JPS6176708A - Waste heat recovery equipment - Google Patents

Waste heat recovery equipment

Info

Publication number
JPS6176708A
JPS6176708A JP59199049A JP19904984A JPS6176708A JP S6176708 A JPS6176708 A JP S6176708A JP 59199049 A JP59199049 A JP 59199049A JP 19904984 A JP19904984 A JP 19904984A JP S6176708 A JPS6176708 A JP S6176708A
Authority
JP
Japan
Prior art keywords
condenser
heat recovery
low
working fluid
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59199049A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sumitomo
住友 博之
Akira Horiguchi
章 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP59199049A priority Critical patent/JPS6176708A/en
Publication of JPS6176708A publication Critical patent/JPS6176708A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve both the waste heat recovery efficiency and the output of a generator in a Rankine cycle by connecting both an induction mechanism of low-temperature sea water which has low biological activity and a hypochlorite generator which is disposed in the induction line to a condenser. CONSTITUTION:A waste heat recovery device consists of a displacement type expander 6, an evaporator 1 which evaporates working fluid, a primary condenser 14 which condenses working fluid and a pump 5 which circulates working fluid. The condenser 4 is provided with a sea water induction mechanism which consists of both low-temperature sea water induction pipe 7 having low biological activity and a sea water circulating pump 8. A hypochlorite generator 9 which generates hypochlorite is connected to a sea water induction pipe 7. Both the waste heat recovery efficiency and the output of a generator may thereby be improved.

Description

【発明の詳細な説明】 一゛・ の1.C 本発明は排熱回収装置に関するものであり、更に註しく
−よりト熱回収装置を構成する凝縮器の汚れ防止手段と
して、低温の海水の導入機構と次亜塩素発生器とを接続
してなる排熱回収装置に関するものである。
[Detailed description of the invention] 1.1. C The present invention relates to an exhaust heat recovery device, and furthermore, as a means for preventing contamination of a condenser constituting the heat recovery device, a low-temperature seawater introduction mechanism and a hypochlorite generator are connected. The present invention relates to an exhaust heat recovery device.

l米立技皿 工場等から排出される温排水等を利用する小温度差利用
のランキンサイクルによって動力回収を行ない、例えば
発電を行なう目的で、従来第2図に示すような排熱回収
装置が用いられている。図中(1)は温排水等の熱源に
より作動流体となる例えばフロンを加熱、蒸発させるた
めの蒸発器、(2)は蒸発器(1)内で蒸発したフロン
蒸気によって回転するタービン、(3)はタービン(2
)の出力軸に連結された発電機である。(4)はタービ
ン(2)から排出されたフロン蒸気を凝縮するための凝
縮器であり、当該凝縮器(4)には系外に設けられた冷
水源から冷却水が供給される。(5)はフロンを蒸発器
(1)、タービン(2)及び凝縮器(4)間で循環させ
るためのポンプである。
l Exhaust heat recovery equipment, as shown in Figure 2, has been used to recover power using the Rankine cycle, which utilizes small temperature differences, using heated wastewater discharged from the Yonachi Gisara factory, etc., for the purpose of generating electricity, for example. It is used. In the figure, (1) is an evaporator that heats and evaporates working fluid, such as fluorocarbons, using a heat source such as heated waste water, (2) is a turbine that is rotated by the fluorocarbon vapor evaporated in the evaporator (1), and (3) ) is the turbine (2
) is a generator connected to the output shaft of the (4) is a condenser for condensing the freon vapor discharged from the turbine (2), and cooling water is supplied to the condenser (4) from a cold water source provided outside the system. (5) is a pump for circulating Freon between the evaporator (1), the turbine (2) and the condenser (4).

上記排熱回収装置に於いて、熱源となる例えば温排水等
により発電を行なうには、温排水を蒸発器(1)に供給
するのと同時に凝縮器(4)内に冷却水を供給し、この
状態でポンプ(5)を駆動しフロンを循環させる。する
とポンプ(5)から吐出され、蒸発器(1)に送られた
液状のフロンは、蒸発器(1)内で温排水によって加熱
されフロン蒸気となってタービン(2)に送られる。そ
してフロン蒸気によってタービン(2)が回転し、ター
ビン(2)の出力軸に連結された発電機(3)が回転す
ることにより、発電が行われる。又、タービン(2)か
ら排出されたフロン蒸気は凝縮器(4)に送られ、凝縮
器(4)に供給されている冷却水によって冷却され、該
凝縮器(4)内で凝縮した後再びポンプ(5)に戻り、
上記動作が繰返される。
In the above waste heat recovery device, in order to generate electricity from a heat source such as heated waste water, cool water is supplied into the condenser (4) at the same time as heated waste water is supplied to the evaporator (1). In this state, the pump (5) is driven to circulate the freon. Then, the liquid Freon discharged from the pump (5) and sent to the evaporator (1) is heated by hot water in the evaporator (1), becomes a Freon vapor, and is sent to the turbine (2). The fluorocarbon steam rotates the turbine (2), and the generator (3) connected to the output shaft of the turbine (2) rotates, thereby generating electricity. In addition, the fluorocarbon vapor discharged from the turbine (2) is sent to the condenser (4), cooled by the cooling water supplied to the condenser (4), and after being condensed in the condenser (4), it is recycled again. Return to pump (5),
The above operation is repeated.

光皿左邂訣↓孟立上工玉皿且立 上記排熱回収装置を構成する凝縮器(4)には、冷却媒
体として系外から冷水が供給されるが、運転時間の経過
と共に凝縮器(4)に於けるフロン蒸気の凝縮温度が上
昇し凝縮能力が低下するという欠点が認められた。凝縮
能力の低下は、タービン(2)に出力低下を来たし、当
然のことながら排熱回収効率を低下せしめる。
Cold water is supplied from outside the system as a cooling medium to the condenser (4) that constitutes the exhaust heat recovery device, but as the operating time passes, the condenser In (4), a drawback was recognized that the condensation temperature of the fluorocarbon vapor increased and the condensation ability decreased. A decrease in condensing capacity causes a decrease in the output of the turbine (2), which naturally causes a decrease in exhaust heat recovery efficiency.

斯かるフロン蒸気の凝縮温度の経時的上界に対処するた
めには、該凝縮器(4)に供給する冷却水の温度を低下
せしめる必要があり、この目的を達成するため、経時的
な温度変化が比較的少ない低温の海水を冷却媒体として
使用することが提案されている。
In order to cope with the upper limit of the condensation temperature of fluorocarbon vapor over time, it is necessary to lower the temperature of the cooling water supplied to the condenser (4). It has been proposed to use low-temperature seawater, which is relatively unaltered, as a cooling medium.

然し乍ら、海水を冷却媒体としてそのまま凝縮器(4)
内に導入すると、海水中のバクテリヤが凝縮器(4)の
器壁面に付着して、生物汚れ(Bio−fouling
)を引き起こし、前記器壁面に付着するスケールを増加
させて凝縮器の熱交換能力に低下を来たすという新たな
問題点を派生せしめる。前記の如く、凝縮器(4)に於
けるフロン蒸気の凝縮能力の低下は、排熱回収効率の低
下に直接結び付く要因であるから、冷却媒体として海水
を使用する際には、凝縮器(4)内への導入に先立って
海水を低温の、且つ、生物汚れを引き起こしに(い状態
にa整する必要がある。
However, the condenser (4) uses seawater as the cooling medium.
When introduced into the seawater, bacteria in the seawater adhere to the wall of the condenser (4), causing biofouling.
) and increase the amount of scale adhering to the wall surface of the vessel, resulting in a new problem of decreasing the heat exchange capacity of the condenser. As mentioned above, a decrease in the condensing capacity of fluorocarbon vapor in the condenser (4) is a factor directly linked to a decrease in waste heat recovery efficiency, so when using seawater as a cooling medium, Prior to introduction into the seawater, it is necessary to condition the seawater to a low temperature and a condition that does not cause biofouling.

斯かる公知技術の問題点に鑑み、本発明は、排熱回収装
置を構成する凝縮器内に導入すべき海水を、低温の、且
つ、生物汚れを引き起こしに(い状態に改質し7得る、
次亜塩素発生器を備えた排熱回収装置を提供する、こと
をその主要な目的とするものである。
In view of the problems of the known techniques, the present invention aims to reform the seawater to be introduced into the condenser constituting the exhaust heat recovery device into a low-temperature state that does not cause biological fouling. ,
Its main purpose is to provide an exhaust heat recovery device equipped with a hypochlorite generator.

皿題盗至解次工玉立及豆王且 従って本発明は、容積式膨張機(6)と、該膨張機に供
給する作動流体を排熱によって蒸発させるための蒸発器
(1)と、前記容積式膨張機(6)から排出された作動
流体の蒸気を凝縮するための凝縮器(4)と、上記作動
流体を循環させるためのポンプ(5)とによって構成せ
られた排熱回収装置に於いて、前記凝縮器(4)に、生
物活性の低い低温の海水の導入機構(7)、(8)と、
該低温の海水の導入経路上に配設された次亜塩素発生器
(9)とを接続してなる排熱回収装置を要旨とするもの
である。
Accordingly, the present invention includes a positive displacement expander (6), an evaporator (1) for evaporating working fluid supplied to the expander using waste heat, An exhaust heat recovery device comprising a condenser (4) for condensing the vapor of the working fluid discharged from the positive displacement expander (6), and a pump (5) for circulating the working fluid. In the condenser (4), low temperature seawater introduction mechanisms (7) and (8) with low biological activity are provided;
The gist is an exhaust heat recovery device connected to a hypochlorite generator (9) disposed on the low-temperature seawater introduction route.

実差剌− 第1図は、本発明装置の全体構造を例示するブロック線
図である。尚、以下の記述に於いて、第1図と同一の構
成部材は同一の参照番号によって表示するものとし、細
部に亘ろ説明を省略する。
Actual Differences - FIG. 1 is a block diagram illustrating the overall structure of the apparatus of the present invention. In the following description, components that are the same as those in FIG. 1 are indicated by the same reference numerals, and detailed explanations will be omitted.

第1図に例示するように、作動流体、例えばフロンを蒸
発させるための蒸発器(1)と凝縮器(4)との間には
、容積式膨張機(6)として、例えばスクリュ一式エキ
スパンダーが配置されており、該スクリュ一式エキスパ
ンダー(6)の出力軸には常法に従って発電殴(3)が
接続されている。スクリュ−式エキスパンダー(6)か
ら、排出されたフロンの蒸気は、凝縮器(4)に於いて
冷却され液状に凝縮された状態でフロン循環用のポンプ
(5)を通って前記茫発器(1)に還流し再熱サイクル
を形成している。
As illustrated in FIG. 1, between an evaporator (1) and a condenser (4) for evaporating working fluid, such as fluorocarbons, a positive displacement expander (6), such as a screw set expander, is installed. A power generation punch (3) is connected to the output shaft of the screw set expander (6) according to a conventional method. The fluorocarbon vapor discharged from the screw expander (6) is cooled in the condenser (4) and condensed into a liquid state, and then passes through the fluorocarbon circulation pump (5) to the vapor generator ( 1) to form a reheat cycle.

本発明に於いては、前記145r:縮器(4)にフロン
蒸気の冷却媒体として、低温の、且つ、生活活性の低い
海水が使用されている。このため凝縮器(4)には、太
陽光線が殆んど届かない海面から30m以下の位置に取
水口を開口せしめた海水導入管(7ンと、海水循環用ポ
ンプ(8)とからなる海水導入機構が設けられており、
前記海水導入管(7)には、採取された海水に塩素ガス
を注入し、該海水の電気分解によって有効塩素濃度0.
2PPm以下の次亜塩素を発生せしめる次亜塩素発生器
(9)が接続されている。
In the present invention, low-temperature seawater with low bioactivity is used as a cooling medium for the fluorocarbon vapor in the 145r condenser (4). For this reason, the condenser (4) is equipped with a seawater inlet pipe (7) with a water intake opened at a position less than 30m from the sea surface, where most sunlight does not reach, and a seawater circulation pump (8). An introduction mechanism is provided,
Chlorine gas is injected into the collected seawater into the seawater introduction pipe (7), and the effective chlorine concentration is reduced to 0.0 by electrolysis of the seawater.
A hypochlorite generator (9) that generates hypochlorite of 2 PPm or less is connected.

このようにして有効塩素濃度をQ、 2PPm以下に調
整された低温の海水は、凝縮器(4)内に流入してスク
リュ一式エキスパンダー(6)から排出されたフロン蒸
気に対し冷却媒体として機能し、該フロン蒸気を液状に
′#:縮させる。この凝縮器(4)内に於けるフロン蒸
気の凝縮過程で、前記0.2)’pH以下の有効塩素濃
度を有する低温の海水は、ぞの殺菌作用ならびに低い生
物活性によって凝縮器(4)の器壁面の生物汚れを低減
し、凝縮器(4)の出口に於ける塩素濃度を0.05P
Pm以下に低下せしめた環境保全上問題のない状態で海
面に排出される。
The low-temperature seawater, whose effective chlorine concentration has been adjusted to Q2PPm or less, flows into the condenser (4) and functions as a cooling medium for the fluorocarbon vapor discharged from the screw expander (6). , the freon vapor is condensed into a liquid state. During the condensation process of the fluorocarbon vapor in the condenser (4), the low-temperature seawater having an effective chlorine concentration below 0.2' pH is transferred to the condenser (4) due to its bactericidal action and low biological activity. Reduces biological contamination on the vessel wall and reduces the chlorine concentration at the outlet of the condenser (4) to 0.05P
It is discharged to the sea surface in a state where there is no problem in terms of environmental conservation, with the concentration reduced to below Pm.

発凰夏処果 以上の説明に明らかな如く、本発明装置を使用すること
によって、凝縮器の汚れ防止機能が著しく向上し長期連
続運転が可能となる。また低温の深層海水を作動流体の
蒸気に対する受熱媒体として機能せしめることによって
、排熱回収効率の向上と発電機の出力の向上を図ること
ができる。
As is clear from the above explanation, by using the device of the present invention, the contamination prevention function of the condenser is significantly improved and long-term continuous operation is possible. In addition, by making low-temperature deep seawater function as a heat receiving medium for the steam of the working fluid, it is possible to improve the exhaust heat recovery efficiency and the output of the generator.

斯くして本発明は、排熱回収装置、例えばフロンタービ
ン発電システムに於ける稼動条件の経済性向上に大きく
寄与することができる。
In this manner, the present invention can greatly contribute to improving the economic efficiency of operating conditions in an exhaust heat recovery device, for example, a front turbine power generation system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体構造を例示するブロック線図
であり、第2図は在来の排熱回収装置を例示するブロッ
ク線図である。 (1)−・−蒸発器、(4”) −凝縮器、(6) −
容積式膨張機、(5) −ポンプ、(7)・ (8)−
低温海水の導入機構、(9)・−次亜塩素発生器。
FIG. 1 is a block diagram illustrating the overall structure of the apparatus of the present invention, and FIG. 2 is a block diagram illustrating a conventional exhaust heat recovery apparatus. (1)--Evaporator, (4") -Condenser, (6)-
Positive displacement expander, (5) -Pump, (7)/ (8)-
Low-temperature seawater introduction mechanism, (9) - hypochlorite generator.

Claims (1)

【特許請求の範囲】[Claims] (1)容積式膨張機と、該容積式膨張機に供給する作動
流体を排熱によって蒸発させるための蒸発器と、前記容
積式膨張機から排出された作動流体の蒸気を凝縮するた
めの凝縮器と、上記作動流体を循環させるためのポンプ
とによって構成せられた排熱回収装置に於いて、前記凝
縮器に、生物活性の低い低温の海水の導入機構と、該低
温の海水の導入経路上に配設された次亜塩素発生器とを
接続したことを特徴とする排熱回収装置。
(1) A positive displacement expander, an evaporator for evaporating the working fluid supplied to the positive displacement expander using exhaust heat, and a condenser for condensing the vapor of the working fluid discharged from the positive displacement expander. and a pump for circulating the working fluid, the condenser is provided with a mechanism for introducing low-temperature seawater with low biological activity, and an introduction path for the low-temperature seawater. An exhaust heat recovery device characterized by being connected to a hypochlorite generator installed above.
JP59199049A 1984-09-21 1984-09-21 Waste heat recovery equipment Pending JPS6176708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59199049A JPS6176708A (en) 1984-09-21 1984-09-21 Waste heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59199049A JPS6176708A (en) 1984-09-21 1984-09-21 Waste heat recovery equipment

Publications (1)

Publication Number Publication Date
JPS6176708A true JPS6176708A (en) 1986-04-19

Family

ID=16401258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59199049A Pending JPS6176708A (en) 1984-09-21 1984-09-21 Waste heat recovery equipment

Country Status (1)

Country Link
JP (1) JPS6176708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513482B1 (en) * 1999-03-05 2003-02-04 Honda Giken Kogyo Kabushiki Kaisha Rotary fluid machinery, vane fluid machinery, and waste heat recovery device of internal combustion engine
JP5887647B1 (en) * 2015-04-28 2016-03-16 三菱瓦斯化学株式会社 Seawater cooling water treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760084A (en) * 1980-09-29 1982-04-10 Mitsubishi Heavy Ind Ltd Electrolytic method
JPS58106108A (en) * 1981-12-18 1983-06-24 Hitachi Ltd Extraction device of binary generating plant condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760084A (en) * 1980-09-29 1982-04-10 Mitsubishi Heavy Ind Ltd Electrolytic method
JPS58106108A (en) * 1981-12-18 1983-06-24 Hitachi Ltd Extraction device of binary generating plant condenser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513482B1 (en) * 1999-03-05 2003-02-04 Honda Giken Kogyo Kabushiki Kaisha Rotary fluid machinery, vane fluid machinery, and waste heat recovery device of internal combustion engine
US6668786B2 (en) 1999-03-05 2003-12-30 Honda Giken Kogyo Kabushiki Kaisha Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine
US6675765B2 (en) 1999-03-05 2004-01-13 Honda Giken Kogyo Kabushiki Kaisha Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine
US6681738B2 (en) 1999-03-05 2004-01-27 Honda Giken Kogyo Kabushiki Kaisha Rotary type fluid machine, vane type fluid machine, and waste heat recovering device for internal combustion engine
JP5887647B1 (en) * 2015-04-28 2016-03-16 三菱瓦斯化学株式会社 Seawater cooling water treatment method
JP2016209855A (en) * 2015-04-28 2016-12-15 三菱瓦斯化学株式会社 Method of treating seawater cooling water

Similar Documents

Publication Publication Date Title
US4209364A (en) Process of water recovery and removal
US9453432B2 (en) Power generation system
US3869351A (en) Evaporation system as for the conversion of salt water
JPH0794815B2 (en) Temperature difference generator
CN210267441U (en) Recycling device for waste heat of periodic blowdown and continuous blowdown of power plant boiler
JPS60241984A (en) Brine thickener
JPH06185828A (en) Absorption heat pump using low temperature heat source
JPH0932513A (en) Exhaust washing waste water power generation system
JP2000199408A (en) Power generation method utilizing hot discharged water and power generation facility
JPS6176708A (en) Waste heat recovery equipment
JPH0742844B2 (en) Hot water turbine plant
JPH10169907A (en) Boiler plant
JP3640410B2 (en) Power generation and desalination equipment using seawater temperature difference
US4063418A (en) Power producing system employing geothermally heated fluid
JPS61141985A (en) Seawater desalting system
JP2753347B2 (en) Steam turbine system and energy supply system
JPS6142390A (en) Method for making pure water for boiler
JPH08246812A (en) Refuse incinerating exhaust heat power generation system provided with gas turbine
JPS62197606A (en) Heat recovery device
JPH05280825A (en) Absorption heat pump
JPH05180527A (en) Absorption refrigerating machine
RU2067668C1 (en) Combined-cycle plant operation process
JP3103224B2 (en) Absorption heat pump using low-temperature heat source
RU2689233C1 (en) Method for increasing energy efficiency of a power plant and device for its implementation
RU2027028C1 (en) Electric power station