JPS6177413A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPS6177413A
JPS6177413A JP19898584A JP19898584A JPS6177413A JP S6177413 A JPS6177413 A JP S6177413A JP 19898584 A JP19898584 A JP 19898584A JP 19898584 A JP19898584 A JP 19898584A JP S6177413 A JPS6177413 A JP S6177413A
Authority
JP
Japan
Prior art keywords
single crystal
acoustic wave
wave device
silicon single
output gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19898584A
Other languages
Japanese (ja)
Other versions
JPH0337766B2 (en
Inventor
Teruo Niitsuma
新妻 照夫
Takeshi Okamoto
猛 岡本
Shoichi Minagawa
皆川 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP19898584A priority Critical patent/JPS6177413A/en
Priority to GB8523150A priority patent/GB2166616B/en
Priority to SE8504350A priority patent/SE462132B/en
Priority to FR858514000A priority patent/FR2570902B1/en
Priority to DE19853533611 priority patent/DE3533611A1/en
Publication of JPS6177413A publication Critical patent/JPS6177413A/en
Priority to US07/099,688 priority patent/US4745378A/en
Priority to GB8822450A priority patent/GB2208769B/en
Publication of JPH0337766B2 publication Critical patent/JPH0337766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve the entire efficiency of elements by splitting an output gate electrode into plural number and providing plural number of independently adjustable DE bias circuits. CONSTITUTION:The output gate electrode 5' is split into plural number in a direction typing signal input transducers 4a, 4b provided in the vicinity of both ends of the electrodes. A bias voltage optimum to the C-V characteristic beneath each electrode 5' is applied from DC bias power supplies 7' equalin its number to the independently adjustable electrode 5'. Then a signal processed at mutual acting region is added at a signal in the region beneath the electrodes 5' and outputted via a DC blocking capacitor 8'. Since the optimum bias is applied at each split unit region, the entire efficiency of the element is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体基板上に設けられた圧taχ有する、モ
ノリシック型表面弾性波(以下本明細書においてはSA
Wと略記する。)装置、特にSAWコンボルバまたはコ
リレータに関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a monolithic surface acoustic wave (hereinafter referred to as SA
It is abbreviated as W. ) devices, in particular SAW convolvers or correlators.

〔発明の背景〕[Background of the invention]

S AWypt利用する小型軽量の信号処理e&能素子
としてSAWコンボルバやSAWコリレータがある。こ
れらは構造上分離媒質型とモノリシック型とに大きく分
けられるが、特に生産性や効率の面からモノリシック型
が有力である。半導体基板と圧電膜とを組合せたモノリ
シック型SAWコンボルバあるいはコリレータにおいて
、その信号処理機能はSAWと半導体表面の空間電荷層
との非線形相互作用によって生じる。この作用を利用す
るために、従来、第3図および第4図に示す半導体基板
1.@縁#aV介してその上に設けられた圧電膜2、そ
の圧電膜20表面上の両端近傍に設けられた信号入力用
トランスデューサ4aおよび4b、および処理信号の出
力用ゲート電極5を有する構造が用いられている。第3
図中6は轟市電極であり、第4図中、7は可変の直流バ
イアス電源、8は直流阻止用コンデンサ、9a、9bお
よび9Cは整合回路、10 aおよび10 bは信号源
、11は傷号出力用外部負荷抵抗χ表ゎ丁。
There are SAW convolvers and SAW correlators as small and lightweight signal processing e&function devices that utilize SAWypt. These can be roughly divided into separation medium type and monolithic type based on their structure, but the monolithic type is particularly popular from the viewpoint of productivity and efficiency. In a monolithic SAW convolver or correlator that combines a semiconductor substrate and a piezoelectric film, its signal processing function is generated by nonlinear interaction between the SAW and a space charge layer on the semiconductor surface. In order to utilize this effect, a conventional semiconductor substrate 1. shown in FIGS. 3 and 4 has been used. @A structure having a piezoelectric film 2 provided thereon via an edge #aV, signal input transducers 4a and 4b provided near both ends on the surface of the piezoelectric film 20, and a gate electrode 5 for outputting a processed signal. It is used. Third
In the figure, 6 is a Todoroki electrode, in Figure 4, 7 is a variable DC bias power supply, 8 is a DC blocking capacitor, 9a, 9b and 9C are matching circuits, 10a and 10b are signal sources, and 11 is a External load resistance χ table for fault signal output.

この構造において、非線形相互作用はゲート電&5直下
の領域で行なわれ(以下本明細書においては、この領域
ン相互作用領域と呼ぶ。)、出力はゲート電極5と表面
電極60間から取り出される。相互作用の強さは、半導
体基板1表面の相互作用領域における容量−電圧%性(
C−V%性)に依存するから、ゲート電極5と接地され
ている裏面電極6間に印加される直流バイアス電圧によ
り大きく変化する。したがって、従来の方式では、ゲー
ト!極内で加え合わされた総合的な出力が最大値Y 示
すバイアス電圧を最適バイアスとして、全相互作用領域
に均一に印加し、動作を行なわせることが一般的であっ
た。
In this structure, nonlinear interaction takes place in a region directly below the gate electrode &5 (hereinafter referred to as an interaction region in this specification), and the output is extracted from between the gate electrode 5 and the surface electrode 60. The strength of the interaction is determined by the capacity-voltage % characteristic (
Since it depends on C-V%), it changes greatly depending on the DC bias voltage applied between the gate electrode 5 and the grounded back electrode 6. Therefore, in the traditional method, Gate! It has been common practice to apply a bias voltage whose maximum value Y, which is the total output added within the pole, as the optimum bias, to uniformly apply it to the entire interaction region to perform the operation.

しかし、相互作用領域内のC−v%性は通常均一ではな
(、面内分布ン持つから、特に素子の信号処理能力の同
上χ図る目的で相互作用領域ケ長クチる場合など、従来
の方式の様に領域全体に対して均一なバイアス電圧ン印
加する方法では、前記C−■特性の分布のために印加バ
イアスか領域のあらゆる部分に対して最適とは限らなく
なり、素子に最適動作ケ行なわせろ上で無視できない問
題となる。
However, the C-v% characteristic within the interaction region is usually not uniform (and has an in-plane distribution), so when the interaction region is lengthened for the purpose of increasing the signal processing ability of the device, etc. In the method of applying a uniform bias voltage to the entire region as in the above method, the applied bias may not be optimal for all parts of the region due to the distribution of the C-■ characteristics, and the optimum operating temperature for the device cannot be determined. This is an issue that cannot be ignored.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、全体的な素子の効率を向上させるよ”
1m、素子の非線形相互作用領域におげろC−v%性の
分布に合ゎせて直流バイアス電圧な分布させろことがで
きる。W頭に述べた糧類のSAW襞&Y提供することで
ある。
The purpose of the present invention is to improve the overall device efficiency.
1 m, it is possible to distribute the DC bias voltage in the nonlinear interaction region of the element in accordance with the distribution of C-v%. It is to provide SAW & Y of the food items mentioned above.

〔発明の概要〕[Summary of the invention]

上記目的欠達成するために、本発明によるSAW襞置装
、半導体基板と、その−工面上に設けられた圧1!膜と
、さらにその表面上の両端近傍に設けられた信号入力用
トランスデユーサと、上記表面上の上記信号入力用トラ
ンスデユーサの間に挿まハた領域に上記信号入力用トラ
ンスデユーサχ結ぶ方向に差べられた複数個の出力用ゲ
ート電極と、上記複数個の出力用グー)!極の各々に接
続され、独立して調整することができる複数個の直流バ
イアスを源とl含むことyali旨とする0本発明の有
利な実施の態様においては、上記半導体基板はシリコン
単結晶またはサファイア準結晶の一主面上に形成された
シリコン単結晶であり、上記圧電膜は上記シリコン率結
晶表面に形成された二酸化シリコン杷縁層の上に形成さ
れたは化亜鉛膜または上記シリコン阜結晶表面に形成さ
れた窒化アルミニウム膜である。
In order to achieve the above object, a SAW folding device according to the present invention, a semiconductor substrate, and a pressure 1 provided on the surface thereof are provided. The signal input transducer χ is inserted between the membrane and the signal input transducer provided near both ends on the surface thereof, and the signal input transducer χ on the surface. (Multiple output gate electrodes pointed in the connecting direction and the above-mentioned multiple output gate electrodes)! In an advantageous embodiment of the invention, the semiconductor substrate comprises a plurality of DC bias sources connected to each of the poles and which can be adjusted independently. The piezoelectric film is a silicon single crystal formed on one main surface of the sapphire quasicrystal, and the piezoelectric film is a zinc oxide film formed on a silicon dioxide layer formed on the silicon crystal surface or the silicon film. This is an aluminum nitride film formed on the crystal surface.

以下に、図面ン参照しながら、実施例〉用いて本発明’
に−7−詳細に説明するが、それらは例示に過ぎず1本
発明の枠を越えることなしにいろいろな変形や改良があ
り得ろことは勿論である。
Below, with reference to the drawings, the present invention will be described using examples.
Although detailed explanations will be given in Section 7, these are merely examples, and it goes without saying that various modifications and improvements may be made without going beyond the scope of the present invention.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明によるSAW装置の上面図で、図中第4
図と共通する引用番号は第4図におけるものと同じ部分
を示し、Iは本発明によって複数個に分割されているこ
とt表υ丁。第1図に見らtするように、本発明による
SAW装置においては、出力用ゲート!他5′は両14
近傍に設けられている信号入力用トランスデユーサ4a
と4byy結ぶ方向に複数個に分割されており、その各
々に独立に調整可能な、ゲート電極5′と同じ数の直流
バイアスを源7″から各電極5′直下のC−v%性に対
して最適なバイアス電圧が印加される。相互作用領域で
処理さハた信号は分割されたゲート電極5′直下の領域
における信号毎にそのゲート電極で加え合、 さハ、直
流電圧を阻止するコンデンサ8゛を介して出力される。
FIG. 1 is a top view of the SAW device according to the present invention.
Reference numbers common to the figures indicate the same parts as in FIG. 4, and I is divided into multiple parts according to the invention. As seen in FIG. 1, in the SAW device according to the present invention, the output gate! The other 5' is both 14
Signal input transducer 4a provided nearby
It is divided into a plurality of parts in the direction connecting 4-by-y with the gate electrode 5', and can be adjusted independently for each part.The same number of DC biases as the gate electrodes 5' are applied from the source 7'' to the C-v% characteristics directly under each electrode 5'. The optimum bias voltage is applied to the interaction region.The signals processed in the interaction region are summed at each gate electrode for each signal in the region directly below the divided gate electrode 5'. It is output via 8゛.

本発明はモノリシック型のSAWコンボルバあるいはコ
リレータに関するものであり、牛導体基板1と圧を膜3
との層状構造素子を前提としている。ここで素子の動作
効率あるいは温度特性、またICとの一体化等を考慮す
る場合、構造としてはZnO/ 5i02 / Siま
たはZnO/ 5iOz/Si / AA203あるい
はA!N / SiまたはA!N/Si/Aノ203が
有利である。ここで、AJzOaはサファイアの単結晶
、Siはシリコンj!!結晶を表わし、ZnOおよびA
7Nが圧電膜である。
The present invention relates to a monolithic type SAW convolver or correlator, in which a conductive substrate 1 and a pressure membrane 3 are connected.
This assumes a layered structure element with When considering the operating efficiency or temperature characteristics of the element, integration with IC, etc., the structure should be ZnO/5i02/Si or ZnO/5iOz/Si/AA203 or A! N/Si or A! N/Si/A-203 is advantageous. Here, AJzOa is a single crystal of sapphire, and Si is silicon j! ! represents a crystal, ZnO and A
7N is a piezoelectric film.

第2図は本発明の曲の一つの実施の態様にょるSAW装
置の上面図で、この実施の鵬様忙おいては、出力用ケー
ト電極5′、直流バイアス電源7′、および直流阻止用
コンデンサ8だけではなく、整合回路9 clおよび出
力用外部負荷抵抗11′もまた出力用ゲート電極5′に
対応して分割されている。この実施め懺様によれは、出
力は各ゲート電&5゛毎に独又に取り出されることがで
きる。
FIG. 2 is a top view of a SAW device according to one embodiment of the present invention. Not only the capacitor 8, but also the matching circuit 9cl and the output external load resistor 11' are divided corresponding to the output gate electrode 5'. With this implementation, the output can be taken independently for each gate voltage.

〔光間の効果〕[Effect between lights]

以上説明した通り、本発明によれば、モノリシック型S
AWコンボルバまたはコリレータにおいて、出力用ゲー
ト電極が複数個に分割されているから、分割されたグー
)!極の各々を最小の単位領域として独立に印加バイア
スを調整することができ、したがって素子の非線形相互
作用領域におけるC−V%性の分布に対し、前記単位領
域ごとにその領域での最適バイアスを選択し、印加する
ことができるので、全体的な素子の効率を同上させるこ
とができる。
As explained above, according to the present invention, the monolithic type S
In an AW convolver or correlator, the output gate electrode is divided into multiple parts, so the divided goo)! The applied bias can be adjusted independently for each pole as the smallest unit area. Therefore, for the distribution of C-V% in the nonlinear interaction region of the device, the optimum bias in that region can be adjusted for each unit region. Since it can be selectively applied, the overall device efficiency can be increased as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の二つの異なった実施の態
様によるSAW裂置装上面図およびその周辺回路の図式
図、第3図は従来のSAW装置の断面図、第4図は従来
のSAW装置の上面図およびその周辺回路の図式図であ
る。 l・−・千導体基板、2・・・圧電膜、3・・−絶R膜
、4a、4b・・・信号入力用トランスデユーサ、5.
5′・・・出力用ゲート電極、6・・・裏面電極、7.
7′・・・直流バイアス電源、8.8′・・・直流阻止
用コンデンサ、9 a+  9 b、  9 c、  
9 c−整合回路、10a、10b・・・信号源、11
.11・・・信号出力用外部負荷抵抗。
1 and 2 are top views of SAW tearing apparatuses according to two different embodiments of the present invention and schematic diagrams of their peripheral circuits, FIG. 3 is a sectional view of a conventional SAW apparatus, and FIG. 4 is a conventional FIG. 2 is a top view of the SAW device and a schematic diagram of its peripheral circuit. 1... Thousand conductor substrate, 2... Piezoelectric film, 3... - Absent R film, 4a, 4b... Transducer for signal input, 5.
5'... Output gate electrode, 6... Back electrode, 7.
7'...DC bias power supply, 8.8'...DC blocking capacitor, 9 a+ 9 b, 9 c,
9 c-matching circuit, 10a, 10b...signal source, 11
.. 11...External load resistance for signal output.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板と、その一主面上に設けられた圧電膜
と、さらにその表面上の両端近傍に設けられた信号入力
用トランスデューサと、上記表面上の上記信号入力用ト
ランスデューサの間に挿まれた領域に上記信号入力用ト
ランスデューサを結ぶ方向に並べられた複数個の出力用
ゲート電極と、上記複数個の出力用ゲート電極の各々に
接続され、独立して調整することができる複数個の直流
バイアス電源とを含むことを特徴とする表面弾性波装置
(1) A semiconductor substrate, a piezoelectric film provided on one main surface thereof, signal input transducers provided near both ends of the surface, and the signal input transducers on the surface. a plurality of output gate electrodes arranged in a direction connecting the signal input transducer in the area where the input signal is input; and a plurality of output gate electrodes that are connected to each of the plurality of output gate electrodes and can be adjusted independently. A surface acoustic wave device comprising a DC bias power supply.
(2)上記半導体基板がシリコン単結晶またはサファイ
ア単結晶の一主面上に形成されたシリコン単結晶であり
、上記圧電膜が上記シリコン単結晶表面に形成された二
酸化シリコン絶縁層の上に形成された酸化亜鉛膜である
ことを特徴とする特許請求の範囲第1項記載の表面弾性
波装置。
(2) The semiconductor substrate is a silicon single crystal formed on one main surface of a silicon single crystal or a sapphire single crystal, and the piezoelectric film is formed on a silicon dioxide insulating layer formed on the silicon single crystal surface. 2. The surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is a zinc oxide film.
(3)上記半導体基板がシリコン単結晶またはサファイ
ア単結晶の一主面上に形成されたシリコン単結晶であり
、上記圧電膜が上記シリコン単結晶表面に形成された窒
化アルミニウム膜であることを特徴とする特許請求の範
囲第1項記載の表面弾性波装置。
(3) The semiconductor substrate is a silicon single crystal formed on one principal surface of a silicon single crystal or a sapphire single crystal, and the piezoelectric film is an aluminum nitride film formed on the silicon single crystal surface. A surface acoustic wave device according to claim 1.
JP19898584A 1984-09-21 1984-09-21 Surface acoustic wave device Granted JPS6177413A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP19898584A JPS6177413A (en) 1984-09-21 1984-09-21 Surface acoustic wave device
GB8523150A GB2166616B (en) 1984-09-21 1985-09-19 Surface acoustic wave device
SE8504350A SE462132B (en) 1984-09-21 1985-09-20 Acoustic Surface Device
FR858514000A FR2570902B1 (en) 1984-09-21 1985-09-20 SURFACE ACOUSTIC WAVE DEVICE
DE19853533611 DE3533611A1 (en) 1984-09-21 1985-09-20 ACOUSTIC SURFACE WAVE DEVICE
US07/099,688 US4745378A (en) 1984-09-21 1987-09-18 Surface acoustic wave device
GB8822450A GB2208769B (en) 1984-09-21 1988-09-23 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19898584A JPS6177413A (en) 1984-09-21 1984-09-21 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS6177413A true JPS6177413A (en) 1986-04-21
JPH0337766B2 JPH0337766B2 (en) 1991-06-06

Family

ID=16400193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19898584A Granted JPS6177413A (en) 1984-09-21 1984-09-21 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPS6177413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199910A (en) * 1989-01-27 1990-08-08 Clarion Co Ltd Surface acoustic wave device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879779A (en) * 1981-11-06 1983-05-13 Clarion Co Ltd Elastic surface-wave convolver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879779A (en) * 1981-11-06 1983-05-13 Clarion Co Ltd Elastic surface-wave convolver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199910A (en) * 1989-01-27 1990-08-08 Clarion Co Ltd Surface acoustic wave device

Also Published As

Publication number Publication date
JPH0337766B2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
US4745378A (en) Surface acoustic wave device
KR960019825A (en) Method of manufacturing thin film piezoelectric element and thin film piezoelectric element
JPS6194409A (en) Element split structure of surface acoustic wave element
JPS6194411A (en) Variable band surface acoustic wave filter
US4328473A (en) Isolated gate, programmable internal mixing saw signal processor
JPS6177413A (en) Surface acoustic wave device
US6342753B1 (en) Piezoelectric transformer and operating method
JPS5835404B2 (en) Surface acoustic wave parametric device
US4575696A (en) Method for using interdigital surface wave transducer to generate unidirectionally propagating surface wave
US3938062A (en) End fire surface wave piezoelectric transducer
CA1212451A (en) Ceramic microphone
JPS5879779A (en) Elastic surface-wave convolver
JPH033414B2 (en)
JPS6177415A (en) Surface acoustic wave device
JPH0621755A (en) Surface acoustic wave device
JPS58221512A (en) Matching device
JPH0239573A (en) Gate viahole type semiconductor element
JP3038819B2 (en) High power GaAs semiconductor device
US6465850B1 (en) Semiconductor device
JPS6377177A (en) Optimum bias circuit of surface acoustic wave device
JPH06224227A (en) Microwave semiconductor device
JPH025465A (en) Semiconductor device
JPH09162697A (en) Surface acoustic wave convolver
SU1034150A1 (en) Surface acoustic wave phase shifter
JPS61184853A (en) Semiconductor device