JPS6176939A - Luminescence measuring device - Google Patents

Luminescence measuring device

Info

Publication number
JPS6176939A
JPS6176939A JP19676384A JP19676384A JPS6176939A JP S6176939 A JPS6176939 A JP S6176939A JP 19676384 A JP19676384 A JP 19676384A JP 19676384 A JP19676384 A JP 19676384A JP S6176939 A JPS6176939 A JP S6176939A
Authority
JP
Japan
Prior art keywords
light emission
polarizer
laser
electromagnetic wave
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19676384A
Other languages
Japanese (ja)
Inventor
Isao Obe
功 大部
Satoru Todoroki
轟 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19676384A priority Critical patent/JPS6176939A/en
Publication of JPS6176939A publication Critical patent/JPS6176939A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To improve the sensitivity by setting an energy distribution of an electron in a substance, to a non-balanced state by a perturbation of an electromagnetic wave, etc., irradiating a light of a wavelength corresponding to the energy between two energy levels to its substance, and measuring a luminescence by an induction light emittion. CONSTITUTION:A laser light is irradiated to a sample 3 by a continuous oscillating laser 1, and simultaneously, a laser light used for an induction light emission is irradiated to the sample 3 by changing continuously a laser oscillation wavelength by a wavelength variable continuous oscillation pigment laser 10, and an induction light emission from the sample 3 is caught by a detector 6. In this case, an induction light emission use laser light which has passed through a polarizer 11 becomes a linearly polarixed light by a plane of polarization prescribed by the polarizer 11, but the induction light emission component is not polarized. A plane of polarization of a polarizer 12 is vertical to the polarizer 11, a therefore, the induction light emission use laser light is cut off, when it passes through the polarizer 12, but a part of the induction light emission passes through and goes into the detector 6, and the induction light emission use laser light and the induction light emission are separated. Also, the induction light emission component is brought to an amplitude modulation by a modulator 13 which is driven 14, and an output signal of the detector 6 of the same frequency as said modulator is detected 8 and recorded 9.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ルミネッセンス測定装置、特に高感度の測定
を行うルミネッセンス測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a luminescence measurement device, and particularly to a luminescence measurement device that performs highly sensitive measurements.

〔発明の背景〕[Background of the invention]

先行する技術として、r Ilz Gat−x/Inp
の極低温における7オトルミネ センス」(飯島真理。
As a prior art, r Ilz Gat-x/Inp
7 Otoluminescence at Extremely Low Temperatures” (Mari Iijima).

東京学芸大学紀要、6部門34 (1982) P、3
3〜38)がある。ルミネッセンスとは、物質内の電子
や正孔が高いエネルギー状態から低いエネルギー状態へ
遷移するとき放出される光であって、螢光や燐光なども
これに含まれる。ルミネッセンスを生じさせるためには
、先ずその物質に外部よシエネルギーを与えることが必
要であり、このエネルギーが電界エネルギーの時には電
界発光(ニレクロルミネッセンス)と呼ばれ、光エネル
ギーの時にはフォトルミネッセンスと呼ばれる。以下で
はフォトルミネッセンスの例を述べる。第1図はその概
要を示す。このルミネッセンス測定装置は、連続発振レ
ーザlにより試料3にレーザ光を照射し、試料3におけ
る電子のエネルギー分布が非平衡状態から平衡状態に戻
る時、自然発光過程によシ光を発生させる。試料3は極
低温下の環境下におく。
Tokyo Gakugei University Bulletin, 6 Division 34 (1982) P, 3
3 to 38). Luminescence is light emitted when electrons or holes in a substance transition from a high energy state to a low energy state, and includes fluorescence and phosphorescence. In order to produce luminescence, it is first necessary to apply external energy to the substance. When this energy is electric field energy, it is called electroluminescence, and when it is light energy, it is called photoluminescence. . An example of photoluminescence will be described below. Figure 1 shows its outline. This luminescence measuring device irradiates a sample 3 with laser light using a continuous wave laser 1, and when the energy distribution of electrons in the sample 3 returns from a non-equilibrium state to an equilibrium state, light is generated by a spontaneous luminescence process. Sample 3 is placed in an extremely low temperature environment.

この発光をレンズ4で集合したモノクロメータ5によシ
分光して検出器6で検出する。連続発振レーザ1による
レーザ光は変調器駆動装置7で駆動される変調器2によ
シ振幅変調されるため、検出器6の出力も変調器2と同
じ周波数で変調され、これをロックインアンプ8で位相
敏感検波し、記鎌計9に出力する。
This emitted light is separated into spectra by a monochromator 5 collected by a lens 4 and detected by a detector 6. Since the laser beam from the continuous wave laser 1 is amplitude-modulated by the modulator 2 driven by the modulator drive device 7, the output of the detector 6 is also modulated at the same frequency as the modulator 2, and this is modulated by the lock-in amplifier. 8 performs phase sensitive detection and outputs it to the recorder 9.

この測定方法では、連続発振レーザ1の光出力強度を上
げれば発光強度も強くなるが、連続発振レーザ1の光出
力強度の上限から発光強度が制限される。また、連続発
振レーザ1の光出力強度を上げすぎると、試料3が破壊
されてしまう懸念がある。従って、上記従来技術では、
Sl中のPの場合、10′(α−1)が検出限界であり
た。
In this measurement method, if the optical output intensity of the continuous wave laser 1 is increased, the emission intensity also increases, but the emission intensity is limited by the upper limit of the optical output intensity of the continuous wave laser 1. Furthermore, if the optical output intensity of the continuous wave laser 1 is increased too much, there is a concern that the sample 3 may be destroyed. Therefore, in the above conventional technology,
For P in Sl, 10'(α-1) was the detection limit.

〔発明の目的〕[Purpose of the invention]

本発明は、高感度なルミネッセンスの測定を可能とする
ルミネッセンス測定装置を提供することを目的とする。
An object of the present invention is to provide a luminescence measuring device that enables highly sensitive luminescence measurement.

〔発明の概要〕[Summary of the invention]

本発明は、電磁波、荷電粒子などの摂動によシ物質内電
子のエネルギー分布を非平衡状態にし、その物質にある
2つのエネルギー準位間に相当する波長の光を当て、誘
導発光によシルミネツセンスを測定するようにした。
The present invention uses perturbations such as electromagnetic waves and charged particles to bring the energy distribution of electrons in a material into a non-equilibrium state, and then irradiates light with a wavelength corresponding to the two energy levels in the material to produce luminescence through stimulated luminescence. I decided to measure it.

先ず、本発明の詳細な説明する。First, the present invention will be explained in detail.

簡単のため、量子化された2つのエネルギ一単位だけを
考える。第2図のそのエネルギー準位を示す。第2図で
低いエネルギー準位をNL +高いエネルギー準位をN
hとし、両者の差をhν。とする。
For simplicity, we consider only two quantized units of energy. Its energy levels are shown in FIG. In Figure 2, the lower energy level is NL + the higher energy level is N
h and the difference between the two is hν. shall be.

hはブランク定数である。h is a blank constant.

この時、発光強度■。。は、 1、rn= Nh(A+B e(ν。)〕・・・・・・
・・・・・・ (1)となる。ここで、A、B、e(ν
。)は、各々、自然放出係数、誘導放出係数、外部から
加えられた振動数ν。の電磁波のエネルギー密度である
。A、  Bは次式となる。
At this time, the luminous intensity is ■. . is, 1, rn=Nh(A+B e(ν.)]...
...... (1). Here, A, B, e(ν
. ) are the spontaneous emission coefficient, stimulated emission coefficient, and externally applied frequency ν, respectively. is the energy density of electromagnetic waves. A and B are as follows.

A =16 π” ’、’ A” / 3 ’o h 
a ”  ・・・”””””  (2)B=2π2μ2
/3ε。h! ・・・・・・・・・・・・・・・・・・
・・・ (3)ここで、go、μ、Cは各々、誘電率、
遷移モーメント、光速である。従って、自然発光強度I
fips誘導発光強度11nは次式となる。
A = 16 π” ', 'A' / 3 'oh
a ” ...””””” (2) B=2π2μ2
/3ε. h!・・・・・・・・・・・・・・・・・・
... (3) Here, go, μ, and C are the permittivity, respectively,
The transition moment is the speed of light. Therefore, the spontaneous luminescence intensity I
The fips stimulated luminescence intensity 11n is expressed by the following formula.

I、、 == NhA   ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(4)11n 
= NhB e(ν。)・・・・・・・・・・・・・・
・・・・・・・・・・・・・(5)誘導発光と自然発光
の比Rは、 R= Itn/Iよ =Joe(ν。)/8πh・・・・・・・・・・・・・
・・・・・・・・・・・(6)となる。ここで、λ。は
振動数ν。の電磁波の波長である。
I,, == NhA ・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(4)11n
= NhB e(ν.)・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・(5) The ratio R of stimulated luminescence and spontaneous luminescence is R= Itn/Iyo=Joe(ν.)/8πh・・・・・・・・・・・・...
・・・・・・・・・・・・(6) Here, λ. is the frequency ν. is the wavelength of electromagnetic waves.

外部から加えられた電磁波の・ヤワーをW1断面積を1
、振動数νのエネルギー密度をe(りとすると、次式が
成立つ。
The W1 cross-sectional area of the electromagnetic wave applied from the outside is 1
, the energy density of the frequency ν is e(ri), then the following equation holds true.

0話6(すdνda=W    ・・・・・・・・・・
・・ (力外部から加えられた電磁波のエネルギー密度
分布を第3図のように仮定し、電磁波の強度は断面積S
内で均一とすると、(8)式が成立ち、これを(6)式
に代入すると、誘導発光と自然発光の比Rは、(9)式
のようになる。
Episode 0 6 (sudvda=W ・・・・・・・・・・・・
(Assuming the energy density distribution of electromagnetic waves applied from outside is as shown in Figure 3, the intensity of the electromagnetic waves is determined by the cross-sectional area S.
If it is assumed to be uniform within the range, Equation (8) is established, and when this is substituted into Equation (6), the ratio R of stimulated luminescence to spontaneous luminescence becomes as expressed in Equation (9).

e(ν。) = W/ e■・Δν  ・・・・・・・
・・・・・ (8)R=、qw/sπhemsΔV ・
・・・・・・・・・・・ (9)今、簡単のため、外部
から加えられた電磁波を直径dの円径ビームとすると、
次式となる。
e(ν.) = W/ e■・Δν ・・・・・・・・・
... (8) R=, qw/sπhemsΔV ・
・・・・・・・・・・・・ (9) For the sake of simplicity, let us assume that the electromagnetic wave applied from the outside is a circular beam with a diameter of d.
The following formula is obtained.

R=λ:W/2π”d”ha・Δν ・・・・・・・・
・ α〔本発明では、従来例の如き自然発光だけでなく
、誘導発光を検出することによシ、その比をとり、一般
的には(9)式で示す倍率、円径ビームでは(II弐に
示す倍率の感度の測定が可能となる。
R=λ:W/2π”d”ha・Δν ・・・・・・・・・
・ α [In the present invention, by detecting not only spontaneous luminescence as in the conventional example, but also stimulated luminescence, the ratio is taken, and in general, the magnification is expressed by equation (9), and in the case of a circular beam, (II It becomes possible to measure the sensitivity at the magnification shown in 2.

第4図には、W = 100 m v、 d =vmの
時のRの値を示す。ΔνをA?ラメータとした。Δν=
=IGHzの場合、2桁以上の感度の向上を達成できる
FIG. 4 shows the value of R when W = 100 mv and d = vm. Δν as A? It was made into a parameter. Δν=
= IGHz, an improvement in sensitivity of two orders of magnitude or more can be achieved.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明のルミネッセンス測定装置の実施例を示
す。本実施例では、波長可変連続発振色素レーザ10、
偏光子11.12を設けたこと、更に変調器13を設け
た点に特徴を持つ。
FIG. 5 shows an embodiment of the luminescence measuring device of the present invention. In this embodiment, a wavelength tunable continuous wave dye laser 10,
It is characterized by the provision of polarizers 11 and 12 and the provision of a modulator 13.

連続発振レーザ1によ)レーザ光を試料3に照射する。A continuous wave laser 1) irradiates the sample 3 with laser light.

これと同時に波長可変連続発振色素レーザ10によりレ
ーザ発振波長を連続的に変えながら誘導発光に用いるレ
ーザ光を試料3に照射し、試料3からの誘導発光を検出
器6で捕える。
At the same time, the sample 3 is irradiated with a laser beam used for stimulating light emission while continuously changing the laser oscillation wavelength by the wavelength tunable continuous wave dye laser 10, and the stimulated light emission from the sample 3 is captured by the detector 6.

この時、波長可変連続発振色素レーザ10のレーザ光と
これによる誘導発光とは、波長、位相、方向がそろって
検出器6に入る。このため、上記2成分の光を何らかの
方法で分離しなければならない。そこで、波長可変連続
発振色素レーザ10の光路内に偏光子11.12を置き
、その偏光面を互いに直角とする。
At this time, the laser light from the wavelength tunable continuous wave dye laser 10 and the stimulated light emission thereby enter the detector 6 with the same wavelength, phase, and direction. For this reason, the two components of light must be separated by some method. Therefore, polarizers 11 and 12 are placed in the optical path of the wavelength tunable continuous wave dye laser 10, and their polarization planes are set at right angles to each other.

偏光子11を通過した誘導発光用レーザ光は偏光子11
で規定される偏光面で直線偏光となるが、誘導発光成分
は偏光してい々い。偏光子12の偏光面は偏光子11と
直角であるため、偏光子12を通過すると誘導発光用レ
ーザ光は遮断されるが誘導発光の一部は通過し検出器6
に入シ、誘導発光用レーザ光と誘導発光は分離される。
The stimulated light emission laser beam that has passed through the polarizer 11
It becomes linearly polarized light with the polarization plane defined by , but the stimulated emission component is polarized. Since the polarization plane of the polarizer 12 is perpendicular to the polarizer 11, the stimulated emission laser beam is blocked when it passes through the polarizer 12, but a part of the stimulated emission passes and is detected by the detector 6.
At the beginning, the laser light for stimulating light emission and the stimulating light emission are separated.

さらに、誘導発光成分を変調器駆動装置14で駆動され
る変調器13で振幅変調し、それと同一周波数の検出器
6の出力信号をロックインアンプで位相敏感検波し、記
録計9に出力する。
Furthermore, the stimulated emission component is amplitude-modulated by a modulator 13 driven by a modulator drive device 14, and the output signal of the detector 6 having the same frequency is subjected to phase-sensitive detection by a lock-in amplifier and output to a recorder 9.

第6図は本発明のルミネッセンス測定装置の他の実施例
図を示す。本実施例では、波長可変連続発振画素レーザ
lO1変調器15.16、積分器18を設けた点に特徴
を持つ。先ず、連続発振レーザ1によシレーザ光を試料
3に照射する。これと同時に波長可変連続発振色素レー
ザ10によりレーザ発振波長を連続的に変えながら、誘
導発光に用いるレーザ光を試料3に照射し、試料3から
の誘導発光を検出器6で捕える。この時、波長可変連続
発振色素レーザlOのレーザ光とこれによる誘導発光と
は波長、位相、方向がそろって検出器6に入るため、上
記2成分の光を何らかの方法で分離しなければならない
。このため、連続発振レーザlの光路内に変調器15を
、波長可変連続発振色素レーザlOの光路内に変調器工
6を置き、各々同一周波数で変調する。
FIG. 6 shows another embodiment of the luminescence measuring device of the present invention. This embodiment is characterized by the provision of wavelength variable continuous wave pixel laser lO1 modulators 15 and 16 and an integrator 18. First, the continuous wave laser 1 irradiates the sample 3 with laser light. At the same time, the sample 3 is irradiated with a laser beam used for stimulating light emission while continuously changing the laser oscillation wavelength by the wavelength tunable continuous wave dye laser 10, and the stimulated light emission from the sample 3 is captured by the detector 6. At this time, since the laser light from the wavelength tunable continuous wave dye laser 10 and the stimulated light emission thereof enter the detector 6 with the same wavelength, phase, and direction, it is necessary to separate the two components of light by some method. For this purpose, a modulator 15 is placed in the optical path of the continuous wave laser 1, and a modulator 6 is placed in the optical path of the wavelength tunable continuous wave dye laser 10, and each modulates the same frequency.

この時のタイミングの一例を第7図に示す。連続発振レ
ーザ1のレーザ光強度と波長可変連続発振色素レーザ1
0のレーザ光強度のともに存在する時間と、波長可変連
続発振色素レーザ10のレーザ光強度だけが存在する時
間を必ず設ける。この時、検出器6に到達する光強度は
第7図の如く変化する。時間t、では波長可変連続発振
色素レーザ10のレーザ光と誘導発光の2成分が検出器
6に入り、時間t!では波長可変連続発振色素レーザ1
0のレーザ光だけが検出器6に到達する。そこで、検出
器6の出力を2チヤンネルメククス力−積分器18に入
れ、時間t、の時第1のチャンネルに、時間1.の時第
2のチャンネルで信号を取込み、第1チヤンネルのデー
タから第2のチャンネルのデータを引き算して記録計9
に出力し、誘導発光強度だけを捕える。
An example of the timing at this time is shown in FIG. Laser light intensity of continuous wave laser 1 and wavelength tunable continuous wave dye laser 1
There is always a time when the laser light intensity of 0 exists and a time when only the laser light intensity of the wavelength tunable continuous wave dye laser 10 exists. At this time, the light intensity reaching the detector 6 changes as shown in FIG. At time t, two components, the laser light and stimulated emission from the wavelength tunable continuous wave dye laser 10, enter the detector 6, and at time t! Now, wavelength tunable continuous wave dye laser 1
Only the zero laser light reaches the detector 6. Therefore, the output of the detector 6 is input to a two-channel MEX force-integrator 18, and the output is inputted to the first channel at time t, and inputted to the first channel at time 1. When , the signal is acquired on the second channel, the data on the second channel is subtracted from the data on the first channel, and the signal is sent to the recorder 9.
output to capture only the stimulated luminescence intensity.

本実施例では、試料内篭子のエネルギー分布を非平衡状
態にするものとして連続発振レーザを用いたが、他の電
磁波でもよく、又は荷電粒子などによってもよい。
In this embodiment, a continuous wave laser is used to bring the energy distribution in the sample cage into a non-equilibrium state, but other electromagnetic waves or charged particles may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電磁波、荷電粒子などの摂動によυ物
質内篭子のエネルギー分布を非平衡状態KL、その物質
Inる2つのエネルギー準位間に相当する波長の光を当
て誘導発光によりルミネッセンスを測定したことにより
、大幅な感度の向上を得ることができた。
According to the present invention, the energy distribution of the υ material's inner cage is changed to a non-equilibrium state KL by perturbation of electromagnetic waves, charged particles, etc., and by stimulating light emission by applying light of a wavelength corresponding to between two energy levels of the material. By measuring luminescence, we were able to obtain a significant improvement in sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例図、第2図はエネルギーレベルの説明図
、第3図は振動数とエネルギー密度との関係を示す図、
第4図は本発明の詳細な説明するための波長と比Rとの
関係を示す図、第5図は本発明の実施例図、第6図は本
発明の他の実施例図、第7図はレーザの入力強度と時間
との関係を示す図である。 1・・・連続発振レーザ、3・・・試料、lO・・・波
長可変連続発振色素レーザ、11.12・・・偏光子、
13・・・変調器、6・・・検出器、8・・・ロックイ
ンアンプ、9・・・記録計、15.16・・・変調器、
18・・・ゲックスカー積分器。 代理人 弁理士 秋 本 正 実 第1図 第2図 第3回 採七敷υ 第4図 1憂(pm) 第5図 第6図 第7図 所間 手続ネ甫正居:(自発) 昭和60年2月20日
Figure 1 is a diagram of a conventional example, Figure 2 is an explanatory diagram of energy levels, Figure 3 is a diagram showing the relationship between frequency and energy density,
FIG. 4 is a diagram showing the relationship between wavelength and ratio R for detailed explanation of the present invention, FIG. 5 is a diagram of an embodiment of the present invention, FIG. 6 is a diagram of another embodiment of the present invention, and FIG. The figure is a diagram showing the relationship between laser input intensity and time. 1... Continuous wave laser, 3... Sample, lO... Wavelength tunable continuous wave dye laser, 11.12... Polarizer,
13...Modulator, 6...Detector, 8...Lock-in amplifier, 9...Recorder, 15.16...Modulator,
18... Gexcar integrator. Agent Patent Attorney Tadashi Akimoto Actual Fig. 1 Fig. 2 Fig. 3 Nanashiki υ Fig. 4 1 (pm) Fig. 5 Fig. 6 Fig. 7 Inter-office procedure Neho Masashi: (Volunteer) 1988 February 20th

Claims (1)

【特許請求の範囲】 1、測定対象となる試料に第1の電磁波(又は荷電粒子
)を照射する第1の電磁波源(又は荷電粒子源)と、第
2の電磁波を発生する第2の電磁波源と、該第2の電磁
波の系路上に設けられその出力を上記試料に照射する第
1の偏光子と、試料からの発光の測定系路上に設けられ
ると共に、上記第1の偏光子と直角な偏光面を有する第
2の偏光子と、該第2の偏光子の出力側に設けた変調器
と、該変調器の出力を分光するモノクロメータと、該モ
ノクロメータ出力を取込み検波する検出手段と、より成
るルミネッセンス測定装置。 2、第1の電磁波源(又は荷電粒子源)と、該第1の電
磁波源の発生電磁波(荷電粒子)の系路上に設けられそ
の出力を測定対象となる試料に照射する第1の変調器と
、第2の電磁波源と、該第2の電磁波源の発生電磁波の
系路上に設けられその出力を測定対象となる試料に照射
する第2の変調器と、試料からの発光を受け分光するモ
ノクロメータと、該モノクロメータ出力を取込み検波す
る検出手段と、より成るルミネッセンス測定装置。 3、上記第1の変調器と第2の変調器とを通じて試料に
照射する第1の電磁波(又は荷電粒子)と第2の電磁波
とは、重なり合って照射する時間帯と第2の電磁波のみ
を単独で照射する時間帯とをもって照射させてなる特許
請求の範囲第2項記載のルミネッセンス装置。
[Claims] 1. A first electromagnetic wave source (or charged particle source) that irradiates a sample to be measured with a first electromagnetic wave (or charged particles), and a second electromagnetic wave that generates a second electromagnetic wave. a first polarizer provided on the second electromagnetic wave path and irradiating the sample with its output; and a first polarizer provided on the measurement path of the light emitted from the sample and perpendicular to the first polarizer. a second polarizer having a plane of polarization, a modulator provided on the output side of the second polarizer, a monochromator that separates the output of the modulator, and a detection means that captures and detects the output of the monochromator. A luminescence measuring device consisting of: 2. A first electromagnetic wave source (or charged particle source) and a first modulator that is installed on the path of the electromagnetic wave (charged particles) generated by the first electromagnetic wave source and irradiates the sample to be measured with its output. a second electromagnetic wave source; a second modulator that is installed on the path of the electromagnetic waves generated by the second electromagnetic wave source and irradiates the sample to be measured with its output; A luminescence measuring device comprising a monochromator and a detection means for receiving and detecting the output of the monochromator. 3. The first electromagnetic wave (or charged particles) and the second electromagnetic wave that are irradiated onto the sample through the first modulator and the second modulator overlap each other during the irradiation time period and only the second electromagnetic wave is irradiated. 3. The luminescence device according to claim 2, wherein the luminescence device is irradiated with a time period of individual irradiation.
JP19676384A 1984-09-21 1984-09-21 Luminescence measuring device Pending JPS6176939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19676384A JPS6176939A (en) 1984-09-21 1984-09-21 Luminescence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19676384A JPS6176939A (en) 1984-09-21 1984-09-21 Luminescence measuring device

Publications (1)

Publication Number Publication Date
JPS6176939A true JPS6176939A (en) 1986-04-19

Family

ID=16363213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19676384A Pending JPS6176939A (en) 1984-09-21 1984-09-21 Luminescence measuring device

Country Status (1)

Country Link
JP (1) JPS6176939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal
JP2002318192A (en) * 2001-04-23 2002-10-31 Tosoh Corp Fluorescence detection method measurable under external light and its device
JP2011082478A (en) * 2009-09-10 2011-04-21 Koyo Giken:Kk Welding transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal
JP2002318192A (en) * 2001-04-23 2002-10-31 Tosoh Corp Fluorescence detection method measurable under external light and its device
JP4569030B2 (en) * 2001-04-23 2010-10-27 東ソー株式会社 Fluorescence detection method and apparatus capable of measurement under external light
JP2011082478A (en) * 2009-09-10 2011-04-21 Koyo Giken:Kk Welding transformer

Similar Documents

Publication Publication Date Title
KR102513482B1 (en) Atom-Based Electromagnetic Field Sensing Elements and Measurement Systems
US11313921B2 (en) Magnetic field measurement device and magnetic field measurement method based on solid-state spins
JP3103761B2 (en) Method and apparatus for response analysis of semiconductor material using optical excitation
US3575655A (en) Apparatus for optically monitoring the gyromagnetic resonance of quantum systems
US20240053208A1 (en) Apparatus for measuring temperature using diamond nitrogen-vacancy center sensor and manufacturing method therefor
Blanchard et al. Measurement of small absorbances by picosecond pump-probe spectrometry
Rezai et al. Detuning dependent Rabi oscillations of a single molecule
US20220390370A1 (en) Fluorescence detection with optical-trap-enhanced spectral filtering
Delsart et al. Absorption line narrowing (ALN) in a three-level system of neon under interaction with two quasi-resonant lasers
GB2355309A (en) A radiation source
CN101936903A (en) Test system adopting double modulation scheme to enhance fluorescence test sensitivity
US3796499A (en) Method and apparatus for determining the concentration of paramagnetic material in a gas mixture
JPS6176939A (en) Luminescence measuring device
US8947663B2 (en) Dual-modulation faraday rotation spectroscopy
WO2021172290A1 (en) Analysis method, light emission analysis device, diffuse optical tomography, imaging device, reflectivity measurement device, analysis device, and program
US3187251A (en) Quantum oscillators
US3545867A (en) Method of and apparatus for measuring the density of a plasma or transparent semiconductor
Buchwald et al. Suppression of disturbing light signals in rapid flash kinetic measurements
JPH0263321A (en) Frequency standard
Buckmaster et al. a Double Magnetic Field Modulation Paramagnetic Resonance Spectrometer
Baranov et al. Interferometric coherence measurement of stress-induced In x Ga 1− x A s/G a A s quantum dots at the resonant-luminescence phonon sideband
Michaelis et al. Electric and magnetic dipole two-photon absorption in semiconductors
JP2000275103A (en) Time series conversion infrared spectroscope
Douma et al. Stark cell noise reduction of a CO 2 laser beam
RU2538073C2 (en) Research method of nonlinear spin resonance in semiconductors and device for its implementation