JPS6176884A - Method of circulating condensate in split type heat exchanger - Google Patents

Method of circulating condensate in split type heat exchanger

Info

Publication number
JPS6176884A
JPS6176884A JP19810484A JP19810484A JPS6176884A JP S6176884 A JPS6176884 A JP S6176884A JP 19810484 A JP19810484 A JP 19810484A JP 19810484 A JP19810484 A JP 19810484A JP S6176884 A JPS6176884 A JP S6176884A
Authority
JP
Japan
Prior art keywords
condensate
valve
pipe
heat exchanger
flow down
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19810484A
Other languages
Japanese (ja)
Inventor
Yuichi Kimura
裕一 木村
Jiyunji Sotani
順二 素谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP19810484A priority Critical patent/JPS6176884A/en
Priority to DE19853507981 priority patent/DE3507981A1/en
Priority to GB08505772A priority patent/GB2156505B/en
Priority to GB8609530A priority patent/GB2172697B/en
Priority to GB08609531A priority patent/GB2173413B/en
Publication of JPS6176884A publication Critical patent/JPS6176884A/en
Priority to US06/894,738 priority patent/US4745965A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Abstract

PURPOSE:To make it possible to circulate a condensate without being affected by a heat difference due to pressure loss by providing an opening and closing valve in a condensate pipe at the lower part of a condensing part to intermittently open or close the same, and causing the condensate to flow down. CONSTITUTION:One or two or more opening and closing valves 7a and 7b are mounted at the lower part of the condensing part of a heat insulating condensate pipe 5 connecting the side of a condensate 6 of an evaporating part A to the side of a condensate of a condensing part, at a suitable interval, and a heat exchanger is actuated in a closed state. When the condensate 6a is accumulated on the opening and closing valve 7a, the opening and closing valve 7a is opened and the accumulated condensate 6a is caused to flow down. Thereafter, the opening and closing valve 7a is closed. Since the condensate 6b which has flowed down is accumulated on the valve 7b, the valve 7b is opened to cause the condensate 6b to flow down, and then the valve 7b is closed. As a result, even is there is a high pressure difference, it is possible to cause the circulating condensate to flow down.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明はヒートパイプの原理を応用した分離型熱交換装
置の凝縮液還流方法に関し、特に装 。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for refluxing condensate in a separate heat exchanger that applies the principle of a heat pipe, and particularly relates to a method for refluxing condensate in a separate heat exchanger that applies the principle of a heat pipe.

置の蒸気圧力損失による蒸発部内と凝縮部内における凝
縮液のヘッド差が大きな場合、又は高温で還流凝縮液値
が少ない場合でも凝縮液の還流を容易にしたものである
This facilitates the reflux of condensate even when there is a large head difference between the condensate in the evaporator and condensate due to vapor pressure loss at the same time, or when the reflux condensate value is small at high temperatures.

〔従来の技術〕[Conventional technology]

一般に工場排ガスや排水等の顕然回収には、熱伝導性の
優れたヒートパイプを用いた熱交換器が用いられている
。ヒートパイプは管状体内に作動液を封入し、その一端
を蒸発部、他端を凝縮部として作動液の相変態(蒸発・
凝縮)により熱伝達を行なわせるものである。しかるに
顕熱回収の条件によっては、蒸発部と凝縮部を離れた位
置に配置する必要があり、これに対してヒートパイプを
長尺化すると、蒸気と凝縮液の混流が生じ、凝縮液の流
れが阻害されるため性能が著しく低下する欠点がある。
Generally, heat exchangers using heat pipes with excellent thermal conductivity are used for the apparent recovery of factory exhaust gas, waste water, etc. A heat pipe has a working fluid sealed inside a tubular body, with one end serving as an evaporator and the other end as a condensing part, which undergoes phase transformation (evaporation/condensation) of the working fluid.
heat transfer by condensation). However, depending on the conditions for sensible heat recovery, it is necessary to place the evaporation section and the condensation section at separate locations.On the other hand, if the heat pipe is made longer, a mixed flow of steam and condensate will occur, and the flow of condensate will be reduced. This has the disadvantage that the performance is significantly reduced due to the inhibition of

これを改善するためヒートパイプの原理を応用した分離
型熱交換器が開発され、実用化されている。即ち第4図
に示ずように縦方向の伝熱管(1)を複数個並設し、そ
の両端にヘッダー(2)、(3)を取付けて蒸発部(A
>と凝縮部(B)を形成し、これを離れた位置に配置し
て蒸発部<A)と凝縮部(B)の蒸気側ヘッダー(2)
、(2)を断熱蒸気管(4)により連結し、凝縮液側ヘ
ッダー(3)、(3)を断熱凝縮液管(5)により連結
して循環閉回路を形成し、内部に作動液(6)を封入し
た縦方式の分離型熱交換装置が用いられている。また第
5図に示すように横方向の伝熱管を複数個並設し、その
両端にヘッダーを取付けて蒸発部(A>と凝縮部(B)
を形成し、これを第4図の場合と同様に離れた位置に配
置し、その蒸気側を断熱蒸気管(4)で連結し、凝縮液
側を断熱凝縮液管(5)で連結し、内部に作動液(6)
を封入した横方式の分離型熱交換装置も用いられている
To improve this, a separate heat exchanger that applies the heat pipe principle has been developed and put into practical use. That is, as shown in Fig. 4, a plurality of vertical heat transfer tubes (1) are arranged in parallel, headers (2) and (3) are attached to both ends of the tubes, and the evaporation section (A
> and a condensing part (B), which are placed in separate positions to form a vapor side header (2) of the evaporating part <A) and the condensing part (B).
, (2) are connected by an insulated steam pipe (4), and the condensate side headers (3), (3) are connected by an insulated condensate pipe (5) to form a closed circulation circuit, and the working fluid ( 6) is used.A vertical separation type heat exchanger is used. In addition, as shown in Fig. 5, a plurality of horizontal heat transfer tubes are installed in parallel, and headers are attached to both ends of the tubes to form an evaporating section (A> and a condensing section (B)).
are placed at separate locations as in the case of Fig. 4, and their steam sides are connected by an insulated steam pipe (4), and their condensate sides are connected by an insulated condensate pipe (5). Hydraulic fluid inside (6)
A horizontal separate type heat exchanger is also used.

これ等のvt置は何れも蒸発部で発生した蒸気を凝縮部
で凝縮させ、再び蒸発部に還流させて熱交換を行なわせ
るものである。この還流において、管内の圧力損失によ
り、第4図及び第5図に示すように蒸発部(A)内の蒸
発液面と断熱凝縮液管(5)内の東線液面にヘッド差△
hを生ずる。従来はこのヘッド差△hをあらかじめ予想
して蒸発部と凝縮部の高さに差を設けるか、この高さが
取れない場合にはポンプ等により凝縮液を強制的に還流
させている。
In all of these vt systems, steam generated in the evaporator is condensed in the condenser and then refluxed back to the evaporator for heat exchange. During this reflux, due to the pressure loss inside the pipe, there is a head difference △ between the evaporated liquid level in the evaporator section (A) and the east line liquid level in the adiabatic condensate pipe (5), as shown in Figures 4 and 5.
produces h. Conventionally, this head difference Δh is predicted in advance and a difference is created between the heights of the evaporating section and the condensing section, or if this height cannot be achieved, the condensed liquid is forcibly refluxed using a pump or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記熱交換装置では断熱蒸気管内を流れる蒸気の速度が
速くなったり、断熱蒸気管の長さが長くなると、蒸気圧
損も大きくなり、このような場合には上記ヘッド差△h
も大きくなって、場合によっては凝縮部の位置を蒸発部
より10m以上も高くする必要が起る。このような分離
型熱交換装置の設備費は極めて高いものとなる。
In the heat exchanger described above, when the speed of steam flowing in the adiabatic steam pipe increases or the length of the adiabatic steam pipe becomes long, the steam pressure loss also increases, and in such cases, the head difference △h
In some cases, it becomes necessary to position the condensing section 10 m or more higher than the evaporating section. The equipment cost of such a separate heat exchange device is extremely high.

これを解消するためには断熱蒸気管の径を大きくすれば
よいことが知られているが、径を太きくすることは耐圧
上肉厚も厚くしなければならず、経済性が著しく損なわ
れることになる。また循環ポンプを用いればよいことも
知られているが、ポンプの使用はコスト高となるばかり
か、信頼性も劣る欠点がある。
It is known that increasing the diameter of the insulated steam pipe can solve this problem, but increasing the diameter requires thickening the wall in order to withstand pressure, which significantly impairs economic efficiency. It turns out. It is also known that a circulation pump can be used, but the use of a pump is not only expensive but also has the disadvantage of poor reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み様々検討の結果、圧力損失によるヘ
ッド差Δhが大きく、また高温で還流する凝縮液量が少
ない場合でも凝縮液を容易に還流させることができる分
離型熱交換装置の凝縮液還流方法を開発したもので、蒸
発部と凝縮部を分離して配置し、その蒸気側を断熱蒸気
管により連結し、凝縮液側を断熱凝縮液管により連結し
て循環閉回路を形成し、該回路内に作動液を封入して蒸
発部と凝縮部で相変態(蒸発・凝縮)させて熱交換する
方法において、凝縮部下方の凝縮液管に開閉弁を設け、
該弁を間欠的に開閉して弁上に溜まった凝縮液を間欠的
に流下させることを特徴とするものである。
In view of this, as a result of various studies, the present invention has developed a condensate liquid of a separate type heat exchanger that can easily reflux the condensate even when the head difference Δh due to pressure loss is large and the amount of condensate that is refluxed at high temperature is small. The reflux method was developed by arranging the evaporation section and condensation section separately, and connecting the steam side with an insulated steam pipe and the condensate side with an insulated condensate pipe to form a closed circulation circuit. In the method of enclosing a working fluid in the circuit and exchanging heat through phase transformation (evaporation and condensation) between the evaporation section and the condensation section, an on-off valve is provided in the condensate pipe below the condensation,
The valve is intermittently opened and closed to cause the condensate accumulated on the valve to flow down intermittently.

即ち本発明は第1図(縦方式の分離型熱交換装置)及び
第2図(@方式の分離型熱交換装@)に示すように蒸発
部(A>の凝縮液(6)lllIIと図には示してない
が、凝縮部の凝縮液側を連結する断熱凝縮液管(5)の
凝縮部下方に1個又は2個以」:(図は2個の場合を示
す)の開閉弁(7a)、(7b)を間隔を設けて取付け
、これを閉鎖した状態で熱交換装置を作動させ、開閉弁
(7a)上に凝縮液(6a)が溜まったところで、開閉
弁(7a)を開き、溜まった凝縮液(6a)を流下させ
、しかる後開閉弁(7a)を閉鎖する。
That is, the present invention provides a method for converting the condensate (6) of the evaporation section (A> Although not shown in the figure, there is one or more on-off valves (the figure shows the case of two valves) located below the condensate of the adiabatic condensate pipe (5) that connects the condensate side of the condensate part. 7a) and (7b) are installed with a gap between them, the heat exchanger is operated with these closed, and when the condensate (6a) has accumulated on the on-off valve (7a), the on-off valve (7a) is opened. , the accumulated condensate (6a) is allowed to flow down, and then the on-off valve (7a) is closed.

流下した凝縮液(6b)は開閉弁(7b)上に溜まるか
ら開閉弁(7b)を開いてこれを流下させ、しかる俊、
開閉弁(7b)を閉鎖する。このような動作を繰返して
凝縮液を還流させる。即ち開閉弁を1個以上設けて、該
弁の開閉により凝縮液を間欠的に流下せしめるものであ
る。
The condensate (6b) that has flowed down collects on the on-off valve (7b), so open the on-off valve (7b) and let it flow down.
Close the on-off valve (7b). This operation is repeated to reflux the condensate. That is, one or more on-off valves are provided, and the condensate is made to flow down intermittently by opening and closing the valves.

聞IMj弁には電磁弁を始め、ロータリーバルブ、電動
操作機に連結した開閉弁等を用い、還流する凝縮i1M
及び圧力差により自動的に開閉を制御する。開閉弁とし
ては蒸気圧損が小ざい場合には1個でも十分ひあるが、
蒸気LjDか大きい揚台には少なくとも2個以上設け、
開閉弁の開閉に伴う衝撃を和らげるためには第3図に示
(ように開閉弁(7)を3個以上設けることが望ましい
The recirculating condensed i1M valve uses a solenoid valve, a rotary valve, an on-off valve connected to an electric operating machine, etc.
Opening/closing is automatically controlled by pressure difference. If the steam pressure loss is small, one valve is sufficient as an on-off valve, but
Install at least two or more on the steam LjD or large lifting platform,
In order to soften the impact caused by the opening and closing of the on-off valves, it is desirable to provide three or more on-off valves (7) as shown in FIG.

(作 用〕 開閉弁を閉鎖することによりその上下で圧力差が存在す
る。開閉弁士には還流凝縮液が溜まる。そこで開閉弁を
開くと溜まっていた還流凝縮液は重力により流下する。
(Function) When the on-off valve is closed, a pressure difference exists between the upper and lower sides. Reflux condensate accumulates in the on-off valve. When the on-off valve is opened, the accumulated reflux condensate flows down due to gravity.

そこで開閉弁を閉鎖すれば還流凝縮液は再び溜まり始め
る。このような動作を間欠的に行なうことにより圧力差
が存在しても還流凝縮液の流下が可能となり、特にこの
ような動作を複数段付なうことにより、かなり高い圧力
差においても還流凝縮液を流下させることができる。
If the on-off valve is then closed, the reflux condensate will begin to accumulate again. By performing this operation intermittently, the reflux condensate can flow down even if there is a pressure difference.In particular, by performing multiple stages of this operation, the reflux condensate can flow down even under a fairly high pressure difference. can flow down.

〔実施例〕〔Example〕

材質S T B 35からなる外径38.1馴、肉厚2
「、長さ11000aの管外周に、材質5PCGからな
る厚さ 1.O#I、高さ12.ym、ビッヂ5「のラ
ジアルツインを取付番プ、これを伝熱色として垂直に5
木配貿し、その両端に直径50.8@mのヘッダーを取
イ4(プ(蒸発部と凝縮部を形成した。これを削れた位
置に蒸発部にり凝縮部を3000順高い状態に配置し、
ぞの蒸気側を外径38.1qmの断!!!!蒸気管で連
結し、凝縮液側を外径25.4m+の断熱凝縮液管で連
結し、第4図に示す縦方式の分離型熱交換装置を形成し
た。このようにして装置内に作動液として水を蒸発部の
50Vo1%封入し、蒸発部に 1本当り 4.0〜g
、0x103 Kcal /ゴhの熱h1を加えて熱交
換を行い、蒸気配管中には強制的に圧損をつけて実験を
行なった。その結果500〜1500Kca1/Trt
h℃程度の熱伝達率しか1qられなかった。これは蒸気
圧損に基づくヘッド差△hが大きく、蒸発部内の液面高
さが低−トしたためであった。
Made of material S T B 35, outer diameter 38.1, wall thickness 2
On the outer periphery of a tube with a length of 11000a, a radial twin made of material 5PCG with a thickness of 1.
Place a header with a diameter of 50.8@m on both ends of the wood to form the evaporation part and condensation part. place,
A cut with an outer diameter of 38.1 qm on the steam side! ! ! ! They were connected by a steam pipe, and the condensate side was connected by an adiabatic condensate pipe with an outer diameter of 25.4 m+ to form a vertical separation type heat exchange device as shown in FIG. In this way, water is filled in the device as a working fluid at 50Vo1% of the evaporation section, and 4.0 to 1 g per bottle is filled in the evaporation section.
, 0x103 Kcal/goh was added to perform heat exchange, and the experiment was conducted by forcibly creating a pressure drop in the steam piping. The result is 500-1500Kca1/Trt
The heat transfer coefficient was only 1q of h°C. This was because the head difference Δh based on vapor pressure loss was large and the liquid level in the evaporator was low.

次に上記装置において凝縮部下方の断熱凝縮液管に第1
図に示づように2個の電磁開閉弁を300厘の間隔で取
付け、30秒毎に開閉弁を交互に開閉して凝縮液を間欠
的に流下させ、同様の熱交換を行なったところ、150
0〜2000Kcal /1rLh℃の熱伝達率が得ら
れた。これは凝1i!液管に開閉弁を設け、これを間欠
的に開閉して弁士に溜まった凝縮液を重力により間欠的
に流下させることにより、蒸気ヘッド差△hに左右され
ることなく凝縮液を還流することができるためである。
Next, in the above device, a first
As shown in the figure, two electromagnetic on-off valves were installed at an interval of 300 mm, and the on-off valves were alternately opened and closed every 30 seconds to allow the condensate to flow down intermittently, and a similar heat exchange was performed. 150
Heat transfer coefficients of 0-2000 Kcal/1rLh°C were obtained. This is hard 1i! By installing an on-off valve in the liquid pipe and opening and closing it intermittently to allow the condensate accumulated in the valve to flow down intermittently by gravity, the condensate can be refluxed without being affected by the steam head difference △h. This is because it can be done.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、圧力損失によるヘッド差△
hの影響を受けることなく、凝縮液の還流が可能となり
、断熱蒸気値の長さを長くすることもできるようになり
、更には還流ポンプを必要としないなど分離型熱交換装
置の使用範囲を拡大することができる顕著な効果を奏(
るものである。
As described above, according to the present invention, the head difference due to pressure loss △
It is now possible to reflux the condensate without being affected by h, making it possible to increase the length of the adiabatic vapor value, and further expanding the scope of use of the separate heat exchange device, such as eliminating the need for a reflux pump. It has a remarkable effect that can be expanded (
It is something that

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明″fA流方法の一例を示す要部説明図、
第2図は本発明還流方ン六の他の一例を示す要部説明図
、第3図は本発明jw流方法の更に他の一例を示す要部
説明図、第4図は従来の紀方式の分離型熱交換装置の一
例を示す説明図、第5図は従来の横方式の分離型熱交換
装置の一例を承り説明図である。 A・・・蒸発i!ill     B・・・凝縮部1・
・・伝熱管    2,3・・・ヘッダー4・・・断熱
蒸気管  5・・・断熱凝縮液管5、6a、 6b・・
・凝縮液 7 、7a、 7b・・・開閉弁 ・1  ・ ′ 代理人  弁理士 箕 浦  清す 飄)−lう″ 第3図 第4図
FIG. 1 is an explanatory diagram of main parts showing an example of the fA flow method of the present invention;
Fig. 2 is an explanatory diagram of the main part showing another example of the reflux method of the present invention, Fig. 3 is an explanatory diagram of the main part showing still another example of the JW flow method of the invention, and Fig. 4 is an explanatory diagram of the main part showing another example of the reflux method of the present invention. FIG. 5 is an explanatory diagram showing an example of a conventional horizontal type separation type heat exchange device. A... Evaporation i! ill B... Condensing section 1.
...Heat transfer tubes 2, 3...Header 4...Insulated steam pipes 5...Insulated condensate pipes 5, 6a, 6b...
・Condensate 7, 7a, 7b...Opening/closing valve ・1 ・' Agent Patent attorney Minoura Kiyosu 飄)-l'' Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)蒸発部と凝縮部を分離して配置し、その蒸気側を
断熱蒸気管により連結し、凝縮液側を断熱凝縮液管によ
り連結して循環閉回路を形成し、該回路内に作動液を封
入して蒸発部と凝縮部で相変態(蒸発・凝縮)させて熱
交換する方法において、凝縮部下方の凝縮液管に開閉弁
を設け、該弁を間欠的に開閉して弁上に溜まった凝縮液
を間欠的に流下させることを特徴とする分離型熱交換装
置の凝縮液還流方法。
(1) The evaporation section and the condensation section are arranged separately, and the steam side is connected by an insulated steam pipe, and the condensate side is connected by an insulated condensate pipe to form a closed circulation circuit, and the circuit is operated. In the method of enclosing a liquid and exchanging heat through phase transformation (evaporation and condensation) between the evaporation section and the condensation section, an on-off valve is provided in the condensate pipe below the condensation, and the valve is opened and closed intermittently to 1. A method for refluxing condensate in a separate heat exchange device, which is characterized by causing condensate accumulated in a separate heat exchanger to flow down intermittently.
(2)凝縮液管に間隔を設けて開閉弁を2個以上設け、
該弁を順次開閉して弁上に溜まった凝縮液を、順次下方
に流下せしめる特許請求の範囲第1項記載の分離型熱交
換装置の凝縮液還流方法。
(2) Provide two or more on-off valves at intervals in the condensate pipe,
2. A method for refluxing condensate in a separate heat exchanger according to claim 1, wherein the valves are sequentially opened and closed to cause the condensate accumulated on the valves to sequentially flow downward.
JP19810484A 1984-03-07 1984-09-21 Method of circulating condensate in split type heat exchanger Pending JPS6176884A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19810484A JPS6176884A (en) 1984-09-21 1984-09-21 Method of circulating condensate in split type heat exchanger
DE19853507981 DE3507981A1 (en) 1984-03-07 1985-03-06 HEAT EXCHANGER WITH ISOLATED EVAPORATION AND CONDENSATION ZONES
GB08505772A GB2156505B (en) 1984-03-07 1985-03-06 Heat exchanger
GB8609530A GB2172697B (en) 1984-03-07 1986-04-18 An evaporation pipe for a heat exchanger
GB08609531A GB2173413B (en) 1984-03-07 1986-04-18 A method of refluxing condensed liquid in a separate type heat exchanger
US06/894,738 US4745965A (en) 1984-03-07 1986-08-11 Separate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19810484A JPS6176884A (en) 1984-09-21 1984-09-21 Method of circulating condensate in split type heat exchanger

Publications (1)

Publication Number Publication Date
JPS6176884A true JPS6176884A (en) 1986-04-19

Family

ID=16385552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19810484A Pending JPS6176884A (en) 1984-03-07 1984-09-21 Method of circulating condensate in split type heat exchanger

Country Status (1)

Country Link
JP (1) JPS6176884A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529318B1 (en) * 1970-09-19 1980-08-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529318B1 (en) * 1970-09-19 1980-08-02

Similar Documents

Publication Publication Date Title
JP2534668B2 (en) Heat exchanger
GB2173413A (en) Heat exchanger
EP0468046A4 (en) Heat transfer apparatus for heat pumps
EP1023567A1 (en) Air-cooled condenser
WO1991012470A1 (en) Absorption refrigeration and heat pump system with defrost
CN103542750A (en) Coiler-type separating-heat-pipe heat exchange system
EP2275650A1 (en) Combined cycle power plant
CA1110614A (en) Atmospheric-fluid indirect heat exchanger
JPS6176884A (en) Method of circulating condensate in split type heat exchanger
CN115013833A (en) Heat pipe air preheater, vacuumizing method thereof and boiler system
US5077986A (en) Energy recovery system for absorption heat pumps
JPS5929986A (en) Heat medium circulating type heat exchanger
CN2378706Y (en) Separating heat-tube heat-exchanger
US2073092A (en) Refrigeration apparatus
CN103486775B (en) The heat conduction structure of air-conditioner and air-conditioner
CN202279709U (en) High-level condensation device
CN209541504U (en) A kind of composite phase-change heat-exchanger rig for residual heat from boiler fume recycling
CN107084635A (en) Heat pipe-type energy recovery cooling device and energy recovery cooling system
JPS59158507A (en) Heat-exchanging equipment of transformer
JPS59217451A (en) Heat collector utilizing solar heat
SU1132140A1 (en) Thermal siphon heat exchanger
JPS59161684A (en) Heat control device
JPS6023784A (en) Separate type heat pipe
JPS5697788A (en) Heat exchanger for high-pressure fluid
JP3161321B2 (en) Absorption heat pump