JPS6177380A - Garnet crystal for wavelength-variable laser - Google Patents

Garnet crystal for wavelength-variable laser

Info

Publication number
JPS6177380A
JPS6177380A JP19832484A JP19832484A JPS6177380A JP S6177380 A JPS6177380 A JP S6177380A JP 19832484 A JP19832484 A JP 19832484A JP 19832484 A JP19832484 A JP 19832484A JP S6177380 A JPS6177380 A JP S6177380A
Authority
JP
Japan
Prior art keywords
crystal
wavelength
indicates
compositions
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19832484A
Other languages
Japanese (ja)
Other versions
JPS6367347B2 (en
Inventor
Shigeyuki Kimura
木村 茂行
Shiyouken Sai
崔 鍾健
Yasuto Miyazawa
宮沢 靖人
Masami Sekida
正實 関田
Fujio Minami
不二雄 南
Kenji Kitamura
健二 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP19832484A priority Critical patent/JPS6177380A/en
Publication of JPS6177380A publication Critical patent/JPS6177380A/en
Publication of JPS6367347B2 publication Critical patent/JPS6367347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials

Abstract

PURPOSE:To make relatively inexpensive by a method wherein Sc ions are partly replaced by combining Li<+> or M<2+> with a single or two or more kinds of metallic ions selected out of Ti<4+>, Zr<4+>, Hf<4+>, Nb<5+>, and Ta<5+>, so that the electric value in the crystal can be kept neutral, in the crystal of Cd3Sc2Ga3O12 used for wavelength-variable laser medium crystal whose active ion is Cr3+. CONSTITUTION:The composition after replacement is expressed in Gd3 Sc2-xAxGa3O12 (X<2). A is 1/2(B<4+>Mg<2+>)(B indicates Zr<4+>, Ti<4+> or Hf<4+>), which shows that 1mol of Sc<+3> is replaced with 1/2mol of B<4+> and 1/2mol of Mg<2+>, and that the molar number is balanced before and after replacement. Otherwise, it can be expressed in 1/2(C<5+> Li)(C indicates Nb<5+> or Ta<5+>), 1/3(B<4+>+B'<4+>+Li<+>), or 1/3(C'<5+>+2Mg<5+>)(B' indicates an anion as B, and C' a pentavalent anion as C). Any method of growing a homogenius crystal can be used for the method of growing a single crystal having such a composition.

Description

【発明の詳細な説明】 産業上の利用分骨 本発明は波長可変レーザー用ガーネット結晶に関する。[Detailed description of the invention] Industrial use bone The present invention relates to a garnet crystal for wavelength tunable lasers.

従来技術 従来、Cr3+を活性イオンとする波長可変レーザー用
のガーネット結晶としては、数種のものが知られている
が、なかでもGd、5O2Ga50 、2は高いて高価
で、且つ資源的にも限られているスカンジウム(Sc)
を含んでいる。そのため、結晶が高価になると言う欠点
を有している。
Prior Art Several types of garnet crystals for wavelength tunable lasers using Cr3+ as active ions have been known, but among them, Gd and 5O2Ga50,2 are expensive and have limited resources. scandium (Sc)
Contains. Therefore, it has the disadvantage that the crystal is expensive.

発明の目的 本発明はGd5Sc2Ga、 0.2の結晶における構
成成分であるScの1部を置換元素の導入によシScの
使用量を少くシ、比較的低置な波長可変レーザー用ガー
ネット結晶を提供せんとするにある。
Purpose of the Invention The present invention provides a garnet crystal for wavelength tunable lasers that uses a small amount of Sc and is relatively low-mounted by introducing an element to replace a part of Sc, which is a constituent component of the Gd5Sc2Ga, 0.2 crystal. It is not intended to be provided.

発明の構成 本発明者は前記目的を達成すべく研究の結果、Scは3
価の陽イオンであるから、置換金属イオンはScの価数
を過不足なく捕うものでなければならないとの考察から
置換可能々陽イオンについて検討を加えた。
Structure of the Invention As a result of research to achieve the above object, the inventor found that Sc is 3.
Since it is a valent cation, the substitutable metal ion must be one that captures the valence of Sc in just the right amount, so we investigated the substitutable cation.

の5価金属との組合せによJ>、Scイオンの格舌:点
、を過不足なく埋め、かつ価数を過不足なく補う;・と
゛よいこと二また、完全にScが存在しない組成ま゛で
置換できないことが分った。この知見に基いて本発明を
完成した。
In combination with a pentavalent metal, J>, the valence of Sc ions can be filled in just the right amount, and the valence can be compensated in just the right amount. It turns out that it cannot be replaced with . The present invention was completed based on this knowledge.

本発明の要旨は、 Or’+を活性イオンとする波長可変レーザー用媒質結
晶として用いるGd5Sc2Ga30 、2の結晶にお
いて、Scイオンの1部を、Li+  またはMg  
とTl  。
The gist of the present invention is that in a crystal of Gd5Sc2Ga30,2 used as a medium crystal for a wavelength tunable laser having Or'+ as an active ion, part of the Sc ions are replaced with Li+ or Mg.
and Tl.

Zr4+、 Hf” 、 Nb  及びTa  から選
ばれた単独または2種以上の金属イオンとの組合せによ
シ、結晶内の電価が中和に保たれるように置換したこと
を特徴とする波長可変レーザー用ガーネット結晶にあ6
・                1ゾ・−5:・本
発明において言う、Cr3+を活性イオン4す゛トル領
域での螢光が可能になるような電子構造がGa3O12
はこのような固体媒質であシ、結晶構造はガーネット型
であることは知られている。
A wavelength tunable device characterized in that it is substituted with metal ions selected from Zr4+, Hf'', Nb and Ta, either alone or in combination with two or more metal ions, so that the electric charge within the crystal is kept neutralized. Garnet crystal for laser 6
・1zo・-5:・In the present invention, Ga3O12 has an electronic structure that enables Cr3+ to fluoresce in the active ion 4-ton region.
is such a solid medium, and it is known that its crystal structure is garnet type.

本発明における置換後の組成は、 Gd、5c2−XAxGaS012(ただし、x(2で
ある)で示される。
The composition after substitution in the present invention is represented by Gd, 5c2-XAxGaS012 (x (2)).

Aは′−(B”+Mg  )(ただし、BはZr  。A is '-(B''+Mg) (However, B is Zr.

Ti4+またはI(f  を表わす)、これは1モルの
+31 Sc  を−モルのB4+と1モルのMg  で置換し
、モル数のバランスが置換前後で保たれることを示で表
わすことができる。すなわち、価数を過不足なく補うこ
とが必要である。
Ti4+ or I (denoting f), which can be expressed by replacing 1 mole of +31 Sc with - mole of B4+ and 1 mole of Mg, with the balance of moles being maintained before and after the substitution. In other words, it is necessary to compensate for the valence in just the right amount.

このような組成を有する単結晶を育成する方法は、均質
外結晶を育成する方法であればその方法を問わ々い。好
ましくは融液からの育成技術9例この方法の適用に際し
ては、置換組成のガーネット結晶が一致溶融(結晶と融
液とが同じ組成になる)することが望ましい。
Any method can be used to grow a single crystal having such a composition as long as it grows a homogeneous outer crystal. Preferably, 9 Examples of Growth Techniques from Melt When this method is applied, it is desirable that garnet crystals of substituted compositions are melted in unison (the crystal and the melt have the same composition).

本発明における結晶組成を利用して単結晶を育成するに
あたシ、必要に応じてQa 、 Sr l Ea+Na
+K + AJ 、 Fe 、 V 、 In + G
o 、 Ni + (ju 、 Zn、SiまたはGe
の微量成分を配合することによって、単結晶の特性を向
上させることができる。
When growing a single crystal using the crystal composition in the present invention, Qa, Sr l Ea + Na as necessary.
+K + AJ, Fe, V, In + G
o, Ni + (ju, Zn, Si or Ge
The properties of the single crystal can be improved by blending the trace components.

発明の効果 本発明のガーネット結晶は従来波長可変レーザー結晶と
して利用が進められているGd、5c2Ga3O12結
晶と比べて、格段に安価で、且つ性能的に劣らぬ結晶で
あわ、その結晶の用途であるCr3+の波長可変レーザ
ーの媒質結晶としての機能を代替し得られる優れた効果
を有する。
Effects of the Invention The garnet crystal of the present invention is much cheaper than the Gd, 5c2Ga3O12 crystal, which has been used as a conventional wavelength tunable laser crystal, and is a crystal with no inferior performance. It has an excellent effect of replacing the function as a medium crystal of a Cr3+ wavelength tunable laser.

実施例 実施例1゜ Gd3Sc2−xGd35C2−xzrlx、2におい
て、X値が最い無色透明の単結晶を得た。結晶構造はX
線によシガーネット型であるととが確認された。
Examples In Example 1゜Gd3Sc2-xGd35C2-xzrlx,2, a colorless and transparent single crystal with the highest X value was obtained. The crystal structure is
It was confirmed that it was a cigarette lighter type.

この組成の試料に0.1原子%の(3r  を導入し、
集光式フローティングゾーン法によシ淡緑色透明の単結
晶を得た。得られた結晶に水銀ランプの光を照射したと
ころ、波長700〜900 nmの範囲にわたる強い螢
光が見られた。これによ!11 Gd、5c2Ga3O
12と同様に、波長可変レーザー用結晶として利用され
ることが明らかと力った。
Introducing 0.1 atomic % (3r) into a sample with this composition,
A pale green transparent single crystal was obtained using the condensing floating zone method. When the obtained crystal was irradiated with light from a mercury lamp, strong fluorescence over a wavelength range of 700 to 900 nm was observed. This is it! 11 Gd, 5c2Ga3O
Similarly to No. 12, it is clear that it can be used as a crystal for wavelength tunable lasers.

実施例2゜ GdSSc2−xTi1xMg1xGa3O12におい
て、X値が最大1.90までの組成について、以下実施
例1と同様に単結晶を作夛、これらの組成の試料に帆1
原子%のOr’+を導入し、単結晶を作った。その結果
、実施例1と同様に強い螢光が見られた。
Example 2 In GdSSc2-xTi1xMg1xGa3O12, single crystals were prepared in the same manner as in Example 1 for compositions with X values up to 1.90, and samples with these compositions were
Atom % of Or'+ was introduced to produce a single crystal. As a result, similar to Example 1, strong fluorescence was observed.

実施例3゜ Gd5Sc2−xGd35c2−xHfix、2におい
て、X値が最大1.85までの組成について、以下実施
例1と同子%のOr  を導入し、単結晶を作った。そ
の結果、実施例1と同様に強い螢光が見られた。
Example 3 In Gd5Sc2-xGd35c2-xHfix,2, for a composition with an X value of up to 1.85, the same percentage of Or as in Example 1 was introduced to produce a single crystal. As a result, similar to Example 1, strong fluorescence was observed.

実施例4゜ Cd、5c2−xNbiXLi叛Ga30.2において
、X値が最大1.70までの組成について、以下実施例
1と同様に単結晶を作り、これらの組成の試料に061
原子%のOr  を導入し、単結晶を作った。その結果
、実施例1と同様に強い螢光が見られた。
Example 4 In Cd, 5c2-xNbiXLi-Ga30.2, single crystals were prepared in the same manner as in Example 1 for compositions with X values up to 1.70, and samples of these compositions were treated with 061
A single crystal was produced by introducing atomic % of Or. As a result, similar to Example 1, strong fluorescence was observed.

実施例5゜ Gd3Sc2−xTa1xLi1xGa50,2におい
て、X値が最大1.70までの組成について、以下実施
例1と同様に単結晶を作り、これらの組成の試料に0.
1原子%のOr  を導入し、単結晶を作った。その結
果、実施例1と同様に強い螢光が見られた。
Example 5 In Gd3Sc2-xTa1xLi1xGa50,2, single crystals were prepared in the same manner as in Example 1 for compositions with X values up to 1.70, and samples of these compositions were treated with 0.
A single crystal was produced by introducing 1 atomic % of Or. As a result, similar to Example 1, strong fluorescence was observed.

実施例6゜ Cd3Sc2−xZr2xLi叛Ga3O12において
、X値が最大1.60までの組成について、以下実施例
1と同様に単結晶を作り、これらの組成の試料に0.1
原子%のcr  を導入し、単結晶を作った。その結、
悉3実施例1と同様に強い螢光が見られた。
Example 6 In Cd3Sc2-xZr2xLi-Ga3O12, single crystals were made in the same manner as in Example 1 for compositions with X values up to 1.60, and samples with these compositions were
A single crystal was produced by introducing atomic percent of cr. As a result,
As in Example 1, strong fluorescence was observed.

実施例7゜ Gd5Sc2−xTiexLiiXGa、 o、 2に
おいて、X値が最大1.65までの組成について、以下
実施例1と同様に単結晶を作り、これらの組成の試料に
帆1原子%のOr  を導入し、単結晶を作った。その
結果、実施例1と同様に強い螢光が見られた。
Example 7 In Gd5Sc2-xTiexLii introduced and produced single crystals. As a result, similar to Example 1, strong fluorescence was observed.

実施例8゜ Gd5S02−xHf2xLi1xGa3012におい
て、X値が最大1.55までの組成について、以下実施
例1と同様に単結晶を作シ、これらの組成の試料に0.
1原子%のOr  を導入し、単結晶を作った。その結
果、実施例1と同様に強い螢光が見られた。
Example 8 In Gd5S02-xHf2xLi1xGa3012, single crystals were produced in the same manner as in Example 1 for compositions with X values up to 1.55.
A single crystal was produced by introducing 1 atomic % of Or. As a result, similar to Example 1, strong fluorescence was observed.

実施例9゜ Gd5Sc2−xNbトMgりxGa3o12において
、X値が最大1.50までの組成について、以下実施例
1と同様に単結晶を作υ、これらの組成の試料に帆1原
子%のOr  を導入し、単結晶を作った。その結果、
実施例1と同様に強い螢光が見られた。
Example 9 In Gd5Sc2-xNb, MgxGa3o12, single crystals were produced in the same manner as in Example 1 for compositions with an was introduced to produce single crystals. the result,
As in Example 1, strong fluorescence was observed.

実施例10゜ 様に単結晶を作シ、これらの組成の試料に0.1原子%
のOr3+を導入し、単結晶を作った。その結i′!m
FJ”1″′″:*1.−=**″゛1“″7°i−″
Single crystals were prepared in the same manner as in Example 10, and 0.1 atom% was added to samples with these compositions.
Or3+ was introduced and a single crystal was made. That conclusion i'! m
FJ"1"'": *1.-=**"゛1""7°i-"
.

実施例11゜ 例1と同様に単結晶を作シ、これらの組成の試料に0.
1原子%のOr  を導入し、単結晶を作った。
Example 11 Single crystals were grown in the same manner as in Example 1, and samples with these compositions were given 0.
A single crystal was produced by introducing 1 atomic % of Or.

例1と同様に単結晶を作り、これらの組成の試料に0.
1原子%のJ:3r3+を導入し、単結晶を作った。
Single crystals were made in the same manner as in Example 1, and samples with these compositions were given 0.
1 atomic % of J:3r3+ was introduced to produce a single crystal.

その結果、実施例1と同゛様に強い螢光が見られた。As a result, similar to Example 1, strong fluorescence was observed.

特許出願人  科学技術庁無機材質研究所長ハ・ :)
       l− 目    q、、;
Patent applicant: Director of the Institute of Inorganic Materials, Science and Technology Agency, Ha:)
l-th q,,;

Claims (1)

【特許請求の範囲】[Claims] 1)Cr^3^+を活性イオンとする波長可変レーザー
用媒質結晶として用いるGd_3Sc_2Ga_3O_
1_2の結晶において、Scイオンの1部を、Li^+
またはMg^2^+とTi^4^+、Zr^4^+、H
f^4^+、Nb^5^+及びTa^5^+から選ばれ
た単独または2種以上の金属イオンとの組合せにより、
結晶内の電価が中和に保たれるように置換したことを特
徴とする波長可変レーザー用ガーネット結晶。
1) Gd_3Sc_2Ga_3O_ used as a medium crystal for wavelength tunable laser with Cr^3^+ as active ion
In the crystal of 1_2, part of the Sc ions are replaced by Li^+
Or Mg^2^+ and Ti^4^+, Zr^4^+, H
By alone or in combination with two or more metal ions selected from f^4^+, Nb^5^+ and Ta^5^+,
A garnet crystal for wavelength tunable lasers characterized by substitution so that the electric charge within the crystal is kept neutral.
JP19832484A 1984-09-21 1984-09-21 Garnet crystal for wavelength-variable laser Granted JPS6177380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19832484A JPS6177380A (en) 1984-09-21 1984-09-21 Garnet crystal for wavelength-variable laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19832484A JPS6177380A (en) 1984-09-21 1984-09-21 Garnet crystal for wavelength-variable laser

Publications (2)

Publication Number Publication Date
JPS6177380A true JPS6177380A (en) 1986-04-19
JPS6367347B2 JPS6367347B2 (en) 1988-12-26

Family

ID=16389212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19832484A Granted JPS6177380A (en) 1984-09-21 1984-09-21 Garnet crystal for wavelength-variable laser

Country Status (1)

Country Link
JP (1) JPS6177380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501854A (en) * 1985-12-24 1988-07-28 トレスト“ユジボドプロボド” Batch type filtration equipment for fluids
JPH01500348A (en) * 1986-04-30 1989-02-09 アメリカン テレフォン アンド テレグラフ カムパニー Coincidentally molten complex oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63501854A (en) * 1985-12-24 1988-07-28 トレスト“ユジボドプロボド” Batch type filtration equipment for fluids
JPH01500348A (en) * 1986-04-30 1989-02-09 アメリカン テレフォン アンド テレグラフ カムパニー Coincidentally molten complex oxide

Also Published As

Publication number Publication date
JPS6367347B2 (en) 1988-12-26

Similar Documents

Publication Publication Date Title
TWI240708B (en) Glass ceramics based on ZnO
ATE343659T1 (en) HARD MATERIAL LAYER FOR CUTTING TOOLS
Zhou Defect fluorite-related superstructures in the Bi2O3 V2O5 system
JPH0513916B2 (en)
JPWO2011152333A1 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
CN1038352C (en) Non-linear optical crystal strontium boroberyllate
JPS6177380A (en) Garnet crystal for wavelength-variable laser
Oeder et al. Growth and properties of PbWO4 and Pb (WO4) 1− x (MoO4) x mixed crystals
JPH05504328A (en) Doped crystalline compositions and methods for producing them
JP4942029B2 (en) Magnetic garnet single crystal and method for producing the same
JP3490143B2 (en) Oxide garnet single crystal
JPH11278980A (en) Growth of single crystal
JP5292543B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
Haberey et al. Flux growth of SrGa12O19 single crystals
WO2021215047A1 (en) Bismuth-substituted rare earth iron garnet single crystal, faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
JP2816370B2 (en) Magneto-optical material
US11898267B2 (en) Nonlinear optical crystal fluorine boron beryllium salt and its preparation process and use
JP2651118B2 (en) Method for producing lithium niobate single crystal
JP2715053B2 (en) Magneto-optical element material
JP5697209B2 (en) Paramagnetic garnet single crystal and method for producing the same
JP2010180071A (en) Magnetic garnet single crystal
JP2021172539A (en) Bismuth-substituted rare earth iron garnet single crystal, faraday rotator, optical isolator, and method for producing bismuth-substituted rare earth iron garnet single crystal
Jolibois et al. The low-temperature forms of some M1/3MIII (XO4) 3 compounds: structure of triammonium indium (III) trisulfate
JP4427217B2 (en) Barium fluoride single crystal for optical member for vacuum ultraviolet and method for producing the same
SU1423537A1 (en) Binder and method of production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term