JPS6176801A - Fluidized bed device with load corresponding type heat transfer tube - Google Patents

Fluidized bed device with load corresponding type heat transfer tube

Info

Publication number
JPS6176801A
JPS6176801A JP19779084A JP19779084A JPS6176801A JP S6176801 A JPS6176801 A JP S6176801A JP 19779084 A JP19779084 A JP 19779084A JP 19779084 A JP19779084 A JP 19779084A JP S6176801 A JPS6176801 A JP S6176801A
Authority
JP
Japan
Prior art keywords
cover
heat transfer
fluidized bed
load
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19779084A
Other languages
Japanese (ja)
Other versions
JPH063281B2 (en
Inventor
正靭 堀尾
古澤 健彦
清水 達二郎
館林 旬
直樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Kawasaki Heavy Industries Ltd
Mitsubishi Power Ltd
Original Assignee
Electric Power Development Co Ltd
Babcock Hitachi KK
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Babcock Hitachi KK, Kawasaki Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP59197790A priority Critical patent/JPH063281B2/en
Publication of JPS6176801A publication Critical patent/JPS6176801A/en
Publication of JPH063281B2 publication Critical patent/JPH063281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は流動層装置に係り、特にボイラ装置としての負
荷応答性を高めるよう層内伝熱管構造に配慮を加えた流
動層装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fluidized bed apparatus, and particularly to a fluidized bed apparatus in which consideration is given to the structure of the heat exchanger tubes in the bed so as to improve the load response as a boiler apparatus.

〈従来の技術及びその問題点〉 流動層は・燃料とγIU動媒体とが混合4;イ・拌しな
がら燃焼を行うため非常に広範囲の材料を燃料として利
用し得るため、各種燃焼装置として、また廃棄物の焼却
裟71″として幅広く利用されている。また層内の伝熱
係数が非常に高いため、層内の熱を有効に回収するため
、層内に伝熱管を配置したものも提供され、実用化され
ている。
<Prior art and its problems> In a fluidized bed, fuel and γIU dynamic medium are mixed 4; b. Combustion is performed while stirring, so a very wide range of materials can be used as fuel, so it is used as a variety of combustion devices. It is also widely used as a waste incineration chamber 71''.Also, since the heat transfer coefficient within the layer is extremely high, we also provide a device with heat transfer tubes placed within the layer in order to effectively recover the heat within the layer. and has been put into practical use.

第2南はこのうち流動層ボイラとして使用てれているも
のを示す。ボイラ本体の風箱8に流入した空気Aは分散
板11を経て層内に流入し、この媒体を流動化させて流
動層4を形成する。粉炭管6を経て供給された燃料(例
えば粉砕炭)Fはノズル9から流動層4に供給され、流
動媒体と共に攪拌され良好に燃焼する。−刃本体1を構
成する水管壁たるボイラ壁面において加熱された給水は
ドラム2に入り、ドラム2から排出された蒸気は主蒸気
管3を下降して、層内伝熱管lOに入り、流動層の熱に
より過熱蒸気となって系外に排出される。
Of these, No. 2 South shows the one used as a fluidized bed boiler. Air A flowing into the wind box 8 of the boiler body flows into the bed via the distribution plate 11 and fluidizes this medium to form the fluidized bed 4. The fuel (for example, pulverized coal) F supplied through the pulverized coal pipe 6 is supplied to the fluidized bed 4 from the nozzle 9, is stirred together with the fluidized medium, and burns well. - Feed water heated on the boiler wall surface, which is the water tube wall constituting the blade body 1, enters the drum 2, and the steam discharged from the drum 2 descends the main steam pipe 3, enters the interlayer heat exchanger tube IO, and flows into the drum 2. The heat in the layer turns into superheated steam and is discharged from the system.

なおこのボイラ装■沙においては、層内伝熱管は過熱器
として利用されているがもとよりこれに限らず、蒸発器
、その他としても利用されている。
In this boiler installation, the intralayer heat transfer tubes are used not only as a superheater, but also as an evaporator and other functions.

ここで、流動層燃焼装置は、上述の流動層ボイラも含め
て燃・層温度を維持するだめに流動層内ガス論・、速、
すなわち処理ガス量を変えても層内温度を一定に保つ車
が望ましい。
Here, in fluidized bed combustion equipment, including the above-mentioned fluidized bed boiler, in order to maintain the combustion bed temperature, the fluidized bed gas theory, speed,
In other words, it is desirable to have a vehicle that maintains the temperature within the bed constant even when the amount of gas to be processed is changed.

次式で示すようにζノfj動層と層内伝熱管との間の熱
交−がqは、層と伝熱管との間の熱伝達係数hW1伝熱
而M A 、層温度’rb 、および層内伝熱管表面温
度T’wのり数で与えられる。
As shown in the following equation, ζ no fj is the heat exchange between the moving bed and the intralayer heat transfer tube, q is the heat transfer coefficient hW1 between the layer and the heat transfer tube, M A is the layer temperature 'rb, and the interlayer heat exchanger tube surface temperature T'w is given by the number of glues.

q、 = hwA (Tb  Tw )第4図に示すよ
うに、従来技術による層内伝熱管では熱伝達係数hwと
流動層内ガス流速U○との関係は、適正流動化範囲では
熱伝達係数hwがほぼ一定となる特性を有している。従
って層温度を一定に保つためには処理ガス量すなわち流
動層−の入熱量を変えた場合にも層温度を一定に保持す
べく層内伝熱管と流動層との熱V換量qを変える必要が
ある。そのためには hwが一定のため伝熱面稍Aある
いは流動層と層内伝熱管との湿度差(TbTw)を変え
なければならない。しかし。
q, = hwA (Tb Tw) As shown in Fig. 4, in the conventional intrabed heat exchanger tube, the relationship between the heat transfer coefficient hw and the gas flow rate U○ in the fluidized bed is as follows in the proper fluidization range: has the characteristic that is almost constant. Therefore, in order to keep the bed temperature constant, even if the amount of processing gas, that is, the amount of heat input to the fluidized bed, is changed, the heat V exchange rate q between the bed heat transfer tubes and the fluidized bed must be changed in order to keep the bed temperature constant. There is a need. For this purpose, since hw is constant, it is necessary to change the heat transfer surface depth A or the humidity difference (TbTw) between the fluidized bed and the intrabed heat transfer tube. but.

伝熱管内流体温度、伝熱管温度はプロセス上自由に変え
るわけにはゆかず9通常、伝熱面積Aのみが変更可能な
場合が多い。たとえば流動層ボイラーでは伝熱面精Aを
変える方法として層膨彊を利用して伝熱管の層内浸漬面
積を変えるベロ/ティターンダウン法とか流動層をいく
つかに分割するセル分割法を採用しているが、これらの
方法に、は層界面付近での云?!!(管の摩耗や分割し
た流動層の制御装置のコストが高い1等の欠点がある。
The temperature of the fluid inside the heat transfer tube and the temperature of the heat transfer tube cannot be changed freely due to the process9; usually, only the heat transfer area A can be changed in many cases. For example, in a fluidized bed boiler, methods to change the heat transfer surface quality A include the vero/titandown method, which uses bed expansion to change the immersion area of heat transfer tubes in the bed, and the cell division method, which divides the fluidized bed into several parts. However, in these methods, do the effects occur near the layer interface? ! ! (There are disadvantages such as wear of the tube and high cost of the control device for the divided fluidized bed.

ベロ7テイターンダウン法あるいはセル分割法を用いな
い場合には層温度の大幅な低下をまぬがれない。
If the Vero 7-Tay turndown method or the cell division method is not used, a significant drop in layer temperature cannot be avoided.

第3図に示す層内伝熱管]0を流動層4内に配置[7た
時の層内伝熱特性は第4図の(a)部に示すごとく炉内
ガス”+t’+: (m/S ) /炉断面晴(m′)
で定義する空塔速度Uo (m/S )  により変化
する。なお図中符号12は流動媒体、Gは層内を上昇す
るガスを示す。
The heat transfer characteristics in the bed when the heat transfer tube shown in FIG. 3 is placed in the fluidized bed 4 are as shown in part (a) of FIG. /S ) /Furnace surface clearness (m')
It changes depending on the superficial velocity Uo (m/S) defined as . In the figure, reference numeral 12 indicates a fluidizing medium, and G indicates a gas rising within the layer.

空塔速度UOが低すぎると給炭管6から流動層4内に供
給した石炭の拡散混合速度がおそく、空気分散板11か
ら吹き込んだ空気との混合、接触が不十分なだめ燃焼性
能が低下する。逆に空塔法FJfU。
If the superficial velocity UO is too low, the diffusion and mixing speed of the coal supplied into the fluidized bed 4 from the coal feed pipe 6 will be slow, and the mixing and contact with the air blown from the air distribution plate 11 will be insufficient, resulting in a decrease in combustion performance. . On the contrary, the sky tower law FJfU.

が過大の時には層内からの未燃の石炭の飛びだし併が増
し1この場合も燃焼性能が低下する。従って仝塔速t、
v [Joには;Fli iEな1吏用diα囲があり
、通常空塔法K tJoけ流動化開始速KI Umfの
3陪から6倍のihMaで連転する場合が多く、第4図
の(a1部に示すようにこの運転範囲では層内の熱伝達
係数がほぼ一定の1jji囲である。流動層ボイラーで
は空気比一定で運転するだめ空塔速度UOと空気量1石
炭量。
When is too large, the amount of unburned coal coming out from within the seam increases, and combustion performance also decreases in this case. Therefore, the speed t,
v [Jo has a 1-force diα range that is Fli iE, and is often continuously rotated at an ihMa that is 3 times to 6 times the fluidization start speed KI Umf of the sky column method K tJo, and as shown in Fig. 4. (As shown in part a1, in this operating range, the heat transfer coefficient within the bed is approximately constant around 1jji.In a fluidized bed boiler, it must be operated at a constant air ratio.

ボイラー負荷は相互に比例関係にある。空塔速度Uoと
ボイラ負荷1屓温度の関係を第4図の(b)部。
Boiler loads are proportional to each other. The relationship between superficial velocity Uo and boiler load temperature is shown in part (b) of Fig. 4.

(c)γ?IXに示す。ボイラー負荷100%での層温
ザが850℃の時、第3図に示す如き、同等特別な手段
を施していない従来型の層内伝熱管を使用するとボイラ
ー負荷70%時の層温度は燃焼性能維持に必要な下限層
温度750℃に下降し、これ以上の低負荷ユ)V転は燃
焼性能の大幅な低下をもたらす。
(c) γ? It is shown in IX. When the bed temperature at 100% boiler load is 850°C, if a conventional type of bed heat exchanger tube without special measures is used as shown in Figure 3, the bed temperature at 70% boiler load will be 850°C. The lower limit layer temperature has fallen to 750°C, which is necessary to maintain performance, and further low-load V-shifting will result in a significant drop in combustion performance.

流動層4の温度は層への入熱量と層内伝熱管10による
吸熱量とのバランスにより定まるが従来技術による層内
伝熱管ではボイラー負荷を下げ空塔速度を下げても熱伝
達係数がほぼ一定であるため、層内伝熱管による吸熱量
は依然として高いままである。そのため負荷低下時に層
温度の低下が激しく、J41aに示すごとくボイラー負
荷10%当たりの1一温度低下は約33℃にも達する。
The temperature of the fluidized bed 4 is determined by the balance between the amount of heat input into the bed and the amount of heat absorbed by the intrabed heat exchanger tubes 10. However, with the conventional technology of intrabed heat exchanger tubes, even if the boiler load is lowered and the superficial velocity is lowered, the heat transfer coefficient remains approximately the same. Since it is constant, the amount of heat absorbed by the intralayer heat transfer tubes remains high. Therefore, when the load decreases, the bed temperature decreases rapidly, and as shown in J41a, the temperature decrease per 10% of the boiler load reaches about 33°C.

このように上記した従来技術による層内伝熱管を用いた
帽5動層ボイラーでは単位貢荷当りの層温度低下幅が大
きく、同ボイラーにより発生した蒸気やこの蒸気を用い
た電力を使用するユーザの事情により、まだ廃棄物を燃
料として使用する場合のように燃料供給が不安定なだめ
嘱広く負荷制御を行う必要があるにもかかわらず、単一
のベッドでは70%以下の低負荷運転が難しいという欠
点がある。
As described above, in the above-mentioned conventional boiler using heat transfer tubes in the bed, the temperature drop in the bed per unit load is large, and the users who use the steam generated by the boiler and the electric power using this steam are Due to the above circumstances, it is difficult to operate at a low load of 70% or less with a single bed, although it is necessary to widely control the load because the fuel supply is still unstable as in the case of using waste as fuel. There is a drawback.

以上、燃焼性能について述べたが石灰石等を脱偏、剤と
しで用い炉内脱硫を行う流動層ボイラーにおいても層温
度には適正範囲があり層温度が低過さでも高すぎても炉
内脱硫性能が低下するため一定の・層温度を維持するこ
とが望ましい。
As described above about combustion performance, even in fluidized bed boilers that perform in-furnace desulfurization using limestone as a depolarization agent, there is an appropriate bed temperature range, and even if the bed temperature is too low or too high, in-furnace desulfurization It is desirable to maintain a constant bed temperature as this will reduce performance.

く本発明の目的〉 本発明の目的は上記した従来技術の欠点をなくし低負荷
−転時にも層温度の低下が少なく高い反Gc率あるいは
地動率を維持しつつ運転できる流動層装置〜を提供する
にある。
OBJECTS OF THE INVENTION The purpose of the present invention is to eliminate the drawbacks of the prior art described above and to provide a fluidized bed apparatus that can be operated while maintaining a high anti-Gc ratio or ground motion ratio with little drop in bed temperature even during low load operation. There is something to do.

〈本発明の概要〉 要するに不発明は、層内云!$管の周囲に伝熱管速聞に
ほぼ比例して熱伝達係数を変えることがでさるようにし
たものである。
<Summary of the present invention> In short, non-invention is layered! The heat transfer coefficient can be changed approximately in proportion to the heat transfer tube speed around the tube.

ぐ儒t4カイ11クリ〉 <jp 5図は本発明の第1の実施例を示す。符号10
け流動層内に水平に配置した層内伝熱管である。
Figure 5 shows a first embodiment of the present invention. code 10
This is an intrabed heat exchanger tube placed horizontally in a fluidized bed.

13はこの層内伝φ、ノ(営10に対して一定の全問I
6を介して動1〒長手方向に配置したカバーである。こ
のカバーは、鉛直面14に対して非対象に、つまり鉛障
面を中心としてその断面形状が一方の1011 (図示
の場合は左側)に犬きく展伸し、伝熱管10を覆うよう
形成配置し、その端縁部16bは水平面15を越えて鉛
直面14近傍にまで位置するよう構成しである。図示の
場合は、このカバーの端M16 a、 Lbbと伝熱管
10の中心軸線とのなす角は約1800 となっており
、カバー13は円筒を半割にした形状となっている。な
お、図示の場合は鉛直面14の右半部が開放空間となっ
ているが、反対に左半部に開放空間を形成することもも
とより可能である。
13 is for this level of education φ, ノ (certain all questions I for 10
The movement 1 through 6 is a longitudinally arranged cover. This cover is formed and arranged to cover the heat exchanger tube 10 asymmetrically with respect to the vertical plane 14, that is, its cross-sectional shape extends to one side 1011 (left side in the case of illustration) with the vertical plane as the center. However, the end edge portion 16b is configured to extend beyond the horizontal surface 15 and extend to the vicinity of the vertical surface 14. In the illustrated case, the angle between the ends M16a, Lbb of the cover and the central axis of the heat exchanger tube 10 is about 1800, and the cover 13 has a cylindrical shape cut in half. In the illustrated case, the right half of the vertical surface 14 is an open space, but it is of course possible to form an open space on the left half.

以上のη′に成の伝熱管溝造において、媒体の挙動を第
9図を用いて説明すると、流動化メ体を層中に供給しな
い場合には層は静止層となっており、カバー13と層内
伝熱管】0との間に充填している媒体ももとより静止j
・Δとなっている。次に流動化気体を層内に供給し、空
塔速度UoがLTmf となると層内の媒体は流rJ、
th化を開始するが、同図(a)の如く空間16内の媒
体は、層内を上昇するガスGの気泡j4がカバー13に
より遮られるだめ十分な流動化工不ルギーが与えられず
依然として静止層を維持する。さらに(b)の如く空塔
速度UOがjW4加すると空間内にもカスG及び流動エ
ネルギーを付与されだがi体が浸入し、媒体の移励層を
形成し、最終的には(c)の叩り111シの〉T)り分
と同11求にrWj 1rj+化を開始する。
To explain the behavior of the medium in the above-mentioned heat exchanger tube groove structure with η' with reference to FIG. and [intralayer heat exchanger tube]
・It is Δ. Next, a fluidizing gas is supplied into the bed, and when the superficial velocity Uo becomes LTmf, the medium in the bed has a flow rJ,
However, as shown in FIG. 2(a), the medium in the space 16 remains stationary because the bubbles j4 of gas G rising in the layer are blocked by the cover 13, and sufficient fluidization is not provided. Maintain layers. Furthermore, as shown in (b), when the superficial velocity UO is increased by jW4, the scum G and flow energy are imparted to the space, and the i-forms infiltrate, forming a transferred layer of the medium, and finally in (c). Start rWj 1rj+ at the same time as the 111th minute of the hit.

つまり:・・フ「り伝熱管10とカバー13との闇の粒
子は空塔・中「1−の」1;f、+加に伴い周囲のIマ
l子が全て流動化を終えた函 ij々に流動化を始める
。その結果、空ニア・7;!jリニが1代い″ソ7合に
はカバー13と層内伝熱管10との間の粒子がル11市
層あるいは移uih層の状態であるためカバーした??
B分の一へ云4係数が小さいが、空塔・、)互度のノ゛
、ノ加とともにこの部分が倫々に流+Iij+化するだ
め?メ(云噸1糸叔ば空塔速度に4ぽ比例して請願する
ことになる。なお空間部10の距1+jlli Wけ伝
熱管1()の泊r↑の0.1倍から5培、好ましくは0
.5倍から21音とすることにより良好な結果が得られ
ることか唯占、暮でさた。
In other words, the dark particles between the heat exchanger tube 10 and the cover 13 are empty towers, medium 1-'s 1; Begin to fluidize in various ways. As a result, Sky Near 7;! In the 7th case, the particles between the cover 13 and the intralayer heat exchanger tube 10 are in the 11th layer or the transition layer, so they were covered.
The 4 coefficient to 1/B is small, but with the addition of the reciprocal no, this part will smoothly become +Iij+, right? If the distance of the heat exchanger tube 1 () is 4 points, it will be proportional to the superficial velocity by 4 times. Preferably 0
.. I'm not sure if good results can be obtained by increasing the number from 5 times to 21 tones.

、試10図は発明者等が、平均粒径025頭のガラス球
を層内弾体として、第5図に示す形状のカバーを用いた
場合〔線図(イ)で示す〕と、カバーを全く用いない従
来3qの・(財)体[:線、1(0)で示ず〕との熱伝
達係数の変化につき実験した結果を示す。スからも明ら
かなとおす、本発明の場合には熱伝達係数と空塔速度と
はほぼ完全に比例するのに対し。
, Test Figure 10 shows the case where the inventors used a cover with the shape shown in Figure 5 [shown in diagram (a)] and the case where the inventors used glass spheres with an average particle size of 0.25 heads as the in-layer bullets [shown in diagram (a)]. The results of an experiment on the change in heat transfer coefficient with the conventional 3q body [: line, not shown as 1 (0)], which is not used at all, are shown. As is clear from the above, in the case of the present invention, the heat transfer coefficient and the superficial velocity are almost completely proportional.

冗来型の云γノ〜肯では空塔速度が流動化開始速度Um
fに達すると7161内伝;す(・θの周囲がほぼIO
2時に流111j1化をfji4 死するため層内伝熱
管と層内媒体【]シびにガスとの熱伝達係J、父は、Y
≦r q+ to>に示すごとく、@、θ/fに増加し
、以後は一定となってしまう。つまり低角荷時の臥吸収
量が多くなり、前述の如く負荷制御範囲を狭くせざるを
得ないことKなる。
In the case of the Jyogo type, the superficial velocity is the fluidization start velocity Um
When f is reached, 7161 internal transmission; (・The surroundings of θ are almost IO
At 2 o'clock, the flow 111j1 was changed to fji4, and the heat transfer section between the inner heat transfer tube and the inner layer medium [] and the gas J, my father, Y
As shown in ≦r q+ to>, it increases to @, θ/f, and remains constant thereafter. In other words, the amount of slump absorbed during low angle loads increases, and the load control range has to be narrowed as described above.

第1図fa)及びfb)は第5図に示す実施例のうち最
適の状態のものを示す。
FIGS. 1 fa) and fb) show the optimal state of the embodiment shown in FIG.

すなわち、第11:イ+ (a)に示すように伝熱管の
中・し・を疋Jる鉛I育面14で且つ伝熱管の中心から
下の鉛直面14 aを規準面として右に60°頌斜し且
つ伝臥管の中心をコ…る而と前記鉛直面から左に175
°1頃糾し且つ伝熱管の中心を通る面で挾まれる範囲を
覆うか、或いは第1図(b)に示すように左右を逆にし
て伝熱管の中心をJIする面と前記鉛直面から左に60
01頃科し且つ伝熱管の中心を通る面と前記鉛直面から
右に175°頌科し且つ伝熱管の中心を通る面とで挾ま
l′Lる範囲を履うよう形成、配置する。
That is, as shown in 11th: A + (a), the vertical plane 14 that extends through the middle of the heat exchanger tube and below the center of the heat exchanger tube 14a is the reference plane, and is 60 degrees to the right. 175° to the left from the vertical plane while slanting and colliding with the center of the transfer pipe.
° 1 and cover the area sandwiched by the plane passing through the center of the heat exchanger tube, or turn the left and right sides as shown in Figure 1 (b) and connect the plane that passes through the center of the heat exchanger tube and the vertical plane. 60 to the left from
It is formed and arranged so as to cover a range 1'L between a plane extending 175° to the right from the vertical plane and passing through the center of the heat exchanger tube.

帛11. +a ;−II:本発明を用いた流動層ボイ
ラーの特性(図中イリ図A及びBで示す)を示したもの
であるがボイラー負荷70%時のN温度を比較すると従
来技Iil:iによる層内伝熱管では750°Cにまで
低下するが〔同図の(c)部参照〕本発明による層内伝
熱・びでは830℃にとどめることができる。すなわち
従来技術による層内伝熱管(線図、C,D)では7i?
 ・(ラー負荷10%当たりの層温度低下幅33℃にも
達していたが、本発明による層内伝熱管を用いることに
よりホイラー負荷1()9イ当たりの層温度低下幅を7
℃以下に抑えることができ層温度の低下にもとず〈慾暁
性能や脱倫性能の低下を最小限度に抑ズ−ることかでき
る。
Fold 11. +a;-II: This shows the characteristics of the fluidized bed boiler using the present invention (shown in diagrams A and B in the figure), but when comparing the N temperature at 70% boiler load, it is compared with the conventional technology Iil:i. In the case of an intralayer heat transfer tube, the temperature decreases to 750°C [see part (c) of the same figure], but with the intralayer heat transfer tube according to the present invention, the temperature can be kept at 830°C. That is, 7i?
・(The width of the layer temperature drop per 10% wheeler load was as high as 33°C, but by using the in-layer heat exchanger tube according to the present invention, the layer temperature drop width per wheeler load of 1()9) was reduced to 7 degrees Celsius.
℃ or less, and based on the decrease in layer temperature, it is possible to minimize the deterioration of the evaporation performance and escape performance.

;r< 6 fンIは第2の実施例を示す。この実施例
においてはカバーは符号20に示す如く断面が略り字型
となるよう梅成しである。この様に形成すれば平板をほ
ぼ直角に屈曲きせることによりカバーを形成することが
できるので製造費を安価に押えることかできる。
;r<6 fnI indicates the second embodiment. In this embodiment, the cover is plum-shaped so that the cross section is in the shape of an abbreviated character, as shown by the reference numeral 20. By forming the cover in this way, the cover can be formed by bending the flat plate at a substantially right angle, so that manufacturing costs can be kept low.

第7図は第3の実施汐りを示す。カバー21は円筒形で
あり、内部に伝熱管10を収網すると共に両者の中心軸
線がほぼ一致するよう配置する。この実施レリは第1の
実施例の変形例でもあり、第1の実施例では開放空間と
なっている部分が小孔22を多数穿設した多孔部上なっ
ている。この様に形成することにより空間部IGの媒体
の流動化は第1の実、7311例の場合より遅くなり、
特に高負衛域での運転が多い装置において有効である。
FIG. 7 shows the third embodiment. The cover 21 has a cylindrical shape, encases the heat exchanger tube 10 therein, and is arranged so that the central axes of both cover substantially coincide. This embodiment is also a modification of the first embodiment, and in the first embodiment, the open space is above a porous section in which a large number of small holes 22 are formed. By forming it in this way, the fluidization of the medium in the space IG becomes slower than in the case of the first case, 7311,
This is particularly effective for equipment that is frequently operated in high-load areas.

第8図は第4の実施例を示す。カバー23は第2の実施
例とほぼ同様に断面り字形に力尼曲形成しであるが、屈
曲部が鉛直面14上に位置するように、つまりV字形と
なるよう配置する。このうち一方のII!II iMに
対して小孔24を穿設して多孔板部とする。
FIG. 8 shows a fourth embodiment. The cover 23 has a curved cross section in substantially the same manner as in the second embodiment, but is arranged so that the bent portion is located on the vertical plane 14, that is, in a V shape. One of these II! A small hole 24 is made in II iM to form a perforated plate part.

なお、以上の実施例において、カバーの材・質は耐熱性
、耐摩耗性を有する材料であることが好ましく、伝熱管
10を形成する金属材料と同様の材料の外、セラミック
ス等であってもよい。またカバ−1り形状もヒ、ホの実
施12(1に限るものではなく、効l楼はへ・−\) 
jL)ζ下するか゛ト板であっても良いし、カバー自体
を小径の水・l〒を配IMすることにより形成してもよ
い。
In the above embodiments, the material and quality of the cover is preferably a heat-resistant and abrasion-resistant material, and in addition to the same metal material forming the heat exchanger tube 10, ceramics or the like may also be used. good. Also, the shape of the cover 1 is also 12 (not limited to 1, but the effect is hehe - \)
It may be a square plate that lowers the cover, or the cover itself may be formed by distributing small-diameter water l〒.

く効果) 本発tlI−1,’、でよ妊;ブi′り内云払管の執伝
達系数と空塔連)堤と后・り−袴は比(′111シて変
化させることができるので、低f]荀時の層内i、7.
 ?の低下が代かで済み、買時:l+(l ?i’!I
範囲を拡張することができる。
tlI-1,', deyo pregnancy; bui' riinai yukikaku pipe's communication system and kuto ren) tsutsumi and hori-ri-hakama are ratios ('111 shi) and can be changed. Since it is possible, low f] In the layer i of Xun time, 7.
? Buying time: l+(l ?i'!I
The range can be expanded.

1「ヌ1面のj+、I’l単な説明 第1図faJ及びtb)は萬1の実か゛伐倒中最適の状
、9、瞑を示す云@、管所面四、第2図は流、動層ボイ
ラの系統図、第31¥1は従来の層内伝執肯の断面図、
第4図は従来の流動、鳴ボイラにおける。伝執係数、ボ
イラ負荷及び層温度と空塔速度との関係を示す線図、第
5スないし第8図は層内伝執管及びカバーの横1所面図
であり、第5図は第1の、第6図は第2の。
1 simple explanation of j+, I'l on the 1st side of the tree (Fig. 1 faJ and tb) is the optimal state during felling of the 10000 yen fruit, 9. Flow, a system diagram of a moving bed boiler, No. 31 ¥1 is a cross-sectional diagram of a conventional layer transmission,
Figure 4 shows a conventional flow and noise boiler. A diagram showing the relationship between the transmission coefficient, boiler load, layer temperature, and superficial velocity. Figures 5 to 8 are horizontal views of the internal transmission pipe and cover; 1, Figure 6 is the second one.

第7図は第3の、第8図は第4の実施例を各々示し、第
9図(a)ないしくc)は本発明の伝熱管構造における
媒体の状態の変化を示す伝熱管断面図、第10図は従来
型装置と本発明装置の熱伝達係数と空塔速度との171
.1係を示す線図、第11図は、伝熱係数。
FIG. 7 shows the third embodiment, FIG. 8 shows the fourth embodiment, and FIGS. 9(a) to 9(c) are cross-sectional views of the heat transfer tube showing changes in the state of the medium in the heat transfer tube structure of the present invention. , Figure 10 shows the heat transfer coefficient and superficial velocity of the conventional device and the device of the present invention.
.. The diagram showing the 1st factor, Figure 11, is the heat transfer coefficient.

ボイラ負荷1屠温度と空塔速度との関係における従来型
装置と本発明装置との比較を示す線図である。
FIG. 2 is a diagram showing a comparison between a conventional device and the device of the present invention in the relationship between boiler load 1 temperature and superficial velocity.

4・・・iXr、 9rJ)層    10・・・層内
伝熱管13、20.21.23 ”・カバー ド1・・・鉛直面    16・・・空間部22.24
・・・小孔 (0)      (b) 4a 第2図 第3図 (O 第7図  第8図 第9図 第10図
4... iXr, 9rJ) layer 10... In-layer heat exchanger tube 13, 20.21.23''・Covered 1... Vertical surface 16... Space part 22.24
...Small hole (0) (b) 4a Fig. 2 Fig. 3 (O Fig. 7 Fig. 8 Fig. 9 Fig. 10

Claims (1)

【特許請求の範囲】 1、流動層内に伝熱管を配置し流動層内で発生した熱を
回収するものにおいて、一定の空間を介して層内伝熱管
の長手方向にカバーを配置し、カバーと伝熱管との間の
空間内の媒体の充填状態変化により熱伝達係数を空塔速
度とほぼ比例するよう構成したことを特徴とする負荷対
応型伝熱管付き流動層装置。 2、前記カバーを、伝熱管中心軸線を通過する鉛直面に
対して非対象に配置したことを特徴とする特許請求の範
囲第1項記載の負荷対応型伝熱管付き流動層装置。 3、前記カバーを断面円弧状に形成し、鉛直面を中心と
して一方の側に開放空間を形成するよう構成したことを
特徴とする特許請求の範囲第1項または第2項記載の負
荷対応型伝熱管付き流動層装置。 4、前記カバーを断面略L字形に形成し、かつカバーの
一面が前記鉛直面とほぼ直交するよう位置させたことを
特徴とする特許請求の範囲第1項または第2項記載の負
荷対応型伝熱管付き流動層装置。 5、前記カバーを層内伝熱管を囲みかつ同軸心にして円
筒形に形成し、かつカバー側面の一部に小孔を複数個穿
設したことを特徴とする特許請求の範囲第1項または第
2項記載の負荷対応型伝熱管付き流動層装置。 6、前記カバーを断面略V字型に形成し、かつ屈曲部が
前記伝熱管の軸心を含む鉛直面にほぼ位置するよう配置
し、カバーの一方の側面に対して複数の小孔を穿設した
ことを特徴とする特許請求の範囲第1項または第2項記
載の負荷対応型伝熱管付き流動層装置。 7、伝熱管の中心軸線を通過する鉛直面について伝熱管
中心軸線より下部に位置する鉛直面を基準として、この
鉛直面により仕切られた一方の空間に対して約60°、
他方の空間に対して約175°展開した区画内に、カバ
ーが位置するようカバーの形状を定めたことを特徴とす
る特許請求の範囲第1項ないし第6項のいづれかに記載
の負荷対応型伝熱管付き流動層装置。 8、カバーと伝熱管との間の距離を、伝熱管直径の0.
1倍から5倍の間としたことを特徴とする特許請求の範
囲第1項ないし第7項のいづれかに記載の負荷対応型伝
熱管付き流動層装置。 9、前記カバーと管体との間の距離を伝熱管直径の0.
5倍から2倍の間としたことを特徴とする特許請求の範
囲第8項記載の負荷対応型伝熱管付き流動層装置。 10、カバーをセラミックス等の耐摩耗性及び耐熱性を
有する材料により構成したことを特徴とする特許請求の
範囲第1項ないし第9項のいづれかに記載の負荷対応型
伝熱管付き流動層装置。
[Claims] 1. In a device in which heat transfer tubes are disposed within a fluidized bed and heat generated within the fluidized bed is recovered, a cover is disposed in the longitudinal direction of the intrabed heat transfer tube through a certain space, and the cover is 1. A load-adaptive fluidized bed device with heat transfer tubes, characterized in that the heat transfer coefficient is made almost proportional to the superficial velocity by changing the filling state of the medium in the space between the heat transfer tubes and the heat transfer tubes. 2. The load-adaptive fluidized bed apparatus with heat transfer tubes according to claim 1, wherein the cover is arranged asymmetrically with respect to a vertical plane passing through the center axis of the heat transfer tubes. 3. The load-responsive type according to claim 1 or 2, characterized in that the cover is formed to have an arcuate cross-section, and an open space is formed on one side of the vertical plane. Fluidized bed equipment with heat transfer tubes. 4. The load-adaptive type according to claim 1 or 2, wherein the cover is formed to have a substantially L-shaped cross section, and is positioned so that one surface of the cover is substantially perpendicular to the vertical plane. Fluidized bed equipment with heat transfer tubes. 5. The cover is formed into a cylindrical shape that surrounds and coaxially surrounds the intralayer heat exchanger tube, and a plurality of small holes are formed in a part of the side surface of the cover, or 2. The fluidized bed device with load-adaptive heat transfer tubes according to item 2. 6. The cover is formed to have a substantially V-shaped cross section, and the bent portion is arranged so as to be located approximately in a vertical plane that includes the axis of the heat exchanger tube, and a plurality of small holes are bored in one side of the cover. A fluidized bed apparatus with a load-adaptive heat exchanger tube according to claim 1 or 2, characterized in that: 7. About the vertical plane passing through the center axis of the heat exchanger tube, about 60 degrees with respect to one space partitioned by this vertical plane, based on the vertical plane located below the center axis of the heat exchanger tube,
The load-responsive type according to any one of claims 1 to 6, characterized in that the shape of the cover is determined so that the cover is located in a section expanded by about 175 degrees with respect to the other space. Fluidized bed equipment with heat transfer tubes. 8. Set the distance between the cover and the heat exchanger tube to 0.0 of the heat exchanger tube diameter.
8. A fluidized bed apparatus with load-adaptive heat transfer tubes according to any one of claims 1 to 7, characterized in that the load is between 1 and 5 times. 9. Set the distance between the cover and the tube body to 0.0 of the heat exchanger tube diameter.
9. A fluidized bed apparatus with load-adaptive heat exchanger tubes according to claim 8, characterized in that the load is between 5 times and 2 times. 10. The fluidized bed device with a load-responsive heat exchanger tube according to any one of claims 1 to 9, wherein the cover is made of a material having wear resistance and heat resistance, such as ceramics.
JP59197790A 1984-09-22 1984-09-22 Load-responsive fluidized bed equipment with heat transfer tubes Expired - Lifetime JPH063281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197790A JPH063281B2 (en) 1984-09-22 1984-09-22 Load-responsive fluidized bed equipment with heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197790A JPH063281B2 (en) 1984-09-22 1984-09-22 Load-responsive fluidized bed equipment with heat transfer tubes

Publications (2)

Publication Number Publication Date
JPS6176801A true JPS6176801A (en) 1986-04-19
JPH063281B2 JPH063281B2 (en) 1994-01-12

Family

ID=16380392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197790A Expired - Lifetime JPH063281B2 (en) 1984-09-22 1984-09-22 Load-responsive fluidized bed equipment with heat transfer tubes

Country Status (1)

Country Link
JP (1) JPH063281B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266771A2 (en) 1986-11-06 1988-05-11 Babcock-Hitachi Kabushiki Kaisha Boiler control system
JP2002321193A (en) * 2001-04-25 2002-11-05 Kawatetsu Transportation & Technology Co Ltd Cutting/abrasive-sweeping device and execution method using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071802A (en) * 1983-09-27 1985-04-23 川崎重工業株式会社 Fluidized-bed boiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071802A (en) * 1983-09-27 1985-04-23 川崎重工業株式会社 Fluidized-bed boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266771A2 (en) 1986-11-06 1988-05-11 Babcock-Hitachi Kabushiki Kaisha Boiler control system
JP2002321193A (en) * 2001-04-25 2002-11-05 Kawatetsu Transportation & Technology Co Ltd Cutting/abrasive-sweeping device and execution method using it

Also Published As

Publication number Publication date
JPH063281B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
CA1120463A (en) Internal dust recirculation system for a fluidized bed heat exchanger
JP3132662B2 (en) Circulating fluidized bed reactor and operating method thereof
US4279207A (en) Fluid bed combustion
DE69205161T2 (en) PULSATING ATMOSPHERIC FLUID BED COMBUSTION PLANT AND METHOD.
JPS59500383A (en) High speed fluidized bed boiler
US4404755A (en) Fluidized bed heat exchanger utilizing induced diffusion and circulation
CN1232754C (en) Recuperative and conductive heat transfer system
CN104154530A (en) Double-flow-state clean combustion boiler and double-flow-state clean combustion technology
JPS6176801A (en) Fluidized bed device with load corresponding type heat transfer tube
CN104696951B (en) Boiler-in integrated coupled desulfurization and denitrification method for circulating fluidized bed boiler
CA1316413C (en) Internal circulating fluidized bed type boiler and method of controlling the same
US4597362A (en) Fluidized bed combustor
DE3015232A1 (en) METHOD FOR THE COMBUSTION AND DESulphurization of COAL AND BURNER FOR CARRYING OUT THE METHOD
JPS6237608A (en) Method of operating fluidized bed type reactor
US4335785A (en) Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein
CN206582836U (en) A kind of low nitrogen burning fluidized-bed combustion boiler
US4396056A (en) Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein
CN104990073B (en) Method for regulating load of circulating fluidized bed boiler
CN100353116C (en) Cinder cooler for regulating hearth temperature of circulating fluidized bed boiler and its regulation method
JP2664942B2 (en) Fluidized bed boiler
JP2972631B2 (en) Fluidized bed boiler and heat exchange method thereof
Hirota et al. Characteristics of the internally circulating fluidized bed boiler
JPH0419290Y2 (en)
JPS60103214A (en) Fluidized bed burning device
JPS58164914A (en) Starting method for fluidized-bed combustion apparatus