06-27 小島プレス工業株式会社 Vehicular imaging apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2639559B1 (en) * 1988-11-29 1991-01-11 Bull Sa APPARATUS FOR SEPARATING AND RECOVERING SOLID DEVELOPER PARTICLES TRANSPORTED BY A GAS STREAM

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110072A (en) * 1990-08-31 1992-04-10 Nkk Corp Production of frosted coated metallic sheet
JPH0556524U (en) * 1992-01-10 1993-07-27 橋本フォーミング工業株式会社 Contact member for vehicle window glass
JP2019104378A (en) * 2017-12-12 2019-06-27 小島プレス工業株式会社 Vehicular imaging apparatus
US11485323B2 (en) 2017-12-12 2022-11-01 Kojima Industries Corporation Imaging apparatus for vehicle

Also Published As

Publication number Publication date
JPS6151954B2 (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US4916014A (en) I.R. reflecting paint
US3118781A (en) Laminate and method of making
US3984581A (en) Method for the production of anti-reflection coatings on optical elements made of transparent organic polymers
Zhang et al. High efficiency Mo Al2O3 cermet selective surfaces for high-temperature application
Boström et al. Solution-chemical derived nickel–alumina coatings for thermal solar absorbers
Orel et al. Spectrally selective paint coatings: Preparation and characterization
Boström et al. Anti-reflection coatings for solution-chemically derived nickel—alumina solar absorbers
AU597105B2 (en) Infrared reflecting composition for topical application to the skin
ES499321A0 (en) METHOD OF PRODUCING A METALLIC SURFACE ON A NON-METALLIC SUBSTRATE
US3671286A (en) Surface with low absorptivity to emissivity ratio
Banks et al. Atomic oxygen interactions with FEP Teflon and silicones on LDEF
US4153753A (en) Spectrally selective surfaces and method of fabricating the same
JPS6178465A (en) Formation of low reflective surface
Sood et al. Development of nanostructured antireflection coating technology for IR band for improved detector performance
US6045609A (en) White pigments stabilized against UV radiation by an oxidizing agent
Triolo et al. Coatings in space environment
Pompea et al. Reflectance measurements on an improved optical black for stray light rejection from 0.3 to 500 µm
US3871902A (en) Method of coating a spacecraft shell surface
O'Neill et al. The dependence of optical properties on the structural composition of solar absorbers: Gold black
Orel et al. The preparation and testing of spectrally selective paints on different substrates for solar absorbers
JP6744751B2 (en) Thermal barrier film for optical equipment, thermal barrier coating for optical equipment, and optical equipment using them
Yamashita et al. Characterization of multilayer reflectors and position sensitive detectors in the 45–300 Å region
Willey et al. Total reflectance properties of certain black coatings (from 0.2 to 20.0 micrometers)
Jones et al. Suppression of Total Reflection of Neutrons from Collimator Surfaces
JP2002045781A (en) Heat-resistant and low reflective surface and method for forming the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term