JPS6237608A - Method of operating fluidized bed type reactor - Google Patents
Method of operating fluidized bed type reactorInfo
- Publication number
- JPS6237608A JPS6237608A JP17897986A JP17897986A JPS6237608A JP S6237608 A JPS6237608 A JP S6237608A JP 17897986 A JP17897986 A JP 17897986A JP 17897986 A JP17897986 A JP 17897986A JP S6237608 A JPS6237608 A JP S6237608A
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- air
- gas
- combustion
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1809—Controlling processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/0055—Separating solid material from the gas/liquid stream using cyclones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/38—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
- B01J8/384—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
- B01J8/388—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
- F22B31/0007—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
- F22B31/0015—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type
- F22B31/003—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed for boilers of the water tube type with tubes surrounding the bed or with water tube wall partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B31/00—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
- F22B31/0007—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
- F22B31/0084—Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed with recirculation of separated solids or with cooling of the bed particles outside the combustion bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/02—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
- F23C10/04—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
- F23C10/08—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
- F23C10/10—Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00327—Controlling the temperature by direct heat exchange
- B01J2208/00336—Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
- B01J2208/00353—Non-cryogenic fluids
- B01J2208/00371—Non-cryogenic fluids gaseous
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
^豆皮立夏
本発明は、流動層式反応器を操作する方法に関し、特に
、流動層内での燃料の燃焼によって熱を発生するように
した流動層式反応器の操作方法に関する。[Detailed Description of the Invention] The present invention relates to a method for operating a fluidized bed reactor, and particularly to a method for operating a fluidized bed reactor in which heat is generated by combustion of fuel within the fluidized bed. Concerning operating methods.
且1公豊見
流動層式反応器、燃焼器またはガス化装置は、すでに周
知である。そのような装置においては。1. Fluidized bed reactors, combustors or gasifiers are already well known. In such devices.
石炭等の化石燃料と、石炭の燃焼によって生じる硫黄の
吸収剤を含む粒状物質の層を流動化し、比較的低温での
燃料の燃焼を促進するために粒状物質層に空気を通す。A bed of particulate matter containing a fossil fuel such as coal and an absorbent for sulfur produced by the combustion of the coal is fluidized and air is passed through the bed of particulate matter to promote combustion of the fuel at relatively low temperatures.
蒸気発生器におけるように流動層によって創生される熱
を用いて水を蒸気に変換する場合は、流動層方式は、高
い熱放出量、高い硫黄吸収率、低い窒素酸化物発生量お
よび燃料の融通性などの利点を提供する。When water is converted to steam using the heat created by a fluidized bed, as in a steam generator, fluidized bed systems offer high heat release, high sulfur absorption, low nitrogen oxide production, and low fuel consumption. Offering benefits such as flexibility.
最も典型的な流動層式燃焼装置は、一般に、沸騰状流動
層と称される。そのような流動層においては、粒状物質
の層が有孔空気分配板によって支持され、該分配板の多
数の孔を通して粒状物質層へ燃焼維持空気が導入され、
粒状物質を膨張させ、浮遊流動化させる。反応器が蒸気
発生器である場合には、反応器の壁は、多数の伝熱管に
よって形成されている。流動層内での燃焼によって生じ
た熱は、伝熱管を通って循環する水などの伝熱媒体へ伝
達される。伝熱管は、通常、創生された蒸気から水を分
離するための蒸気ドラムを含む自然循環回路に接続され
ている。蒸気は、発電のためのタービンまたは他の使用
部署へ送給される。The most typical fluidized bed combustion device is commonly referred to as an effervescent fluidized bed. In such a fluidized bed, a bed of particulate material is supported by a perforated air distribution plate, and combustion sustaining air is introduced into the particulate material bed through a number of holes in the distribution plate;
The particulate material is expanded and made to float and fluidize. If the reactor is a steam generator, the walls of the reactor are formed by a number of heat exchanger tubes. Heat generated by combustion within the fluidized bed is transferred to a heat transfer medium, such as water, circulating through heat transfer tubes. The heat exchanger tubes are usually connected to a natural circulation circuit that includes a steam drum for separating water from the created steam. The steam is delivered to turbines or other uses for power generation.
燃焼効率、汚染物質の発生量制御および流動層の燃焼率
の絞り制御を改良する試みとして、迅速流動層プロセス
を用いる流動層式反応器が開発されている。このプロセ
スによれば、通常の沸騰状流動層の固形粒子分が30容
積%であるのに対して、それよりはるかに低い5〜20
容積%の固形粒子分の流動層密度が得られる。このよう
に低密度の迅速流動層を形成することができるのは、粒
状物質の粒度が小さく、粒子の通し速度が高いからであ
り、従って、粒子の循環速度を高くしなければならない
。迅速流動層の速度範囲は、粒子の白肉落下速度と、そ
れ以上の速度では流動層が気力輸送管と化してしまう上
限速度(粒子の通し速度の関数)との間である。従って
、どの粒子循環速度に対しても、それ以上の速度では流
動層が気力輸送の状態と化する上限速度がある。Fluidized bed reactors using rapid fluidized bed processes have been developed in an attempt to improve combustion efficiency, pollutant production control, and throttle control of fluidized bed combustion rates. According to this process, the solid particle content of a normal boiling fluidized bed is 30% by volume, but it is much lower than that of 5-20% by volume.
The fluidized bed density in volume % solid particles is obtained. The formation of such a low-density, rapidly fluidized bed is possible because of the small particle size of the particulate material and the high particle throughput rate, and therefore the particle circulation rate must be high. The speed range of the rapidly fluidized bed is between the falling speed of the white particles and the upper limit speed (a function of the particle passing speed) above which the fluidized bed becomes a pneumatic transport tube. Therefore, for any particle circulation speed, there is an upper limit speed above which the fluidized bed enters a state of pneumatic transport.
迅速流動層に必要とされる粒子の高速循環は、燃料の熱
放出パターンに対する要件を緩和するので、燃焼器やガ
ス化装置内の温度変化を最少限にし、従って窒素酸化物
の発生を抑制する。また、高い粒子装入量は、粒子再循
環のために粒子からガスを分離するための機械的分離器
の効率を高める。その結果、硫黄吸収剤および燃料滞留
時間が延長され、従って、吸収剤および燃料の消費量が
節減される。更に、迅速流動層は、その固有の特性とし
て、通常の沸騰状流動層に比べて高い燃焼率絞り範囲を
有する。The rapid circulation of particles required by rapidly fluidized beds reduces requirements on the heat release pattern of the fuel, thus minimizing temperature changes within the combustor and gasifier, thus reducing nitrogen oxide production. . Also, high particle loading increases the efficiency of the mechanical separator for separating gas from particles for particle recirculation. As a result, the sulfur sorbent and fuel residence time is extended, thus saving sorbent and fuel consumption. Additionally, rapidly fluidized beds have, as an inherent property, a higher combustion rate throttling range than conventional boiling fluidized beds.
しかしながら、迅速流動層方式にも問題がないわけでは
ない。例えば、迅速流動層方式に用いられる粒状燃料お
よび吸収剤は、比較的微細でなければならず、従って、
粒状物質をより微細に破砕し、乾燥しなければならない
ので、処理費用が高くなる。また、硫黄の十分な吸収に
必要とされる層の高さが在来の沸騰状流動層の場合に比
べて高く、それもまた、設備資金および運転費用を増大
させる要因となる。However, rapid fluidized bed systems are not without problems. For example, granular fuels and absorbents used in rapid fluidized bed systems must be relatively fine and therefore
Processing costs are higher because the particulate material must be crushed into finer particles and dried. Additionally, the bed height required for sufficient sulfur absorption is higher than in conventional boiling fluidized beds, which also increases capital and operating costs.
又皿辺1J一
本発明の目的は、広範囲の粒度の燃料および吸収剤粒子
を用いることができる、流動層反応器の操作方法を提供
することである。It is also an object of the present invention to provide a method of operating a fluidized bed reactor in which fuel and absorbent particles of a wide range of particle sizes can be used.
本発明の他の目的は、比較的低い流動層で十分な硫黄吸
収が達成されるようにする流動層操作方法を提供するこ
とである。Another object of the invention is to provide a fluidized bed operating method that allows sufficient sulfur absorption to be achieved with a relatively low fluidized bed.
本発明の更に他の目的は、粒状物質が飽和状態に充満し
た流動層式ボイラー(反応器)内にガスコラム(ガス柱
)が形成されるようにする流動層式反応器の操作方法を
提供することである。Still another object of the present invention is to provide a method for operating a fluidized bed reactor in which a gas column is formed in a fluidized bed boiler (reactor) saturated with particulate matter. It is to be.
本発明の更に他の目的は、ガスコラム中の粒状物質を収
集し、それと実質的に同量の粒状物質を流動床へ戻して
ガスコラムを飽和状態に維持するようにする流動層反応
器操作方法を提供することである。Yet another object of the present invention is to operate a fluidized bed reactor to collect particulate material in a gas column and return substantially the same amount of particulate material to the fluidized bed to maintain the gas column in a saturated state. The purpose is to provide a method.
本発明の他の目的は、ボイラー炉(反応器)内に包含さ
れる粒子の量が在来の沸騰状流動層に比べて多くなるよ
うにする流動層反応器の操作方法を提供することである
。Another object of the present invention is to provide a method of operating a fluidized bed reactor that allows the amount of particles contained within the boiler furnace (reactor) to be increased compared to conventional boiling fluidized beds. be.
本発明の更に他の目的は、流動層内へ導入する空気量を
変更することによって流動層の温度を変更するようにす
る流動層反応器の操作方法を提供することである。Yet another object of the present invention is to provide a method of operating a fluidized bed reactor in which the temperature of the fluidized bed is varied by varying the amount of air introduced into the fluidized bed.
本発明の他の目的は、流動層およびガスコラムに冷却表
面を接触させるようにする流動層反応器の操作方法を提
供することである。Another object of the present invention is to provide a method of operating a fluidized bed reactor that brings a cooling surface into contact with the fluidized bed and gas column.
本発明の更に他の目的は、沸騰状流動層と迅速流動層の
両方の作動原理と利点を組入れた流動層反応器操作方法
を提供することである。Yet another object of the present invention is to provide a method of operating a fluidized bed reactor that incorporates the operating principles and advantages of both boiling fluidized beds and rapid fluidized beds.
上記の目的を達成するための本発明の流動層反応器操作
方法は、流動層の上方に、空気と、流動層からの燃焼ガ
ス生成物と、該空気および燃焼ガス生成物によって連行
されてくる粒状物質との混合物を包含したガスコラムを
形成することを特徴とする。このガスコラムは、粒状物
質で飽和されており、その粒状物質を上記混合物から分
離して流動層内へ戻し、飽和状態を維持するようにする
。The method of operating a fluidized bed reactor of the present invention to achieve the above objects comprises air and combustion gas products from the fluidized bed entrained by the air and combustion gas products above the fluidized bed. It is characterized by forming a gas column containing a mixture with particulate matter. The gas column is saturated with particulate material which is separated from the mixture and returned into the fluidized bed to maintain saturation.
ス」1匹辺」1升
本発明の方法は、自然水循環式蒸気発生装置10(第1
図)の一部分を構成する流動層ボイラー(反応器)に関
連して説明する。蒸気発生装置10は、給水パイプ14
から水を受取り、複数の蒸気パイプを通して蒸気を送給
する蒸気ドラム12を備えている。The method of the present invention uses natural water circulation type steam generator 10 (first
This will be explained in relation to the fluidized bed boiler (reactor) that constitutes a part of the reactor (Fig.). The steam generator 10 includes a water supply pipe 14
A steam drum 12 is provided which receives water from the steam tank and delivers steam through a plurality of steam pipes.
流動層ボイラー(反応器)18は、蒸気ドラム12に近
接して配置されており、直方形のボイラー炉24を構成
する前壁2OA、前壁と平衡に配置された後壁2OB、
および前壁および後壁に対し垂直に延長した両側側壁2
2(図には一方の側壁だけが示されている)を備えてい
る。The fluidized bed boiler (reactor) 18 is arranged close to the steam drum 12, and includes a front wall 2OA that constitutes a rectangular boiler furnace 24, a rear wall 2OB arranged in equilibrium with the front wall,
and two side walls extending perpendicularly to the front and rear walls.
2 (only one side wall is shown in the figure).
ボイラー18の壁20A、20B、22は、いずれも垂
直方向の細長バーによって互いに連結された多数の垂直
管(伝熱管)によってパネル状に形成され、連続した気
密構造を構成する。この種の構造は周知であるから1図
示されておらず、また、ここで詳しく説明する必要もな
い。壁20A。The walls 20A, 20B, 22 of the boiler 18 are all formed in the form of panels of a number of vertical tubes (heat exchanger tubes) connected to each other by vertical elongated bars, forming a continuous airtight structure. This type of structure is not shown in the drawings, as it is well known, and there is no need to explain it in detail here. Wall 20A.
20B、22の冬着の端部は、追って説明する目的のた
めに水平配置の下方ヘッダー26および上方ヘッダー2
8に接続されている。炉24の上方部分をボイラー18
に隣接して配置された水・蒸気分m部32に連通させる
ために、後壁20pを構成している管(図示せず)の幾
つかを後方へ折曲げることによって該後壁の上方部分に
開口30が形成されている3分離部32の下方部分はサ
イクロン分離器34によって構成される。サイクロン分
離器34は、該分離器の周壁と協同する同軸の筒状部分
35を有し、ボイラー18から分離器に流入するガスの
ための環状流路を画定する。ガスは、この環状流路即ち
環状室内を渦巻状に流れ、帯同している粒子を遠心力に
よって分離し、ガス成分は分離部32の上方部分へ上昇
する。一方、分離された粒子は、分離器34の下方ホッ
パ一部分へ落下し、追って詳述するように再循環導管3
6を通してボイラー18内へ戻される。The ends of the winter clothing 20B, 22 are arranged horizontally in a lower header 26 and an upper header 2 for purposes to be explained later.
8 is connected. The upper part of the furnace 24 is connected to the boiler 18
In order to communicate with the water/steam portion m 32 disposed adjacent to the rear wall 20p, some of the pipes (not shown) constituting the rear wall 20p are bent rearward to connect the upper portion of the rear wall The lower part of the three-separator section 32, in which the opening 30 is formed, is constituted by a cyclone separator 34. The cyclone separator 34 has a coaxial cylindrical portion 35 that cooperates with the peripheral wall of the separator to define an annular flow path for gas entering the separator from the boiler 18. The gas flows spirally in this annular flow path or annular chamber, separating the entrained particles by centrifugal force, and the gas component rises to the upper part of the separating section 32. Meanwhile, the separated particles fall into a portion of the lower hopper of the separator 34, and the recirculation conduit 3, as will be described in detail below.
6 and returned into the boiler 18.
分離部32に隣接して熱回収画室38が形成されており
、該画室の上方壁部分には分離部32からの清浄ガスを
受取る開口39が形成されている。A heat recovery compartment 38 is formed adjacent to the separator 32 and has an opening 39 formed in the upper wall portion of the compartment for receiving clean gas from the separator 32 .
熱回収画室38内のガス流路内に1対の過熱器40A、
40Bが配置されている。各過熱器は、そのまわりを通
る清浄ガスから熱を回収するために慣用の態様で蒸気を
通す流体回路を形成するように連結された複数の管から
成っている。A pair of superheaters 40A in the gas flow path in the heat recovery compartment 38,
40B is placed. Each superheater consists of a plurality of tubes connected to form a fluid circuit through which steam passes in a conventional manner to recover heat from the clean gas passing therearound.
熱回収画室38内のボイラーバンクは、蒸気ドラム12
を水ドラム44に接続する一連の平行管42によって構
成されている。平行管42は、後述するような条件下に
おいて水ドラム44へ水を移送する役割を果す。管42
に隣接してガス通路が設けられ、ガス出口45が設けら
れている。The boiler bank in the heat recovery compartment 38 includes a steam drum 12
It is constituted by a series of parallel tubes 42 connecting the water drum 44 to a water drum 44. Parallel tube 42 serves to transfer water to water drum 44 under conditions as described below. tube 42
A gas passage is provided adjacent to and a gas outlet 45 is provided.
分離部32の上方部分および熱回収画室38を構成する
壁も、ボイラー18の壁と同様に、垂直方向の細長バー
即ちフィンによって互いに連結された多数の垂直管によ
って形成された連続的なパネル構造である。これらの壁
の上端は、複数の水平配置の上方ヘッダー46に接続さ
れ、それらの壁の下端は、複数の水平配置の下方ヘッダ
ー48(図には1つだけが示されている)に接続されて
いる。The walls constituting the upper part of the separation section 32 and the heat recovery compartment 38 are also, like the walls of the boiler 18, a continuous panel structure formed by a number of vertical tubes connected to each other by vertical elongated bars or fins. It is. The upper ends of these walls are connected to a plurality of horizontally arranged upper headers 46, and the lower ends of these walls are connected to a plurality of horizontally arranged lower headers 48 (only one shown). ing.
図には示されていないが、蒸気ドラム12および/また
は水ドラム44をヘッダー26.28゜46.48に接
続するために下降管等を含む水流回路が設けられており
、蒸気ドラム12.水ドラム44、ボイラー18の壁、
分離部32の壁および熱回収画室38の壁を通しての流
体回路を構成している。これは慣用の構成であるから、
これ以上の説明は不要である。Although not shown in the figures, a water flow circuit including downcomers or the like is provided to connect the steam drum 12 and/or the water drum 44 to the header 26.28.46.48, including downcomers or the like. water drum 44, wall of boiler 18,
A fluid circuit is established through the walls of the separation section 32 and the walls of the heat recovery compartment 38 . Since this is a conventional configuration,
No further explanation is necessary.
強制送風機等の慣用の手段によって適当な空気供給源(
図示せず)からボイラー18内へ加圧空気を導入するた
めにボイラーの下方部分に充気室5oが配設されている
。A suitable air supply source (
An air chamber 5o is provided in the lower part of the boiler for introducing pressurized air into the boiler 18 (not shown).
ボイラー18の燃焼室の下方部分に充気室50の上方に
有孔空気分配板52が支持されている。A perforated air distribution plate 52 is supported above the plenum chamber 50 in the lower part of the combustion chamber of the boiler 18 .
充気室50を通して導入された空気は、空気分配板52
の多数の孔を通って上昇する。必要ならば。The air introduced through the plenum chamber 50 passes through the air distribution plate 52
rises through the numerous pores of the If necessary.
この空気は、空気予熱器(図示せず)によって予備加熱
しておくことができ、空気流量制御ダンパーによって適
当に流量を調節することができる。This air can be preheated by an air preheater (not shown), and the flow rate can be adjusted appropriately by an air flow control damper.
空気分配板52は、一般に粉砕石炭と、該石炭の燃焼に
よって生じる硫黄を吸収するための石灰石またはドロマ
イトとから成る粒状物質の層54を支持するようになさ
れている。The air distribution plate 52 is adapted to support a layer 54 of particulate material, generally consisting of pulverized coal and limestone or dolomite to absorb the sulfur produced by the combustion of the coal.
ボイラー18の壁20A、20B、24の下方部分の内
側面は、空気分配板52から上方に一定の高さ範囲に亘
って耐火材56または他の適当な断熱材によって内張す
されている。The inner surfaces of the lower portions of the walls 20A, 20B, 24 of the boiler 18 are lined with refractory material 56 or other suitable insulating material for a height range above the air distribution plate 52.
粒状燃料(粉砕石炭)を層54の上面上へ導入するため
に燃料分配器58が前壁20Aを貫通して延設されてい
る。粒状の硫黄吸収剤(石灰石等)および/または追加
の粒状燃料を層54上へ分配するための分配器を必要に
応じて壁20A、20B、22に設けることができる。A fuel distributor 58 extends through the front wall 20A for introducing granular fuel (crushed coal) onto the top surface of the bed 54. Distributors for distributing particulate sulfur absorbent (such as limestone) and/or additional particulate fuel onto bed 54 may be provided in walls 20A, 20B, 22 as desired.
使用ずみの燃料および吸収剤を層54から外部設備へ排
出するための排出管60が、空気分配板52に設けられ
た開口に整合し、充気室50を貫通して延長している。A discharge pipe 60 for discharging spent fuel and absorbent from bed 54 to external equipment aligns with the opening in air distribution plate 52 and extends through plenum chamber 50 .
後述する目的のために二次空気をボイラー内へ導入する
ための多数の空気ポート62が層54から所定の高さの
ところで、側壁22に穿設されている。必要ならば、追
加の空気ポートを壁20A。A number of air ports 62 are drilled in the side wall 22 at a predetermined height from the layer 54 for introducing secondary air into the boiler for purposes described below. If necessary, add additional air ports to wall 20A.
20Bにも、また、いろいろな異なる高さのところに穿
設することができる。20B can also be drilled at various different heights.
蒸気発生装置10の作動に当っては、空気を充気室50
内へ導入することによって層54内の粒状物質の一部分
を着火させる。若干量の始動用石炭を分配器58を通し
て導入し、層54の粒状物質の上面に分散させる。層5
4内の石炭および始動用石炭に層54内に配設されたバ
ーナ(図示せず)によって点火する。石炭の燃焼が進む
につれて、比較的高い圧力および速度で追加の空気を充
気室50へ導入する。別法として1層54を充気室50
内に配置したバーナによって加熱することもできる。充
気室50を通して導入される一次空気は、炉24の下方
部分内の燃焼が不完全燃焼となるように、完全燃焼に必
要な総空気量より少ない量とする。従って、炉24の下
方部分は、還元状態のもとで作動し、完全燃焼に必要な
残りの空気(二次空気)は空気ポート62を通して供給
される。充気室50を通して供給される空気量の範囲は
、完全燃焼に必要な量の40%〜90%とすることがで
き、残りの空気(60%〜10%)はボート62を通し
て供給する。When operating the steam generator 10, air is pumped into the aeration chamber 50.
A portion of the particulate material within layer 54 is ignited by introduction into the layer 54 . A quantity of starting coal is introduced through distributor 58 and dispersed on top of the granular material in bed 54 . layer 5
The coal in 4 and starting coal are ignited by a burner (not shown) disposed in bed 54 . As coal combustion progresses, additional air is introduced into the plenum chamber 50 at a relatively high pressure and velocity. Alternatively, one layer 54 can be added to the air chamber 50.
It can also be heated by a burner placed inside. The amount of primary air introduced through the plenum chamber 50 is less than the total amount of air required for complete combustion so that combustion within the lower portion of the furnace 24 is incomplete. Thus, the lower portion of the furnace 24 operates under reducing conditions and the remaining air (secondary air) required for complete combustion is supplied through the air port 62. The amount of air supplied through the plenum chamber 50 may range from 40% to 90% of the amount required for complete combustion, with the remaining air (60% to 10%) supplied through the boat 62.
充気室50がら空気分配板52を通して導入される高圧
、高速の燃焼維持空気は、石炭灰および使用ずみ石灰石
の微粒子を含む比較的微細な粒状物質を燃焼生成ガス内
に帯同させ、該ガスによって気力輸送させる。この帯同
された粒子とガスの混合物は、炉24内を上昇して帯同
粒子を含有したガスコラム(ガス柱)を形成し、ボイラ
ー18から開口30を通って分離部32内へ流入する。The high-pressure, high-velocity combustion sustaining air introduced into the plenum chamber 50 through the air distribution plate 52 entrains relatively fine particulate matter, including coal ash and spent limestone particles, into the combustion product gas, causing the gas to Transport energy. This mixture of entrained particles and gas rises within the furnace 24 to form a gas column containing the entrained particles, and flows from the boiler 18 through the opening 30 into the separation section 32 .
本発明の1つの特徴によれば、層54の上方で炉24内
に形成されるガスコラムを粒子即ち固形分で飽和させる
。即ち、ガスコラムに、それが帯同しうる最大限の量の
粒子を帯同させる。この最大限の粒子(固形分)帯同量
は、流動化空気速度の関数として第2図のグラフに示さ
れている6第2図のグラフを適用する場合、ガスによっ
て持運ぶことができる粒度の流動層物質の割合と、比較
的粗大な粒子の部分的な分離を考慮に入れなげればなら
ない。第2図に示されるように、12ft/sec、(
3,66m/5ee)の流動化空気速度における固形分
(即ち粒子)帯同量は、ガスI Qb(0,45kg)
当り約28 Q b(12,6kg)であるが、上記の
考慮を算入すると、約10 ff b(4,5kg)と
なる、ガスコラムが粒子で飽和される結果として、かな
りの量の微細粒子が層54内に保持される。ボイラー1
8即ち反応容器内に堆積する粒子の容量は、比較的多く
、最大容量で作動している場合、容器の総容積の20%
〜30%程度である。According to one feature of the invention, the gas column formed in furnace 24 above layer 54 is saturated with particles or solids. That is, the gas column is entrained with the maximum amount of particles that it can entrain. This maximum particle (solids) loading is shown in the graph of Figure 2 as a function of fluidizing air velocity.6 When applying the graph of Figure 2, the particle size that can be carried by the gas is The proportion of fluidized bed material and the partial separation of relatively coarse particles must be taken into account. As shown in Fig. 2, 12ft/sec, (
The same amount of solids (i.e. particles) at a fluidizing air velocity of 3,66 m/5ee) is gas I Qb (0,45 kg)
As a result of the gas column being saturated with particles, a significant amount of fine particles is retained within layer 54. Boiler 1
8, the volume of particles deposited in the reaction vessel is relatively high, 20% of the total volume of the vessel when operating at maximum capacity.
It is about 30%.
粗大粒状物質は、微細粒子の一部と一緒に層54の下方
部分内に堆積し、微細粒子の残りの部分はガスコラムを
通って上昇する。ガスコラムの長手に沿って移動し、ボ
イラー18から開口30を通って流出した微細粒子は、
分離器34内で燃焼生成ガス(単に、「燃焼ガス」とも
称する)から分離され、再循環導管36を通して流動M
54へ再循環される。この再循環された微細粒子と、分
配器58を通して導入される追加の粒状燃料とにより、
層54の上方に飽和ガスコラム(即ち、微細粒子で飽和
されたガスコラム)を維持する。換言すれば、層54の
上方のガスコラムを微細粒子で飽和された状態に維持す
る。The coarse particulate material is deposited in the lower part of layer 54 along with a portion of the fine particles, and the remaining portion of the fine particles rise through the gas column. The fine particles traveling along the length of the gas column and exiting the boiler 18 through the opening 30 are
A stream M is separated from the combustion product gases (also referred to simply as "combustion gases") in a separator 34 and passed through a recirculation conduit 36.
54. With this recycled fines and additional particulate fuel introduced through distributor 58,
A saturated gas column (ie, a gas column saturated with fine particles) is maintained above layer 54. In other words, the gas column above layer 54 is kept saturated with fine particles.
水は、給水パイプ14を通して蒸気ドラム12へ導入さ
れ、該ドラム内でドラム内の水と混合する。水は、ドラ
ム12から上述したように、管42を通って下方へ水ド
ラム44へ導かれ、下降管等を通って、下方ヘッダー2
6およびボイラー壁20A、20B、22の管内に流入
する。流動層、ガスコラムおよびガスコラムによって連
行される粒子からの熱により、ボイラー壁の管内を流れ
る水の一部分が蒸気に変換されて蒸気と水の混合物がそ
れらの管内を上昇し、上方ヘッダー46内に集められ、
蒸気ドラム12へ移送される。蒸気ドラム12内で蒸気
と水が慣用の態様で分離され、分離された蒸気は蒸気ド
ラム12から蒸気パイプ16を通して蒸気タービン等へ
導かれる。一方、分離された水は、給水パイプ14から
の新しい給水と混合し、上述したようにして流体回路を
通して再循環される。炉内24内には、流動層およびガ
スコラムに接触するように、好ましくは多数の垂直管か
ら成る仕切壁の形とした追加の冷却面を設けることもで
きる。また、ガスコラムだけに接触する蒸気冷却型(蒸
気によって冷却される)の冷却面を設けることもできる
。Water is introduced into the steam drum 12 through the water supply pipe 14, where it mixes with the water in the drum. Water is directed from drum 12 downwardly through pipe 42 to water drum 44, as described above, through downcomers, etc., to lower header 2.
6 and into the tubes of the boiler walls 20A, 20B, 22. Heat from the fluidized bed, the gas column and the particles entrained by the gas column converts a portion of the water flowing in the tubes of the boiler wall to steam and a mixture of steam and water rises in those tubes and into the upper header 46. were gathered in
It is transferred to the steam drum 12. Steam and water are separated in the steam drum 12 in a conventional manner, and the separated steam is conducted from the steam drum 12 through a steam pipe 16 to a steam turbine or the like. Meanwhile, the separated water mixes with fresh water supply from the water supply pipe 14 and is recirculated through the fluid circuit in the manner described above. Additional cooling surfaces, preferably in the form of partitions consisting of a number of vertical tubes, can also be provided in the furnace interior 24 in contact with the fluidized bed and the gas column. It is also possible to provide a steam-cooled (cooled by steam) cooling surface that contacts only the gas column.
分離部32からの清浄な熱ガスは、過熱器40A、40
Bおよび管42を被って流れ、過熱器内の蒸気を過熱す
るとともに、管42内を流れる水に熱を与えた後、出口
45を通って蒸気発生装置から流出する。充気室50へ
導入さ九る空気が10気圧程度の比較的高い圧力である
場合は、出口39からのガスをガスタービン等(図示せ
ず)へ差向けることができる。The clean hot gas from the separation section 32 is sent to the superheaters 40A and 40.
B and flows over tube 42, superheating the steam in the superheater and imparting heat to the water flowing in tube 42 before exiting the steam generator through outlet 45. If the air introduced into the plenum chamber 50 is at a relatively high pressure, on the order of 10 atmospheres, the gas from the outlet 39 can be directed to a gas turbine or the like (not shown).
流動層54の温度は、蒸気タービンの負荷の変化に応答
して、第3図のグラフに示されるように、充気室50お
よび空気ボート62を通してボイラーへ供給される空気
の量を変更することによって所定の許容値に維持される
。第3図のグラフは、負荷、温度および充気室50へ供
給される空気量の、完全燃焼に必要な理論空気量に対す
る百分率の関数としてそれぞれの変化を表わしている。The temperature of the fluidized bed 54 changes the amount of air supplied to the boiler through the plenum chamber 50 and the air boat 62, as shown in the graph of FIG. 3, in response to changes in the steam turbine load. maintained at a predetermined tolerance by The graph of FIG. 3 shows the variation of the load, temperature and amount of air supplied to the charge chamber 50 as a percentage of the theoretical amount of air required for complete combustion.
第3図に示される曲線Aは、ボイラー18内のガスコラ
ムか開口30を通って流出するガスと帯同粒子との混合
物の温度と負荷の関係を表わす。温度は負荷の増大と共
に高められる。Curve A shown in FIG. 3 represents the temperature versus load of a mixture of gas and entrained particles exiting the gas column in boiler 18 through opening 30. The temperature increases with increasing load.
曲線Bは、流動層の温度と負荷とが実質的に比例関係に
あることを示す。曲線Cは、負荷の変化と、流動層へ供
給される空気量の、完全燃焼のための理論的空気所要量
に対する割合(百分率)の変化との関係を示す。Curve B shows that fluidized bed temperature and load are substantially proportional. Curve C shows the relationship between the change in load and the change in the percentage of the amount of air supplied to the fluidized bed relative to the theoretical air requirement for complete combustion.
以上の説明から分かるように、本発明の方法は、沸騰状
流動層方式と迅速流動層方式の両方の作動原理を組入れ
たものであり、それによって多くの利点をもたらす。例
えば、流動層内の粒状物質の側方混合の量が比較的多い
ことは、沸騰状流動層によって達成される混合とほぼ同
じである。しかも、迅速流動層の場合におけるように、
微細粒状物質が反応帯域内に保持され、広範囲の粒度を
有する燃料および硫黄吸収剤を利用することができる。As can be seen from the above description, the method of the present invention incorporates the operating principles of both boiling fluidized bed and rapid fluidized bed systems, thereby providing many advantages. For example, the relatively high amount of lateral mixing of particulate material within a fluidized bed is approximately the same as that achieved by a boiling fluidized bed. Moreover, as in the case of rapid fluidized beds,
Fine particulate material is maintained within the reaction zone and fuels and sulfur absorbers having a wide range of particle sizes can be utilized.
しかも、迅速流動層の場合に比べて、休止時の層の高さ
を低くすることかでき、流動化され膨張したときの層の
高さをはるかに低くすることができる。このことと、流
動層の上方に空気ポート62を通してオーバーファイア
(「火炎の上方の」の意味)空気が放出されることとが
相俟って、空気送給ファンの所要動力が小さくてすみ、
流動層の圧力変動によって生じる機械的な応力を減少さ
せる。更に、特に燃焼反応を含む、粒子とガスとの間の
反応の大部分がオーバーファイア空気ポート62の下方
でのみ生じるので、−酸化炭素および炭化水素の放出量
を最少限にする。空気を、充気室50を通しての一次空
気と、空気ボート62を通しての二次空気(オーバーフ
ァイア空気)との二段階で供給することは、上記の利点
に加えて窒素酸化物の放出量を減少させる利点をもたら
す。Moreover, compared to the case of a rapidly fluidized bed, the height of the bed when at rest can be lowered, and the height of the bed when fluidized and expanded can be much lower. This, combined with the release of overfire (meaning "above the flame") air through air ports 62 above the fluidized bed, reduces the power requirements of the air delivery fan.
Reduces mechanical stress caused by pressure fluctuations in the fluidized bed. Additionally, most of the reactions between particles and gases, including particularly combustion reactions, occur only below the overfire air port 62 - minimizing carbon oxide and hydrocarbon emissions. Supplying air in two stages, primary air through the plenum chamber 50 and secondary air (overfire air) through the air boat 62, reduces nitrogen oxide emissions in addition to the above advantages. Bringing benefits to the market.
更に、壁面が還元ガスに露呈される。オーバーファイア
空気より下方、およびその他の腐蝕し易い個所には、好
ましくは高い伝導性の耐火材を用いることができる。ま
た、常時飽和ガスコラムが維持されることにより固形粒
子の循環景が制限されるので、粒子再循環系による粒子
循環流量の積極的な制御を必要としない。更に、再循環
系および流動層タップから比較的少足の固形粒子を抽出
することができるようにしたことにより系内の粗大粒子
および微細粒子の滞留時間をそれらの反応特性に適合す
るように調節することができる。Furthermore, the wall surface is exposed to the reducing gas. Preferably, highly conductive refractory materials can be used below the overfire air and other corrosion-prone locations. Further, since the circulation of solid particles is restricted by maintaining a saturated gas column at all times, active control of the particle circulation flow rate by a particle recirculation system is not required. Furthermore, by being able to extract relatively small amounts of solid particles from the recirculation system and fluidized bed tap, the residence time of coarse and fine particles in the system can be adjusted to suit their reaction characteristics. can do.
添付図には具体的に示されていないが、当業者には明ら
かなように、他の追加の必要な機器および構造部材が設
けられ、それらと上述した各構成部材とが、完全な作動
装置を構成するように組合わされる。Although not specifically shown in the accompanying drawings, it will be apparent to those skilled in the art that other additional necessary equipment and structural elements are provided and that they and each of the above-described components form a complete operating system. are combined to form a
また、本発明の方法には、発明の範囲から逸脱すること
なく、いろいろな変更が可能である。例えば、ボイラー
へ供給する燃料は、」二連したような粒状物ではなく、
液状またはガス状であってもよい。Furthermore, various modifications can be made to the method of the invention without departing from the scope of the invention. For example, the fuel supplied to the boiler is not ``double particulate matter'' but
It may be liquid or gaseous.
第コア図は自然循環式蒸気発生装置の一部を構成する大
気圧式流動層燃焼部の概略断面図、第2図は流動化空気
の速度と粒子帯同量の関係を示すグラフ、第3図は負荷
と、空気の割合(%)と、層の温度と、炉の出口温度と
の関係を示すグラフである。
18・・流動層ボイラー、30・・開口、32・・分離
部、34・・サイクロン分離器、36・・再循環導管、
50・・充気室、62・・空気ポート。
特許出願人 フォスター・ホイーラー・エナージイ・
コーポレイション
代理人弁理士 兼 坂 直間
酒 井 −同 兼 坂
繁1B・・流中し管ボイラー
、30・・閉口The core diagram is a schematic cross-sectional view of the atmospheric pressure fluidized bed combustion section that constitutes a part of the natural circulation steam generator, Figure 2 is a graph showing the relationship between the velocity of fluidized air and the amount of particle band, and Figure 3 is a graph showing the relationship between load, air ratio (%), bed temperature, and furnace outlet temperature. 18... Fluidized bed boiler, 30... Opening, 32... Separation section, 34... Cyclone separator, 36... Recirculation conduit,
50...Air chamber, 62...Air port. Patent applicant Foster Wheeler Energy
Corporation Representative Patent Attorney Naoma Saka
Sakai - Kanesaka
Shuttle 1B...Sink tube boiler, 30...Closed
Claims (1)
層内の燃料の燃焼またはガス化反応を維持するのに十分
な速度で該層内へ空気を導入し、該容器内に、前記空気
と、前記燃焼のガス生成物と、該空気および燃焼ガス生
成物によって連行される粒状物質との混合物を含むガス
コラムを形成させ、該温合物から粒状物質を分離し、該
分離された粒状物質を前記層へ戻し、前記ガスコラムを
ガスにより連行可能な粒状物質で飽和させるのに十分な
量の連行可能粒状物質を前記層内およびガスコラム内に
維持することを特徴とする流動層式反応器の操作方法。forming a layer of solid particulate material within the container, introducing air into the layer at a rate sufficient to fluidize the layer and sustain a combustion or gasification reaction of the fuel within the layer; forming a gas column containing a mixture of the air, the gas products of combustion, and particulate matter entrained by the air and the gas products of combustion; separating the particulate matter from the mixture; returning the entrained particulate matter to the bed and maintaining an amount of entrainable particulate matter in the bed and in the gas column sufficient to saturate the gas column with gas-entrainable particulate matter. How to operate a fluidized bed reactor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76311685A | 1985-08-07 | 1985-08-07 | |
US763116 | 1985-08-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6237608A true JPS6237608A (en) | 1987-02-18 |
JPH0343524B2 JPH0343524B2 (en) | 1991-07-02 |
Family
ID=25066920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17897986A Granted JPS6237608A (en) | 1985-08-07 | 1986-07-31 | Method of operating fluidized bed type reactor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS6237608A (en) |
CA (1) | CA1274422A (en) |
ES (1) | ES8704613A1 (en) |
GB (1) | GB2178674B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06288512A (en) * | 1993-03-31 | 1994-10-11 | Narita Techno:Kk | Method of igniting boiler and device for igniting boiler |
WO2008102415A1 (en) * | 2007-02-22 | 2008-08-28 | Ihi Corporation | Method of gasifying gasification fuel and apparatus therefor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3702089C1 (en) * | 1987-01-24 | 1988-06-30 | Kernforschungsanlage Juelich | Fluid bed furnace for waste incineration |
DE3905553A1 (en) * | 1989-02-23 | 1990-08-30 | Metallgesellschaft Ag | SWIRLING COMBUSTION CHAMBER |
FR2668815B1 (en) * | 1990-11-02 | 1993-04-09 | Chauffe Cie Gle | METHOD FOR INCINERATING URBAN WASTE IN A UNIT COMPRISING A FLUIDIZED BED FIREPLACE AND A BOILER, WITH INTRINSIC PURIFICATION OF SMOKE. |
US5072696A (en) * | 1990-12-11 | 1991-12-17 | Foster Wheeler Energy Corporation | Furnace temperature control method for a fluidized bed combustion system |
US5237963A (en) * | 1992-05-04 | 1993-08-24 | Foster Wheeler Energy Corporation | System and method for two-stage combustion in a fluidized bed reactor |
FI92628B (en) * | 1993-06-01 | 1994-08-31 | Ahlstroem Oy | Reactor with circulating fluidized bed and method for treating a gas stream therein |
US6039008A (en) * | 1999-02-01 | 2000-03-21 | Combustion Engineering, Inc. | Steam generator having an improved structural support system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728046A (en) * | 1980-07-28 | 1982-02-15 | Nissan Chem Ind Ltd | Preparation of 4-substituted indole |
JPS57184804A (en) * | 1981-05-08 | 1982-11-13 | Mitsui Shipbuilding Eng | Feeder for air |
JPS59170605A (en) * | 1983-03-18 | 1984-09-26 | Mitsubishi Heavy Ind Ltd | Fluidized-bed combustion furnace |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI62468C (en) * | 1981-08-24 | 1983-01-10 | Ahlstroem Oy | VIRVELBAEDDSREAKTOR |
US4469050A (en) * | 1981-12-17 | 1984-09-04 | York-Shipley, Inc. | Fast fluidized bed reactor and method of operating the reactor |
US4426277A (en) * | 1982-05-14 | 1984-01-17 | Exxon Research And Engineering Co. | Low severity fluid coking process |
FI66297C (en) * | 1982-11-15 | 1984-10-10 | Ahlstroem Oy | ANORDINATION FOR AVAILABLE FASHION COMPONENTS FOR ROVERGASER |
-
1986
- 1986-06-04 CA CA000510807A patent/CA1274422A/en not_active Expired - Lifetime
- 1986-06-10 GB GB8614035A patent/GB2178674B/en not_active Expired
- 1986-06-25 ES ES556770A patent/ES8704613A1/en not_active Expired
- 1986-07-31 JP JP17897986A patent/JPS6237608A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5728046A (en) * | 1980-07-28 | 1982-02-15 | Nissan Chem Ind Ltd | Preparation of 4-substituted indole |
JPS57184804A (en) * | 1981-05-08 | 1982-11-13 | Mitsui Shipbuilding Eng | Feeder for air |
JPS59170605A (en) * | 1983-03-18 | 1984-09-26 | Mitsubishi Heavy Ind Ltd | Fluidized-bed combustion furnace |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06288512A (en) * | 1993-03-31 | 1994-10-11 | Narita Techno:Kk | Method of igniting boiler and device for igniting boiler |
WO2008102415A1 (en) * | 2007-02-22 | 2008-08-28 | Ihi Corporation | Method of gasifying gasification fuel and apparatus therefor |
AU2007347601B2 (en) * | 2007-02-22 | 2010-09-23 | Ihi Corporation | Method of gasifying gasification fuel and apparatus therefor |
US8257453B2 (en) | 2007-02-22 | 2012-09-04 | Ihi Corporation | Method and device for gasifying gasification fuel |
Also Published As
Publication number | Publication date |
---|---|
ES556770A0 (en) | 1987-04-01 |
CA1274422A (en) | 1990-09-25 |
ES8704613A1 (en) | 1987-04-01 |
GB2178674B (en) | 1989-08-23 |
JPH0343524B2 (en) | 1991-07-02 |
GB2178674A (en) | 1987-02-18 |
GB8614035D0 (en) | 1986-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4716856A (en) | Integral fluidized bed heat exchanger in an energy producing plant | |
EP0247798B1 (en) | Fluidised bed reactor and method of operating such a reactor | |
EP0092622B1 (en) | Fast fluidized bed reactor and method of operating the reactor | |
CA1311156C (en) | Fluidized bed reactor utilizing channel separators | |
US5500195A (en) | Method for reducing gaseous emission of halogen compounds in a fluidized bed reactor | |
US4809625A (en) | Method of operating a fluidized bed reactor | |
JPH0743230B2 (en) | Fluidized bed reactor apparatus and method with heat exchanger | |
GB2093725A (en) | Hybrid fluidized bed combuster | |
US4951612A (en) | Circulating fluidized bed reactor utilizing integral curved arm separators | |
US5269263A (en) | Fluidized bed reactor system and method of operating same | |
CA1166010A (en) | Integral vapor generator/gasifier system | |
US5570645A (en) | Fluidized bed system and method of operating same utilizing an external heat exchanger | |
JPH0798163B2 (en) | Horizontal cyclone separator for fluidized bed reactor | |
US5095854A (en) | Fluidized bed reactor and method for operating same utilizing an improved particle removal system | |
US4809623A (en) | Fluidized bed reactor and method of operating same | |
US5237963A (en) | System and method for two-stage combustion in a fluidized bed reactor | |
US4597774A (en) | Method for improving the operation of a fluidized bed | |
US4802445A (en) | Parallel staged fluidized bed combustor | |
JPS6237608A (en) | Method of operating fluidized bed type reactor | |
JPH05149508A (en) | Fluidized-bed combustion method utilizing supply fine and coarse adsorbent | |
US4955190A (en) | Method for driving a gas turbine utilizing a hexagonal pressurized fluidized bed reactor | |
JPH05223210A (en) | Fluidized-bed steam reactor including two horizontal cyclone separator and internal recirculating heat exchanger | |
CN1086300A (en) | The horizontal cyclone separator that is used for fluidized-bed reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |