JPS6177700A - Nitrogen doping method for group ii-v compound semiconductor - Google Patents

Nitrogen doping method for group ii-v compound semiconductor

Info

Publication number
JPS6177700A
JPS6177700A JP59197403A JP19740384A JPS6177700A JP S6177700 A JPS6177700 A JP S6177700A JP 59197403 A JP59197403 A JP 59197403A JP 19740384 A JP19740384 A JP 19740384A JP S6177700 A JPS6177700 A JP S6177700A
Authority
JP
Japan
Prior art keywords
group
growth
temp
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59197403A
Other languages
Japanese (ja)
Other versions
JPH0525840B2 (en
Inventor
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59197403A priority Critical patent/JPS6177700A/en
Publication of JPS6177700A publication Critical patent/JPS6177700A/en
Publication of JPH0525840B2 publication Critical patent/JPH0525840B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To perform growth of P type group II-VI compd. by pyrolyzing gaseous NH3 at higher temp. than the temp. of a substrate where crystal growth is caused by the thermal decomposition of group II and VI starting material gases, then transporting decomposed NH3 together with the group II and VI starting material gases to the substrate. CONSTITUTION:In the crystal growth basing on thermal decomposition of orga nometallic compd. in a group II and VI compound semiconductor, NH3 is passed through a higher temp. region that the growth temp. of the group II and VI compd. Then, the product generated after passing NH3 is mixed with the starting material gases of the group II and VI compd. and guided to a substrate crystal held at the growth temp. to execute the crystal growth. Thus, doping of N2 of the group II-VI compound semiconductor is accomplished. In the drawing of the apparatus, a substrate crystal 6 is placed on a susceptor 5 and installed in a reaction tube 7. The susceptor is heated by the impression of a high frequency coil 4. The starting material gas 2 is introduced from upstream side into the reaction tube, and NH3 1 is introduced from a separate inlet into the reaction tube after passing through a high temp. region heated by a decomposition furnace 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子工業、就中、半導体工業において使用され
るII−Vl族化合物半導体の気相成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for vapor phase formation of II-Vl group compound semiconductors used in the electronics industry, particularly in the semiconductor industry.

(従来技術) ■−■族化合物半導体のドーピング、とりわけ、p型ド
ーピングは、洲、 F PH51人s H3等を、原料
ガスに混入させて行おうとするものが主なものであった
(Prior Art) The doping of (1-2) group compound semiconductors, particularly the p-type doping, has mainly been carried out by mixing H3, etc. into the raw material gas.

(従来技術の問題点) II−VI族化合物半導体の気相成長は通常500℃以
下の低温で行われることが多い。一方、NI(3jPH
Hj AsH3などのドーピングは、V族の質量が大 
 。
(Problems with Prior Art) Vapor phase growth of II-VI group compound semiconductors is usually performed at a low temperature of 500° C. or lower. On the other hand, NI (3jPH
Doping such as Hj AsH3 has a large mass in group V.
.

きい程深い電子準位を形成しやすく、アクセプタlづ −として有効、ば働き難い。従ってNをドーピングする
ことは特に大きな効果が期待できる。Nは通常N)(、
の形で供給される(ジャーナルオプクリスタルグロース
(J、 Crystal Growth ) 59巻、
1頁−9頁、1982年)が、基板温度が低いため、■
、の熱分解が充分におこなわれず必要以上に多量のNH
,を基板に供給する必要がある。これは、■族、■族の
原料ガスと闇、との副次反応を生み出すため、結晶性に
悪影響を与えていた。
The deeper the electron level is, the easier it is to form a deep electronic level, making it difficult to function effectively as an acceptor. Therefore, doping with N can be expected to have a particularly great effect. N is usually N)(,
(Journal Opcrystal Growth (J, Crystal Growth) Volume 59,
1-9, 1982), but due to the low substrate temperature, ■
Thermal decomposition of
, must be supplied to the board. This had a negative effect on crystallinity because it caused a side reaction between the raw material gases of group Ⅰ and group Ⅱ and darkness.

(発明の目的) 本発明は、I[−VI族化合物半導体への■族元素、就
中、Nのドーピングを容易に行わしめる方法を提供する
ことにある。
(Objective of the Invention) An object of the present invention is to provide a method for easily doping a group I[-VI compound semiconductor with a group II element, particularly N.

(発明の構成) 本発明はII −VI族化合物半導体を形成する気相成
長法において、■族及び■族の原料ガスが熱分解され結
晶成長が生起する基板の温度よりも高い温度にて罷、ガ
スを熱分解した後亘族及び■族原料ガスと混合され、基
板に運ぶことによってp型II−VI化合物の成長を行
う構成となっている。
(Structure of the Invention) The present invention relates to a vapor phase growth method for forming II-VI group compound semiconductors, which is terminated at a temperature higher than the temperature of the substrate at which group (I) and (II) source gases are thermally decomposed and crystal growth occurs. After the gas is thermally decomposed, it is mixed with the Wataru group and II group raw material gases and transported to the substrate, thereby growing a p-type II-VI compound.

(本発明の作用・原理) ff−VI族化合物半導体は通常p型半導体の形成が困
難なため、効率のよい発光が期待しにくく用途が限られ
ている。本発明は良質のpWII−Vl族半導体の形成
を可能とするものまで原理は以下の通りである。p型ド
ーピングがおこなわれにくい理由の1つはII−VI族
化合物のアクセプターレベルが深いことがあげられる。
(Operation/Principle of the Present Invention) Since it is usually difficult to form a p-type semiconductor in an ff-VI group compound semiconductor, it is difficult to expect efficient light emission, and its uses are limited. The principle of the present invention, which enables the formation of high-quality pWII-Vl group semiconductors, is as follows. One of the reasons why p-type doping is difficult to perform is that the acceptor level of II-VI group compounds is deep.

王族元素を■族すイトにV族元素を入れることによりア
クセプタレベルが形成されるが、前者による方法は王族
元素が結晶中を動きやすく、安定した再現性ある結果が
得にくい。又後者はN t P # As pの順に中
心部分の電荷が大きいため、いわゆるセントラルセルコ
レクシ百ンが大きくなり、アクセプター準位が深くなる
傾向にある。これは正孔の、アクセプタ準位から価電子
帯への励起が室温でおこシにくくなることに対応してい
る。従って、成可く、軽いV族元素をアクセプターとし
て導入することが望ましい。しかしNをNH,の形で導
入する際NとHの結合エネルギーは、PとHlAsとH
よりも大きく、熱分解が非常に困難でちる。I[−VI
族の成長温度は300〜500℃であることが多く、こ
の温度における解離はほとんどOK等しい。従りて必要
な量、たとえば、l Q” tx−”のドーピングを半
導体に対して行なうには、極めて多量のNH3が必要と
なる。NH3は強い反応性を有するため■族及び■族原
料ガスと反応をおこし、反応性成物は基板表面に付着し
て結晶表面の平滑性を著しくそこなう。本発明は冊、を
成長温度よりも高い温度領域(たとえば1000℃)を
通過させることによりあらかじめ熱分解し、しかるのち
に、■族及び■族の原料ガスと混合して低い温度に保た
れた基板に導かれる。こうすることによりNH3中のN
を効率よく結晶中に導くと同時に、不必要な副次反応を
抑制することができる。こうして高品質な結晶性を保ち
ながら、高濃度にアクセプターがドーピングされたIt
−VI族化合物を得ることが出来る。
An acceptor level is formed by introducing a group V element into a group (i) group of royal elements, but in the former method, the royal elements tend to move in the crystal, making it difficult to obtain stable and reproducible results. Furthermore, in the latter case, the charge at the center increases in the order of NtP#Asp, so the so-called central cell collector tends to increase and the acceptor level tends to become deeper. This corresponds to the fact that excitation of holes from the acceptor level to the valence band becomes difficult to occur at room temperature. Therefore, it is desirable to introduce a lightweight Group V element as an acceptor. However, when N is introduced in the form of NH, the bonding energy of N and H is
It is very difficult to thermally decompose. I[-VI
The growth temperature of the group is often 300 to 500°C, and dissociation at this temperature is almost OK. Therefore, a very large amount of NH3 is required to dope the semiconductor with the required amount, for example l Q"tx-". Since NH3 has strong reactivity, it reacts with group (I) and group (II) source gases, and the reactive components adhere to the substrate surface, significantly impairing the smoothness of the crystal surface. In the present invention, the book is thermally decomposed in advance by passing it through a temperature range higher than the growth temperature (for example, 1000°C), and then mixed with the raw material gases of group ① and group ① and kept at a low temperature. guided to the board. By doing this, N in NH3
can be efficiently introduced into the crystal, and at the same time, unnecessary side reactions can be suppressed. In this way, It is highly doped with acceptors while maintaining high quality crystallinity.
- A Group VI compound can be obtained.

(実施例) 最後に図を用いながら実施例の説明を行う。第1図は本
方法を適用しだ一実施例であるっサセプター(カーボン
製)5上に基板結晶6を乗せた反応管7内に設置する。
(Example) Finally, an example will be explained using figures. FIG. 1 shows one example in which the present method is applied, in which a susceptor (made of carbon) 5 is placed in a reaction tube 7 on which a substrate crystal 6 is placed.

サセプターは高周波コイル4に印加される高周波によシ
加熱される。原料ガス(■族、■族)2は上流よシ導入
されるが、NH,1は別の口より導入され、反応管に導
入以前に、分解炉3により加熱された高温域(たとえば
1000℃)を通過する。NH8はここで分解されて反
応管に送出され■・■族原料を混合され基板に到達する
。こうして良質なII−VI族化合物半導体がp型に形
成される。
The susceptor is heated by high frequency waves applied to the high frequency coil 4. Raw material gas (group ■, group ■) 2 is introduced upstream, but NH,1 is introduced from another port, and before being introduced into the reaction tube, it is heated in a high temperature range (e.g., 1000°C) by the decomposition furnace 3. ). NH8 is decomposed here, sent to the reaction tube, mixed with group 1 and group 2 raw materials, and reaches the substrate. In this way, a high-quality II-VI group compound semiconductor is formed to be p-type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を具現する装置の一例を示す図である。 3は分解炉、4は高周波コイル、5はサセプター、6は
基板結晶、7は反応管である。
FIG. 1 is a diagram showing an example of a device embodying the present invention. 3 is a decomposition furnace, 4 is a high frequency coil, 5 is a susceptor, 6 is a substrate crystal, and 7 is a reaction tube.

Claims (1)

【特許請求の範囲】[Claims] II−VI族化合物半導体の有機金属熱分解結晶成長におい
て、アンモニア(NH_3)をII−VI族の成長温度より
も高い温度領域を通過せしめ、しかるのちに、II族及び
VI族の原料ガスと混合し成長温度に保たれた基板結晶に
導き結晶成長を行うことを特徴とするII−VI族化合物半
導体への窒素ドーピング方法。
In organometallic pyrolysis crystal growth of II-VI group compound semiconductors, ammonia (NH_3) is passed through a temperature region higher than the growth temperature of II-VI group compound semiconductors, and then
A method for doping nitrogen into a II-VI group compound semiconductor, characterized by mixing it with a group VI source gas and guiding the mixture to a substrate crystal maintained at a growth temperature for crystal growth.
JP59197403A 1984-09-20 1984-09-20 Nitrogen doping method for group ii-v compound semiconductor Granted JPS6177700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197403A JPS6177700A (en) 1984-09-20 1984-09-20 Nitrogen doping method for group ii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197403A JPS6177700A (en) 1984-09-20 1984-09-20 Nitrogen doping method for group ii-v compound semiconductor

Publications (2)

Publication Number Publication Date
JPS6177700A true JPS6177700A (en) 1986-04-21
JPH0525840B2 JPH0525840B2 (en) 1993-04-14

Family

ID=16373927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197403A Granted JPS6177700A (en) 1984-09-20 1984-09-20 Nitrogen doping method for group ii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6177700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122540A (en) * 2015-03-16 2015-07-02 住友電気工業株式会社 Silicon carbide semiconductor, and method and apparatus for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122540A (en) * 2015-03-16 2015-07-02 住友電気工業株式会社 Silicon carbide semiconductor, and method and apparatus for manufacturing the same

Also Published As

Publication number Publication date
JPH0525840B2 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
US6632725B2 (en) Process for producing an epitaxial layer of gallium nitride by the HVPE method
JPS6347141B2 (en)
US3635771A (en) Method of depositing semiconductor material
JPS6177700A (en) Nitrogen doping method for group ii-v compound semiconductor
JP2897821B2 (en) Method for growing semiconductor crystalline film
Zhou et al. Growth mechanisms in excimer laser photolytic deposition of gallium nitride at 500 C
US20060288933A1 (en) Chemical vapor deposition reactor
JPH0680633B2 (en) Vapor phase growth equipment
US4172754A (en) Synthesis of aluminum nitride
JP2528912B2 (en) Semiconductor growth equipment
US6815867B2 (en) Substrate usable for an acoustic surface wave device, a method for fabricating the same substrate and an acoustic surface wave device having the same substrate
JPS5624985A (en) Manufacture of gallium phosphide green light emitting element
US3821020A (en) Method of deposition of silicon by using pyrolysis of silane
JPH0323624A (en) Method and apparatus for vapor growth
RU2061113C1 (en) Process for manufacturing articles from pyrolytic boron nitride
JP2741859B2 (en) Molecular beam epitaxy
JPS62139319A (en) Compound semiconductor crystal growth method
JPS6187318A (en) Doping method in gallium-aluminum-arsenic layer
JPH01136971A (en) Vapor phase growth device
US6174367B1 (en) Epitaxial system
JPS62235300A (en) Method for growing iii-v compound semiconductor in vapor phase
CN101665978A (en) Doping methods in vapor phase epitaxy technique and devices thereof
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JPS6037121A (en) Manufacture of semiconductor device
JPH03152930A (en) Manufacture of aln thin film and manufacturing device thereof