JPS6176786A - Rotary vane type compressor for cooling and refrigerating - Google Patents

Rotary vane type compressor for cooling and refrigerating

Info

Publication number
JPS6176786A
JPS6176786A JP19819384A JP19819384A JPS6176786A JP S6176786 A JPS6176786 A JP S6176786A JP 19819384 A JP19819384 A JP 19819384A JP 19819384 A JP19819384 A JP 19819384A JP S6176786 A JPS6176786 A JP S6176786A
Authority
JP
Japan
Prior art keywords
pressure refrigerant
suction port
low
vane
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19819384A
Other languages
Japanese (ja)
Inventor
Kazuhisa Makita
和久 牧田
Hideo Asano
淺野 秀夫
Hidekazu Usada
英一 羽佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19819384A priority Critical patent/JPS6176786A/en
Publication of JPS6176786A publication Critical patent/JPS6176786A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To ensure sufficient suction of low pressure refrigerant into compressor while to reduce the size by arranging the suction port for low pressure refrigerant in the rotary direction of vane while splitting into two and providing check valves at said suction ports. CONSTITUTION:The suction port for low pressure refrigerant is splitted into rear suction port 11a and front suction port 11b which are arranged in the rotary direction of a vane 40 while check valves 60 are provided at said ports 11a, 11b. At first, the suction port 11a will open to a working chamber 41a through rotation of vane 40 to lead in low pressure refrigerant. Here, the suction port 11b is opening to the front chamber 41d but the check valve 60 will block the high pressure refrigerant from flowing into the rear chamber 41a. Upon further rotation of vane 40, the suction port 11b will also open to the rear working chamber 41a thus to suck the low pressure refrigerant through two suction ports 11a, 11b into the working chamber 41a. Consequently, sufficient supply of low pressure refrigerant into compressor is ensured while the size is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、低圧冷媒用の吸入口と高圧冷媒用の吸入口と
を有し、吸入行程において最初に低圧冷媒が吸入され次
に高圧冷媒が吸入されるようになっているロータリーベ
ーン形圧縮機に係り、冷蔵冷凍用蒸発器と冷房用蒸発器
とに単一の圧縮はで冷媒を循環させるようにした形式の
冷房・冷凍装置に好適なものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention has a suction port for a low-pressure refrigerant and a suction port for a high-pressure refrigerant. This rotary vane compressor is designed to suck in refrigerant, and is suitable for cooling and freezing equipment in which refrigerant is circulated through a single compression evaporator between a refrigerating and freezing evaporator and a cooling evaporator. It is something.

〔従来の技術〕     ′ 従来周知のように、ロータリーベーン形圧縮成はシリン
ダボアを有する本体と、該本体内に回転自在に取付けら
れたロータと、該ロータのベーン溝に開動自在に取付け
られて本体及びロータと協働して作用室を形成するベー
ンとを有し、ロータの回転によるベーンの回動に伴って
作用室の容積が変化することにより流体の吸入と圧縮と
が行われる。
[Prior Art] As is well known in the art, rotary vane compression molding consists of a main body having a cylinder bore, a rotor rotatably mounted in the main body, and a main body mounted in a vane groove of the rotor so as to be openable. and a vane that cooperates with the rotor to form a working chamber, and suction and compression of fluid is performed by changing the volume of the working chamber as the vane rotates due to rotation of the rotor.

ところで、冷房用蒸発器においてはフィンの70ステイ
ングを防止するために冷媒を比較的高い圧力(例えば2
 、5 kg/cm2 ) テ蒸発すtt、一方、冷蔵
冷凍用蒸発器は、製氷能力を有する程度まで庫内温度を
下げる必要上、冷媒の蒸発圧力は低く(例えば1 、2
 kg/cm2 )に設定する必要がある。
By the way, in a cooling evaporator, the refrigerant is kept at a relatively high pressure (for example, 2
On the other hand, in refrigerating and freezing evaporators, the evaporation pressure of the refrigerant is low (for example, 1, 2
kg/cm2).

そこで本出願人は先に特願昭58−155899におい
て、単一のロータリーベーン形圧縮別を冷房と冷蔵冷凍
とに併用する場合には、圧縮機に2つの独立した吸入口
を設り、圧縮Bitの各吸入工程の初期の段階で低圧冷
媒用吸入口が作用室に開口し、吸入行程の後期の段階で
高圧冷媒用吸入口が周布用至に開口するように構成する
ことによって、冷蔵冷凍用の低圧冷媒と冷房用の高圧冷
媒とを、それらの圧力差によって、吸入行程にある同一
の作用室に共に吸入さけることが出来ることを提案した
Therefore, in Japanese Patent Application No. 58-155899, the present applicant previously proposed that when a single rotary vane type compression unit is used for both cooling and refrigeration, two independent suction ports are provided in the compressor, and the compressor is By configuring Bit so that the low-pressure refrigerant suction port opens to the action chamber at the early stage of each suction process, and the high-pressure refrigerant suction port opens to the surrounding cloth at the latter stage of the suction process, refrigerating and freezing is possible. It was proposed that a low-pressure refrigerant for air conditioning and a high-pressure refrigerant for air conditioning can both be sucked into the same working chamber during the suction stroke due to the pressure difference between them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように構成されたロータリーベーン形圧縮はにお
いて、ベーンの回動方向における低圧冷媒用吸入口の寸
法(大きざ)を同方向におけるベーンの幅(厚み寸法)
よりも大きく作ると、該吸入口はベーンのnrf側の作
用室と後側の作用室との両者に同時に連通ずる瞬間が生
じる。この時には、該前側の作用室は高圧冷媒用吸入口
と連通していて高圧冷媒を吸入中であるので後側の作用
室よりも高圧であるから、前側の作用室内の高圧の冷媒
の1部かベーンの前、後に股がる低圧冷媒用吸入口を通
って後側の作用室内へ漏洩することになる。
In the rotary vane compressor configured as above, the dimension (size) of the low-pressure refrigerant suction port in the direction of rotation of the vane is the width (thickness dimension) of the vane in the same direction.
If the suction port is made larger than that, there will be a moment when the suction port communicates with both the NRF side working chamber and the rear side working chamber of the vane at the same time. At this time, the front working chamber is in communication with the high-pressure refrigerant suction port and is sucking high-pressure refrigerant, so the pressure is higher than that of the rear working chamber, so a portion of the high-pressure refrigerant in the front working chamber is Otherwise, the refrigerant will leak into the working chamber on the rear side through the low-pressure refrigerant suction port that spans the front and rear of the vane.

従って、このような漏洩が生じないように゛するために
、ベーンの回動方向にa3ける低圧冷媒用吸入口の寸法
をベーンの厚みよりも大きくできないという制約があり
、この制約のために、吸入行程の作用室への低圧冷媒の
流入量(吸入量)が十分でない、という問題がある。
Therefore, in order to prevent such leakage from occurring, there is a restriction that the dimension of the low-pressure refrigerant suction port at a3 in the direction of rotation of the vane cannot be larger than the thickness of the vane, and due to this restriction, There is a problem in that the amount of low-pressure refrigerant flowing into the action chamber (suction amount) during the suction stroke is not sufficient.

C問題点を解決するための手段〕 この問題を解決するために、本発明のロータリーベーン
形圧縮典では、低圧冷媒用の吸入口を2つに分けてそれ
らをベーンの回動方向に並べて配置し、かつ、これらの
分けられた低圧冷媒用の吸入口にそれぞれ逆止弁を設け
である。
Means for Solving Problem C] In order to solve this problem, in the rotary vane type compressor of the present invention, the suction port for low-pressure refrigerant is divided into two parts and these parts are arranged side by side in the direction of rotation of the vane. In addition, a check valve is provided at each of these separate low-pressure refrigerant suction ports.

〔作用) 本明細書において用いている[2つに分【)−Iなる表
現は1つの低圧冷媒用吸入口の面積を2分するという意
味ではなくて、「低圧冷媒用吸入口を2つ設ける」とい
う意味である。そして、これら2つの低圧冷媒用吸入口
がベーンの回動方向に並んで配置されているから、ベー
ンの回動に伴ってまず最初に後側の低圧冷媒用吸入口が
吸入工程の初期の段階の作用室に開口して低圧冷媒を導
入する。この時、前側の低圧冷媒用吸入口はベーンの前
側の作用室(高圧冷媒を吸入中の作用室)に開口してい
るか、逆止弁があるために、高圧冷媒は後側の作用室に
は流れない。ベーンが更に回動すると前側の低圧冷媒用
吸入口も後側の作用室に開口するので、それ以緒はこの
作用室に2つの低圧冷媒用吸入口から低圧冷媒、が吸入
されることになる。このように、1つの低圧冷媒用吸入
口からの低圧冷媒を作用室に吸入する場合に比して、2
つの低圧冷媒用吸入口から吸入するようにした場合には
吸入量が大幅に増大することになるので、圧縮機内への
低I丁?’i′7 IB、の吸入111を十分に(IT
「保出来、冷蔵冷凍用蒸発器を十分に作動ざ眩ることが
出来るという効果かある。
[Function] The expression [divided into two]-I used in this specification does not mean to divide the area of one low-pressure refrigerant inlet into two, but to mean to divide the area of one low-pressure refrigerant inlet into two. It means "to set up". Since these two low-pressure refrigerant suction ports are arranged side by side in the rotational direction of the vane, as the vane rotates, the rear low-pressure refrigerant suction port first enters the initial stage of the suction process. A low pressure refrigerant is introduced into the working chamber. At this time, the front low-pressure refrigerant suction port opens into the front working chamber of the vane (the working chamber where high-pressure refrigerant is being sucked), or there is a check valve, so the high-pressure refrigerant flows into the rear working chamber. does not flow. When the vane rotates further, the front low-pressure refrigerant suction port also opens into the rear action chamber, so from then on, low-pressure refrigerant will be sucked into this action chamber from the two low-pressure refrigerant suction ports. . In this way, compared to the case where low-pressure refrigerant is sucked into the working chamber from one low-pressure refrigerant suction port, two
If suction is made from two low-pressure refrigerant suction ports, the amount of suction will increase significantly, so it is necessary to reduce the amount of low-pressure refrigerant into the compressor. 'i'7 IB, inhalation 111 fully (IT
``It has the effect of being able to keep the refrigeration and freezing evaporators sufficiently operational.

また、本発明のロータリーベーン形圧縮機においては同
一の作用室に低圧冷媒と高圧冷媒とを共に吸入して圧縮
するようにしているので、低圧冷媒と高圧冷媒とを別々
の作用室に吸入、圧縮するように構成された同じ吐出容
量のロータリー圧縮機よりも小型に出来るという効果が
ある。すなわら、後者の形式の圧縮機では作用室を2分
してその一方に低圧冷媒のみを吸入して圧縮するので、
その吐出量は非常に少なく、これを、他の至で圧縮、吐
出された高圧冷媒の吐出量と合わせても、合計の吐出量
は本発明の1つの作用室からの吐出量よりも小であるか
ら、その分だけ圧縮機を大型化する必要があり、これに
比して本発明の圧縮)幾は小型でありながら大きな吐出
容争を有するという利点を備える。
Furthermore, in the rotary vane compressor of the present invention, both low-pressure refrigerant and high-pressure refrigerant are sucked into the same working chamber and compressed. This has the advantage that it can be made smaller than a rotary compressor with the same discharge capacity that is configured to perform compression. In other words, in the latter type of compressor, the working chamber is divided into two parts, and only low-pressure refrigerant is sucked into one half and compressed.
The discharge amount is very small, and even if you combine this with the discharge amount of the high-pressure refrigerant compressed and discharged from the other chambers, the total discharge amount is smaller than the discharge amount from one working chamber of the present invention. Therefore, it is necessary to increase the size of the compressor accordingly.Compared to this, the compressor of the present invention has the advantage of being small but having a large discharge capacity.

〔実施例] 第6図はロータリーベーン形圧縮機1を用いた冷凍サイ
クルを図式的に示しlζ図である。ff 1?; tl
lは単一の吐出ボート10と、低圧冷媒吸入ボート11
と、高圧冷媒吸入ボート12とを有り−る。
[Example] FIG. 6 is a diagram schematically showing a refrigeration cycle using the rotary vane compressor 1. ff1? ;tl
l is a single discharge boat 10 and a low pressure refrigerant suction boat 11
and a high-pressure refrigerant suction boat 12.

吐出ボート10から出る冷媒は凝縮器15で凝縮されて
から気液分離器16に入る。気液分離器16の液冷媒出
口16aには、冷房用蒸発器18を存する冷房回路17
と、冷蔵冷凍用蒸発器20を有する冷蔵冷凍回路21と
が並列に接続され、冷房回路17と冷蔵冷凍回路21と
の下流端がそれぞれ高圧冷媒吸入ボート12及び低圧冷
媒吸入ボート11に連結されている。冷房回路17は冷
房用蒸発器18の上流側に設けられた空調用膨張弁19
を有し、この膨張弁19は蒸発器18の出口側に設置さ
れた感温チューブ19aの作用により蒸発器18内の冷
媒の蒸発圧力を制御する温度式自動膨張弁から成る。冷
蔵冷凍回路21は蒸発器20の上流側に設けられた定圧
膨張弁22と、蒸発器20の下流側に設けられた逆止弁
23とを有する。冷房回路17の蒸発器18の下流側の
冷媒管路と、冷蔵冷凍回路21の逆止弁23の下流側の
冷媒管路とは、途中に電磁開閉弁25を有する接続管2
4で接続されている。
The refrigerant coming out of the discharge boat 10 is condensed in a condenser 15 and then enters a gas-liquid separator 16. A cooling circuit 17 including a cooling evaporator 18 is connected to the liquid refrigerant outlet 16a of the gas-liquid separator 16.
and a refrigeration/refrigeration circuit 21 having a refrigeration/refrigeration evaporator 20 are connected in parallel, and the downstream ends of the cooling circuit 17 and the refrigeration/refrigeration circuit 21 are connected to a high-pressure refrigerant suction boat 12 and a low-pressure refrigerant suction boat 11, respectively. There is. The cooling circuit 17 includes an air conditioning expansion valve 19 provided upstream of the cooling evaporator 18.
The expansion valve 19 is a temperature-type automatic expansion valve that controls the evaporation pressure of the refrigerant in the evaporator 18 by the action of a temperature-sensitive tube 19a installed on the outlet side of the evaporator 18. The refrigeration/freezing circuit 21 includes a constant pressure expansion valve 22 provided upstream of the evaporator 20 and a check valve 23 provided downstream of the evaporator 20. The refrigerant pipeline downstream of the evaporator 18 in the cooling circuit 17 and the refrigerant pipeline downstream of the check valve 23 in the refrigeration/refrigeration circuit 21 are connected to a connecting pipe 2 having an electromagnetic shutoff valve 25 in the middle.
Connected by 4.

冷房回路17の膨張弁19は蒸発器18のフィンにフロ
スティングが生じないようにするため、蒸発器温度をO
℃程度以下にならないように、冷媒の蒸発圧力を比較的
高く、例えば2.0kQ/ctr2程度にするように設
定されてJ3す、一方、冷蔵冷凍回路21の定圧膨張弁
22は、蒸発器2oに製氷能力をもたせるようにするた
め、冷媒の蒸発圧力をかなり低く、例えば4 、2 k
(+/Cl112程度にするように設定されている。従
って、圧縮機1の高圧及び低圧冷媒吸入ポート12.1
1にはそれぞれ2. Oko/cm2と1 、2 kr
+/cm2の圧力の冷媒ガスがもどって来る。
The expansion valve 19 of the cooling circuit 17 lowers the evaporator temperature to O in order to prevent frosting from occurring on the fins of the evaporator 18.
The evaporation pressure of the refrigerant is set to be relatively high, for example, about 2.0 kQ/ctr2, so as not to drop below about In order to provide ice-making capacity to the refrigerant, the evaporation pressure of the refrigerant is kept fairly low, e.g.
(+/Cl is set to about 112. Therefore, the high pressure and low pressure refrigerant suction ports 12.1 of the compressor 1
1 has 2. Oko/cm2 and 1,2 kr
The refrigerant gas returns at a pressure of +/cm2.

尚、電磁弁25を設けた点については本発明の要旨に直
接関係がないので、この電磁弁25の作用の説明は省略
する。
Note that the provision of the solenoid valve 25 is not directly related to the gist of the present invention, so a description of the action of the solenoid valve 25 will be omitted.

次に、第1図から第5d図までを参照して本発明のロー
タリーベーン形圧縮別1の実施例を説明する。圧縮機1
は本例においてはスルーベーンコンプレッサであり、そ
の構造を第1図と第2図を参照して説明すると、フロン
トハウジング30、フロントエンドプレー1−32、シ
リンダハウジング34、す7エンドプレート35及びり
7ハウジング36が軸方向に図示のように整合した状態
で互にボルトで紺付けられて圧縮機の本体を形成してい
る。シリンダハウジング34内にはロータ38の大径部
38aが曜心した状態で回転自在に取付けられ、この大
径部38aの両端のボス部38b 、38cはフロント
及びリアエンドプレート32.35の内面に形成された
円形凹所32a。
Next, an embodiment of the rotary vane type compressor according to the present invention will be described with reference to FIGS. 1 to 5d. Compressor 1
is a through-vane compressor in this example, and its structure will be explained with reference to FIGS. 7 housings 36 are axially aligned as shown and bolted together to form the main body of the compressor. A large-diameter portion 38a of a rotor 38 is rotatably mounted in the cylinder housing 34 in a centered manner, and boss portions 38b and 38c at both ends of the large-diameter portion 38a are formed on the inner surfaces of the front and rear end plates 32, 35. circular recess 32a.

35aに回転自在に嵌まり合っている。これらのボス部
381)、38Cから軸部38d 、38aが両側に突
出して、フロント及びり7エンドプレート32.35の
中央に設()られたベアリングにより回転自在に軸承さ
れている。軸部38dの外方端から延長部38[がフロ
ントハウジング30内を貫i/TI L/で突出し、こ
の延長部の外端に第6図に示したようなブーりが取付け
られてロータ38aを回転させるようになっている。
35a so as to be rotatable. Shaft portions 38d and 38a protrude from these boss portions 381) and 38C on both sides and are rotatably supported by bearings provided at the center of the front and rear end plates 32.35. An extension part 38 extends from the outer end of the shaft part 38d through the inside of the front housing 30, and a boob as shown in FIG. It is designed to rotate.

第1図に示すように、1)l′1′記低圧冷媒吸入ポー
ト11はフロンミルエンドプレート32の外周壁に取付
けられている。第1図と第3図から分るように、このエ
ンドプレート32の凹所32aの周縁の外側の平坦面に
この周縁に沿って2つの孔11a。
As shown in FIG. 1, 1) the low-pressure refrigerant suction port 11 indicated by l'1' is attached to the outer peripheral wall of the fluorocarbon mill end plate 32; As can be seen from FIGS. 1 and 3, two holes 11a are formed along the outer flat surface of the periphery of the recess 32a of the end plate 32.

11bが穿設されて、該エンドプレート内を半径方向に
延びる2本の通路11c、11dを介して低圧冷媒吸入
ポート11と連通ずるようになっている。これら2つの
孔11a、11bを、ロータ38の回転方向で見て、そ
れぞれ[後側の低圧冷媒吸入口J及び「前側の低圧冷媒
吸入口」と呼、S;ことにする。
11b is bored and communicates with the low pressure refrigerant suction port 11 via two passages 11c and 11d extending radially within the end plate. These two holes 11a and 11b will be referred to as the "rear low-pressure refrigerant suction port J" and the "front low-pressure refrigerant suction port", respectively, when viewed in the rotational direction of the rotor 38.

フロントエンドプレート32には高圧冷媒用の吸入口1
2aも形成されている。フロン1ヘハウジング30の外
周壁には前記高圧冷媒吸入ボー1−12が取付けられて
おり(図示せず)、この吸入ボート12はフロントハウ
ジング30内に形成された吸入室12bを介して吸入口
12aと常時連通している。
The front end plate 32 has a suction port 1 for high-pressure refrigerant.
2a is also formed. The high-pressure refrigerant suction boat 1-12 is attached to the outer peripheral wall of the housing 30 to the front housing 30 (not shown), and this suction boat 12 is connected to the suction port through a suction chamber 12b formed in the front housing 30. It is in constant communication with 12a.

第1図及び第5a〜5d図から明らかなように、ロータ
38の大径部38aにはその直径方向に2本のベーン溝
が互に直交して設cUられていで、これらのベーン溝内
にロータの大径部38aの直(Yよりも長いスルーベー
ン40が摺動自在に配置され、それらの両端はロータ大
径部38aの外周面から突出してシリンダハウジング3
2内のシリンダボアの内周面と摺接している。前記のよ
うに、ロータ38の大径部38aはシリンダボア内に偏
心して配置されている関係上、ロータ38が矢印の方向
に回転するとスルーベーン40も回動しながらその一端
がロータ大径部38aの外周面、から次第に突出し他端
が反対に次第にロータ大径部38a内に引っ込む。この
(14成により、フロント及びリアエンドプレート32
.35、シリンダハウジング34、ロータ大径部38a
及びスルーベーン40によって4つの作用W41a〜4
1dが形成され、これらの作用室の容積がロータ38の
回転に伴なって変化することにより、各作用室が吸入、
圧縮及び吐出の作用(行程)を行なう。第5a図で児で
、作用室418と41dは吸入行程のそれぞれ初期及び
後期の段階にあり、作用室t1cは圧縮行程にあり、作
用室41 dは吐出行程にある。吐出行程の作用室に開
口する吐出口42がシリンダハウジング34に形成され
てあり、この吐出口42は吐出弁43を介してリアハウ
ジング36内の吐出室44に接続し、この吐出室44に
前記吐出ポート10が開口している。
As is clear from FIG. 1 and FIGS. 5a to 5d, two vane grooves are provided in the large diameter portion 38a of the rotor 38 in the diametrical direction thereof, and are perpendicular to each other. A through vane 40, which is longer than the rotor's large diameter section 38a, is slidably arranged in the cylinder housing 3 with its both ends protruding from the outer peripheral surface of the rotor's large diameter section 38a.
It is in sliding contact with the inner peripheral surface of the cylinder bore in 2. As described above, since the large diameter portion 38a of the rotor 38 is eccentrically arranged in the cylinder bore, when the rotor 38 rotates in the direction of the arrow, the through vane 40 also rotates and one end of the through vane 40 rotates, causing one end of the through vane 40 to rotate in the direction of the arrow. It gradually protrudes from the outer peripheral surface, and the other end gradually retracts into the rotor large diameter section 38a. With this (14 configuration), the front and rear end plates 32
.. 35, cylinder housing 34, rotor large diameter part 38a
and four actions W41a to 4 by the through vane 40.
1d is formed, and the volumes of these working chambers change as the rotor 38 rotates, so that each working chamber has suction,
Performs compression and discharge actions (strokes). In FIG. 5a, working chambers 418 and 41d are in the early and late stages of the suction stroke, respectively, working chamber t1c is in the compression stroke, and working chamber 41d is in the discharge stroke. A discharge port 42 that opens into the action chamber of the discharge stroke is formed in the cylinder housing 34, and this discharge port 42 is connected to a discharge chamber 44 in the rear housing 36 via a discharge valve 43. The discharge port 10 is open.

次に第4図を参照して、後側及び前側低圧;9媒吸入口
11a、11bに低圧冷媒吸入ポート11を接続する構
造について説明する。フロントエンドプレート32の外
周面にはこれら2つの吸入口11a、11bに達する2
つの横穴32b。
Next, with reference to FIG. 4, a structure for connecting the low pressure refrigerant suction port 11 to the rear and front low pressure 9 medium suction ports 11a and 11b will be described. On the outer peripheral surface of the front end plate 32, there are holes 2 that reach these two intake ports 11a and 11b.
one horizontal hole 32b.

32cが′g設されており、こ札らの横穴に分配兼弁機
構50がガスケット52を介して気密に取付けられ、こ
の機構50に対して低圧冷媒吸入ボート11が接続され
ている。より詳しく説明すると、分配兼弁機構50は基
板54を有し、この基板54の片面に低圧冷媒吸入ポー
ト11が一体に結合されており、基板54の他面には2
本の分岐管56.58が突設されている。これらの分岐
管56.58内に前掲の通路11c、11dが形成され
ていて、それらの一端がそれぞれ低圧冷媒ポート11の
内部と連通し、他端は分岐管56゜58の側面に′g−
設された開口1ie’ 、11d’となっている。開口
110′が設けられている分岐管56側面には弾性金属
薄板等から成る逆止弁60が開口110′を覆って配置
され、その塁端が逆止弁6oの揺動の角度を規制するス
トッパ62と分岐管56とに挟持されている。開口11
d′を設けられた分岐管58側面に対しても同様な逆止
弁とストッパとが取付けられているが、これらは図示さ
れていない。フロントエンドプレート32に設けられた
横穴32b、32Cは分岐管56.58をそれぞれ受は
入れる寸法及び間隔に形成されでいる。従って、これら
の横穴32b。
A distribution/valve mechanism 50 is airtightly attached to the side hole of the plate through a gasket 52, and a low pressure refrigerant suction boat 11 is connected to this mechanism 50. To explain in more detail, the distribution/valve mechanism 50 has a base plate 54, one side of the base plate 54 is integrally connected with the low pressure refrigerant suction port 11, and the other side of the base plate 54 has two
Main branch pipes 56, 58 are provided protrudingly. The aforementioned passages 11c and 11d are formed in these branch pipes 56 and 58, one end of which communicates with the inside of the low-pressure refrigerant port 11, and the other end connected to the side of the branch pipes 56 and 58.
The openings 1ie' and 11d' are provided. A check valve 60 made of a thin elastic metal plate or the like is disposed on the side surface of the branch pipe 56 where the opening 110' is provided, covering the opening 110', and its base end regulates the swing angle of the check valve 6o. It is held between the stopper 62 and the branch pipe 56. opening 11
A similar check valve and stopper are also attached to the side surface of the branch pipe 58 provided with d', but these are not shown. The horizontal holes 32b and 32C provided in the front end plate 32 are formed with dimensions and intervals to receive the branch pipes 56 and 58, respectively. Therefore, these horizontal holes 32b.

32Cの周縁部にガスケット52を当てておいて、ガス
ケットの穴部を通して横穴32b、32C内に分岐管5
6.58をiIO人し、基板54をねじ64によりフロ
ントエンドプレート32に対して締めイ」け固定づるこ
とにより、分配兼弁機構50と低圧冷媒吸入ポート11
どを圧縮+S1本体に対して簡単に取付けられ、分岐管
56.58内の通路11c、11dは逆止弁60が開い
た時には低圧冷媒吸入口11a、11bと連通すること
になる。
32C, and insert the branch pipe 5 into the side holes 32b and 32C through the hole in the gasket.
6.58, and tighten and fix the board 54 to the front end plate 32 with the screws 64, thereby connecting the distribution/valve mechanism 50 and the low pressure refrigerant suction port 11.
The passages 11c and 11d in the branch pipes 56 and 58 communicate with the low pressure refrigerant suction ports 11a and 11b when the check valve 60 is opened.

次に第5a図〜5d図を参照しく圧縮機1の作動を説明
する。この場合、斜線で示したスルーベーンに挾まれた
作用室41aに土として関連して説明することにする。
Next, the operation of the compressor 1 will be explained with reference to FIGS. 5a to 5d. In this case, the working chamber 41a sandwiched between the hatched through vanes will be described as soil.

ロータ38が回転して作用室41aのリーディング側の
ベーン40が第5a図の位置に来ると、後側の低圧冷媒
吸入口11aが作用V 41 aに対し少し開くので、
この作用室41aの吸引力が吸入口11aを介してこの
吸入口11aの逆止弁60(第4図)を聞いて低圧冷奴
を吸入し始める。
When the rotor 38 rotates and the vane 40 on the leading side of the action chamber 41a comes to the position shown in FIG.
The suction force of the action chamber 41a is applied to the check valve 60 (FIG. 4) of the suction port 11a through the suction port 11a, and the low-pressure cold tofu begins to be sucked.

この時点で1工作用室41aの前側の作用室41dには
高圧冷媒用吸入口12aから高圧冷媒が流入しており、
また、前側の低圧冷媒吸入口11bかこの作用t41d
に開いているが、この作用室41d内の冷媒圧力の方が
低圧冷媒用吸入ポート11内の冷媒圧力よりも高いので
前側の低圧冷媒吸入口11bの逆止弁は閉じているから
、高圧冷媒が作用室41dから低圧冷媒用吸入ポー1へ
11側へ流出することは防止される。従って、前側の作
用室41dから後側の作用’l 41 aへ高圧冷媒は
流れない。
At this point, high-pressure refrigerant is flowing into the working chamber 41d on the front side of the first working chamber 41a from the high-pressure refrigerant suction port 12a.
Also, the effect t41d of the low pressure refrigerant suction port 11b on the front side
However, since the refrigerant pressure in this action chamber 41d is higher than the refrigerant pressure in the low-pressure refrigerant suction port 11, the check valve of the front low-pressure refrigerant suction port 11b is closed. is prevented from flowing out from the action chamber 41d to the low-pressure refrigerant suction port 11 side. Therefore, high-pressure refrigerant does not flow from the front working chamber 41d to the rear working chamber 41a.

ロータ38は回転し続(プるので、作用’J41aのリ
ーディング側のベーン40が後側の低圧冷媒吸入口11
aを通過し、次に前側の低圧冷媒吸入口1111が作用
室41aに開口するので、この作用室41aの吸引力が
この吸入口11bの逆止弁を開く。従って、この段階で
は冷蔵冷凍用蒸発器20(第6図)からの低圧冷媒が前
側と後側の低圧冷媒吸入口11b、11aの両方から作
用室41aに吸入されるので、この作用室41aには十
分な世の低圧冷媒が入る。
Since the rotor 38 continues to rotate, the leading side vane 40 of the action 'J41a
Since the low-pressure refrigerant suction port 1111 on the front side opens into the action chamber 41a, the suction force of the action chamber 41a opens the check valve of the suction port 11b. Therefore, at this stage, the low-pressure refrigerant from the refrigerating/freezing evaporator 20 (FIG. 6) is sucked into the action chamber 41a from both the front and rear low-pressure refrigerant suction ports 11b and 11a. contains enough low-pressure refrigerant.

作用ff141aのリーディング側のベーン40が高圧
冷媒用吸入口12aに到達してこの吸入口12aを作用
室41aに開かせる(第5b図)と、冷房用鎧発器18
からの高圧冷媒が作用室41a内の低圧冷媒との差圧に
より吸入口12aから作用W41aに流入してこの作用
室内の低圧冷媒と混合される。そして、この作用室41
a内の冷媒圧力が2つの低圧冷媒吸入口11a、11b
の逆止弁の閉弁圧力よりも高くなった時逆止弁tよ閉じ
、その後は高圧冷媒のみが吸入口12aから作用室41
aに流入する。
When the vane 40 on the leading side of the working ff 141a reaches the high-pressure refrigerant suction port 12a and opens this suction port 12a to the working chamber 41a (FIG. 5b), the cooling armor generator 18
Due to the pressure difference between the high-pressure refrigerant and the low-pressure refrigerant in the working chamber 41a, the high-pressure refrigerant flows into the working W41a from the suction port 12a and is mixed with the low-pressure refrigerant in the working chamber. And this action chamber 41
The refrigerant pressure in a is two low pressure refrigerant suction ports 11a and 11b.
When the pressure becomes higher than the closing pressure of the check valve t, the check valve t closes, and only high-pressure refrigerant flows from the suction port 12a to the action chamber 41.
flows into a.

作用室に低圧冷媒が吸入されている間の吸入段階を「吸
入行程の初期の段階jと呼び、高圧冷媒が吸入される吸
入段階を「吸入行程の後期の段階Jと呼ぶ。
The suction phase during which the low-pressure refrigerant is sucked into the working chamber is called the "early stage J of the suction stroke," and the suction phase during which the high-pressure refrigerant is sucked is called the "late stage J of the suction stroke.

作用141aのトレーリング側のベーン40が高圧冷媒
用吸入口12aの先端を通過した瞬間(第5C図)に作
用室41aへの冷媒の流入は停止し、その後は作用室4
18は圧縮行程を開始する。
The moment the vane 40 on the trailing side of the action 141a passes the tip of the high-pressure refrigerant suction port 12a (FIG. 5C), the flow of refrigerant into the action chamber 41a is stopped, and thereafter the action chamber 4
18 starts the compression stroke.

ロータ38の回転に伴ない作用141aの容積は次第に
小さくなり、作用’!41a内の冷媒ガスは次第に圧縮
されて圧力が高くなる。そして、作用室41aのリーデ
ィング側のベーンが吐出口42に到達し、この吐出口を
作用室41aに開かせると、圧縮された冷媒ガスが吐出
口42から吐出される。
As the rotor 38 rotates, the volume of the action 141a gradually becomes smaller, and the action '! The refrigerant gas within 41a is gradually compressed and its pressure increases. When the vane on the leading side of the working chamber 41a reaches the discharge port 42 and opens the discharge port to the working chamber 41a, the compressed refrigerant gas is discharged from the discharge port 42.

以上のようにして、冷蔵冷凍回路21からの低圧冷媒が
圧縮1幾1の作用室41内に吸入された後に冷房回路1
7からの高圧冷媒が同じ作用室41内へ吸入されて両冷
媒が混合された後に作用室が圧縮行程となり、その次に
吐出行程となり、圧縮行程で圧縮された冷媒が作用室4
1から吐出口42及び吐出弁43を経て吐出至44に入
り、ここから吐出ポート10を通って凝縮器15に入り
、以下、第6図を参照して説明したように冷房回路17
及び冷蔵冷凍回路21を別々に流れて圧縮機1の高圧及
び低圧冷媒用の吸入ボートi2.iiにもどり、再び圧
縮される、という作用がくり返し行われる。
As described above, after the low-pressure refrigerant from the refrigeration/refrigeration circuit 21 is sucked into the action chamber 41 of the compressor 1 and 1, the cooling circuit 1
After the high-pressure refrigerant from 7 is sucked into the same working chamber 41 and both refrigerants are mixed, the working chamber enters the compression stroke, and then the discharge stroke, and the refrigerant compressed in the compression stroke enters the working chamber 4.
1, enters the discharge port 44 via the discharge port 42 and the discharge valve 43, passes through the discharge port 10, enters the condenser 15, and is connected to the cooling circuit 17 as described below with reference to FIG.
and the suction boat i2. for high-pressure and low-pressure refrigerants of the compressor 1, which flow separately through the refrigeration circuit 21. The process of returning to step ii and being compressed again is repeated.

以上の実施例においてはスルーベーン形のロータリーコ
ンプレッサが用いられているが、本発明はロタスコ方式
にも適用で込る。
In the above embodiments, a through-vane type rotary compressor is used, but the present invention can also be applied to a rotasco type compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図のI−I断面図、 第2図は本発明のロータリーベーン形圧縮懇の−実施の
軸方向断面図、 第3Nは圧縮はのフロントエンドプレートの斜視図、 第4図は分配兼弁機構の詳細を示した拡大斜視図、 第5a図〜第5d図は圧縮機の各作用段階を示した説明
図、 第6図は冷凍サイクル図である。 1・・・・・・圧縮機、 10・・・・・・吐出ポート、 11・・・・・・低圧冷媒吸入ボート、12・・・・・
・高圧冷媒吸入ポート、17・・・・・・冷房回路、 21・・・・・・冷蔵冷凍回路、 11a・・・・・・復側の低圧冷媒吸入口、11b・・
・・・・前後の低圧冷媒吸入口、12a・・・・・・高
圧冷媒用の吸入口、32・・・・・・フロントエンドプ
レート、32b、32c・・・・・・横穴、 34・・・・・・シリンダハウジング、38・・・・・
・〇−タ、 40・・・・・・ベーン、 42・・・・・・吐出口、 43・・・・・・吐出弁、 50・・・・・・分配兼弁機構、 56.58・・・分岐管、 60・・・・・・逆止弁。
Fig. 1 is a sectional view taken along line II in Fig. 2, Fig. 2 is an axial sectional view of the embodiment of the rotary vane type compressor of the present invention, No. 3N is a perspective view of the front end plate of the compressor, and No. 4 is a perspective view of the front end plate of the compressor. The figure is an enlarged perspective view showing details of the distribution/valve mechanism, Figures 5a to 5d are explanatory diagrams showing each operating stage of the compressor, and Figure 6 is a refrigeration cycle diagram. 1...Compressor, 10...Discharge port, 11...Low pressure refrigerant suction boat, 12...
・High pressure refrigerant suction port, 17... Cooling circuit, 21... Refrigeration freezing circuit, 11a... Low pressure refrigerant suction port on the return side, 11b...
...Front and rear low-pressure refrigerant inlets, 12a...Intake for high-pressure refrigerant, 32...Front end plate, 32b, 32c...Horizontal hole, 34... ...Cylinder housing, 38...
・〇-ta, 40... Vane, 42... Discharge port, 43... Discharge valve, 50... Distribution and valve mechanism, 56.58. ... Branch pipe, 60 ... Check valve.

Claims (1)

【特許請求の範囲】[Claims]  低圧冷媒用の吸入口と高圧冷媒用の吸入口とを備えた
シリンダボアを有する本体と、該本体内に回転自在に取
付けられたロータと、該ロータのベーン溝に摺動自在に
取付けられて前記本体及びロータと協働して作用室を形
成するベーンとを有し、前記ロータの回転による前記ベ
ーンの回動に伴ない最初に前記低圧冷媒用の吸入口が吸
入行程にある作用室に開口し、しかる後に、前記高圧冷
媒用の吸入口が該作用室に開口するようになつているロ
ータリーベーン形圧縮機において、前記低圧冷媒用の吸
入口を2つに分けてそれらをベーンの回動方向に並べて
配置し、かつ、これらの分けられた低圧冷媒用の吸入口
にそれぞれ逆止弁を設けたことを特徴とするロータリー
ベーン形圧縮機。
a main body having a cylinder bore having a suction port for low-pressure refrigerant and a suction port for high-pressure refrigerant; a rotor rotatably mounted in the main body; and a rotor slidably mounted in a vane groove of the rotor. and a vane that cooperates with a main body and a rotor to form an action chamber, and as the vane rotates due to rotation of the rotor, the suction port for the low-pressure refrigerant first opens into the action chamber in the suction stroke. Thereafter, in a rotary vane compressor in which the high-pressure refrigerant suction port is configured to open into the working chamber, the low-pressure refrigerant suction port is divided into two parts and the two parts are separated by rotation of the vane. 1. A rotary vane compressor characterized in that the compressors are arranged side by side in the direction of the rotary vane compressor, and check valves are provided at each of the separate suction ports for low-pressure refrigerant.
JP19819384A 1984-09-21 1984-09-21 Rotary vane type compressor for cooling and refrigerating Pending JPS6176786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19819384A JPS6176786A (en) 1984-09-21 1984-09-21 Rotary vane type compressor for cooling and refrigerating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19819384A JPS6176786A (en) 1984-09-21 1984-09-21 Rotary vane type compressor for cooling and refrigerating

Publications (1)

Publication Number Publication Date
JPS6176786A true JPS6176786A (en) 1986-04-19

Family

ID=16387015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19819384A Pending JPS6176786A (en) 1984-09-21 1984-09-21 Rotary vane type compressor for cooling and refrigerating

Country Status (1)

Country Link
JP (1) JPS6176786A (en)

Similar Documents

Publication Publication Date Title
KR900003404B1 (en) Multiple cylinder rotary compressor
US4557670A (en) Compressor
KR0134116B1 (en) Rotary positive displacement compressor and refrigerant plant
JPH0329994B2 (en)
WO2009098874A1 (en) Compressor and freezer
WO2019242311A1 (en) Compressor and air conditioner system
JP6186973B2 (en) Refrigerant compressor
JP2003148365A (en) Two-stage compression type compressor
US4702088A (en) Compressor for reversible refrigeration cycle
EP1376032A2 (en) Expander-compressor capacity control
US4696627A (en) Scroll compressor
US4445344A (en) Reversible refrigeration system rotary compressor
JPH09105386A (en) Compressor and injection cycle
JPH0424558B2 (en)
US6892548B2 (en) Rotary compressor and refrigerant cycle system having the same
JPS6176786A (en) Rotary vane type compressor for cooling and refrigerating
JPH024796B2 (en)
JPH1114166A (en) Freezer device
JPS6229779A (en) Compressor for vehicle air conditioner
JPS61184364A (en) Rotary vane type compressor
JPS6325343Y2 (en)
JPH0820137B2 (en) Screw refrigeration equipment
JPS61129495A (en) Rotary compressor
JPH0222599Y2 (en)
JPS6172967A (en) Rotary vane type compressor for air-conditioning and refrigeration