JPS6175523A - Apparatus for obtaining incoherent light flux - Google Patents

Apparatus for obtaining incoherent light flux

Info

Publication number
JPS6175523A
JPS6175523A JP59197867A JP19786784A JPS6175523A JP S6175523 A JPS6175523 A JP S6175523A JP 59197867 A JP59197867 A JP 59197867A JP 19786784 A JP19786784 A JP 19786784A JP S6175523 A JPS6175523 A JP S6175523A
Authority
JP
Japan
Prior art keywords
light flux
incoherent
mirror
flux
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59197867A
Other languages
Japanese (ja)
Inventor
Michio Kono
道生 河野
Hideki Ine
秀樹 稲
Makoto Torigoe
真 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59197867A priority Critical patent/JPS6175523A/en
Publication of JPS6175523A publication Critical patent/JPS6175523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To obtain incoherent light flux having predetermined distribution of cross-section intensity from coherent light flux by reducing capability in interference of light flux. CONSTITUTION:In an apparatus for obtaining incoherent light flux (IC1), a plurality of half-mirrors 1 are arranged in parallel in a certain angle (45 deg.) for a certain angle [shape of beam should be rectangular in lateral direction (a) Xperpendicular direction (b)] to an incident light flux (I0), and distance lbetween adjacent half-mirrors 1 is set longer than the interference distance (coherent length) of incident light flux. However, the mirror surface 2 is finally provided. When the light fluxes emitted from the apparatus 3 for obtaining incoherent light flux are all collected, if it is assumed that there is no absorption by half-mirror 1, the incoherent output lift flux in such an intensity as the incident light flux (I0) can be obtained.

Description

【発明の詳細な説明】 本発明は光束インコヒーレント化装置に関し、特に半導
体製造装置の照明光源としてレーザー光を使用する場合
において、微細パターン形成に有害な光源の可干渉性を
低減するための光束インコヒーレント化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for making a light beam incoherent, and in particular, when a laser beam is used as an illumination light source for semiconductor manufacturing equipment, the present invention relates to a light beam incoherence device for reducing the coherence of a light source that is harmful to fine pattern formation. This invention relates to an incoherent device.

半導体製造装置にはコンタクト、プロキシミテイ、ミラ
ープロジェクション、ステッパー等種々の型式のものが
ある。第1図は投影式の半導体製造装置の概略図であり
、図中Is、ASおよびPSはそれぞれ照明系、アライ
メント系および投影系を示す。照明系からの照明光をマ
スクMにあて、マスクM面上に形成されたパターンをウ
ェハW側へ転写する。
There are various types of semiconductor manufacturing equipment such as contact, proximity, mirror projection, and stepper. FIG. 1 is a schematic diagram of a projection type semiconductor manufacturing apparatus, in which Is, AS, and PS represent an illumination system, an alignment system, and a projection system, respectively. Illumination light from an illumination system is applied to the mask M, and the pattern formed on the surface of the mask M is transferred to the wafer W side.

コンタクト、プロキシミテイ型式の半導体製造装置の場
合は投影系PSがなく、ミラープロジエクション型式の
場合は走査機構が追加されるが、照明系、アライメント
系等の全体的な配置は第1図と基本的にはかわらない。
In the case of contact and proximity type semiconductor manufacturing equipment, there is no projection system PS, and in the case of mirror projection type, a scanning mechanism is added, but the overall arrangement of the illumination system, alignment system, etc. is similar to Figure 1. Basically no change.

従来、LSI等の微細パターンを光リングラフィの手法
で行うための半導体製造装置の照明光源としては、主に
超高圧水銀ランプ或いは、超高圧X e −Hgランプ
が一般的であった。ところが、最近照明光源の使用波長
である紫外域での高出力のレーザー(例えばエキシマレ
ーザ−等〕が進歩し、半導体製造装置の新しい光源とし
て注目されている。半導体製造装置の光源としてエキシ
マレーザ−等の高出力レーザーを使用することの利点と
しては、その高輝度性或いはその高指向性による集光光
学系の高効率化等が挙げられるが、これらについてはす
でに公知である。
Conventionally, ultra-high pressure mercury lamps or ultra-high pressure X e -Hg lamps have been commonly used as illumination light sources for semiconductor manufacturing equipment for forming fine patterns of LSIs and the like using photophosphorography. However, recently, high-output lasers (such as excimer lasers) in the ultraviolet range, which is the wavelength used in illumination light sources, have advanced and are attracting attention as new light sources for semiconductor manufacturing equipment. Advantages of using a high-output laser such as the above include high efficiency of a condensing optical system due to its high brightness or high directivity, but these are already known.

ここでレーザー光をLSI等の微細ハターンの焼付けに
使用することにおいて考えられる唯一の欠点はその高い
可干渉性である。すなわち、干渉によるスペックルの発
生が、波長オーダーの微細パターンの形成を妨げるとい
う事実である。但し、この件に関して言えば前述のエキ
シマレーザ−の通常のものにおいては、多モード発振で
あり、可干渉性は悪く、かかる問題は無い。しかし、エ
キシマレーザ−を使用した場合でも、特殊な使用法にお
いて、例えばインジェクションロッキングの手法を用い
て、発振波長l]を0.01n+m以下程度にまで狭く
した場合は、可干渉性は良くなり前述の問題が発生する
ことになる。
Here, the only drawback that can be considered in using laser light for printing fine patterns such as LSI is its high coherence. That is, the occurrence of speckles due to interference hinders the formation of fine patterns on the order of wavelengths. However, regarding this matter, the conventional excimer laser mentioned above has multimode oscillation and poor coherence, so there is no such problem. However, even when an excimer laser is used, if the oscillation wavelength l] is narrowed to 0.01n+m or less in special usage, for example by using an injection locking method, the coherence will improve and as mentioned above. problem will occur.

それ数本発明の目的は、光束の可干渉性を低減すること
により前述の問題点を解消することができる光束インコ
ヒーレント化装置を提供することにある。
It is therefore an object of the present invention to provide a beam incoherence device that can solve the above-mentioned problems by reducing the coherence of the beam.

本発明の他の目的は、コヒーレントな光束をうけてその
光値を損失することなく一次元状或いは二次元状に広げ
、光束断面内で任意の(均一を含む)強度分布をもった
インコヒーレントな大光束をうることができる光束イン
コヒーレント化装Mを提供することにある。
Another object of the present invention is to receive a coherent light beam and spread it one-dimensionally or two-dimensionally without losing its optical value, and to generate an incoherent light beam with an arbitrary (including uniform) intensity distribution within the cross-section of the beam. An object of the present invention is to provide a luminous flux incoherent making device M capable of obtaining a large luminous flux.

次に添付の図面を参照して本発明の好ましい実施例につ
いて説明する。コヒーレントな光束をうけてインコヒー
レントな光束を射出する本発明の光束インコヒーレント
化装置3の基本的構成を第2図に示す。
Preferred embodiments of the invention will now be described with reference to the accompanying drawings. FIG. 2 shows the basic configuration of a device 3 for making a beam incoherent according to the present invention, which receives a coherent beam and emits an incoherent beam.

本発明の光束インコヒーレント化装置 (IC+)は、入射光束(工。)に対しである角度(ビ
ーム形状は横方向a×縦力向aの矩形とする)に対しで
ある角度(図では45’)でハーフミラ−■を複数枚互
いに平行に配置し隣接するハーフミラ−1間の距#:文
を入射光束の可干渉孔lil&(コヒーレント長)より
長くしておく点である。但・し、最後はミラー面2を設
ける車にする。
The luminous flux incoherent device (IC+) of the present invention makes a certain angle (beam shape is a rectangle with horizontal direction a x vertical force direction a) with respect to an incident luminous flux (45 in the figure). '), a plurality of half mirrors (1) are arranged parallel to each other, and the distance #: between adjacent half mirrors 1 is made longer than the coherence hole lil& (coherent length) of the incident light beam. However, the final product will be a car with mirror surface 2.

このような構成をとる殊によって、光束インコヒーレン
ト化装置3からの射出光を全部集めると、ハーフミラ−
1による吸収がないと仮定した時、入射光束(Io)と
等しい強度のインコヒーレント射出光束がえられる。し
かも、光束を一次元状に拡大できる。(横力向a×縦方
向aの入射光束を横力向a×縦方向aに拡大。)又この
構成において各ハーフミラ−1の透過率をある規則性を
もたしてきめてやると、各ハーフミラ−1からの反射光
を等しく (1/n Ioに)する事ができる。つまI
J (n−1)個のハーフミラ−1と一枚のミラー2を
用いて、入射光量を各光束にn等分したい時、 1番目のハーフミラ−1の透過率(Ti%)をT i 
= n −i / n + 1− i X 100とき
めればいい。
Especially with such a configuration, when all the emitted light from the beam incoherent device 3 is collected, it becomes a half mirror.
Assuming that there is no absorption due to 1, an incoherent output beam with an intensity equal to the input beam (Io) is obtained. Moreover, the luminous flux can be expanded one-dimensionally. (The incident light beam in the lateral force direction a x longitudinal direction a is expanded to the lateral force direction a x longitudinal direction a.) Also, in this configuration, if the transmittance of each half mirror 1 is determined with a certain regularity, each The reflected light from the half mirror 1 can be made equal (1/n Io). Tsuma I
When you want to divide the amount of incident light into n equal beams using J (n-1) half mirrors 1 and one mirror 2, the transmittance (Ti%) of the first half mirror 1 is T i
= n - i / n + 1- i x 100.

第3図は本発明の他の実施例を示したものであり、ハー
フミラ−およびミラ一群をプリズム4として一体化した
ものである。ハーフミラ−1およびミラー2を個別に配
置する場合、各々のミラー取付けの角度誤差によって射
出光束互いに平行にならないことがある。これに対しプ
リズムとして一体化すると単品精度でプリズム角を抑え
ておきさえすれば、各面での射出光束はすべて平行とな
る。又このとき隣接するハーフミラ−1間の間隔文′は
プリズムの屈折率をnとすると文′=見/nでいい。
FIG. 3 shows another embodiment of the present invention, in which a half mirror and a group of mirrors are integrated as a prism 4. When the half mirror 1 and the mirror 2 are arranged separately, the emitted light beams may not become parallel to each other due to angular errors in mounting each mirror. On the other hand, when integrated as a prism, as long as the prism angle is suppressed with individual precision, the light beams emitted from each surface will all be parallel. Also, in this case, the distance between adjacent half mirrors 1 may be expressed as ``(k/n)'', where n is the refractive index of the prism.

第4図は第3図に示された光学ブロックを2次元状マト
リクスに拡張したものである。この場合射出光束を均一
にするためには各ハーフミラ−での透過率を次式で定め
ると良い。つまり、入射光束側から数えてたて方向にi
番目、よこ方向にj番目のハーフミラ−の透過率Tij
  (%)を、Tij = (m−i/m+1−i)X
 (n−j/n+1−j) X 100と定めるといい
FIG. 4 shows the optical block shown in FIG. 3 expanded into a two-dimensional matrix. In this case, in order to make the emitted light beam uniform, it is preferable to determine the transmittance of each half mirror using the following equation. In other words, in the vertical direction counting from the incident light beam side,
Transmittance Tij of the jth half mirror in the horizontal direction
(%), Tij = (m-i/m+1-i)X
It is best to set it as (n-j/n+1-j) X 100.

第5図は第4図の光学ブロック4の射出側に各射出窓毎
に焦点距離の等しい微小レンズ5群(例えばフライズア
イレンズ)を設けたものである。この光学ブロック4お
よび微小レンズ5を第1図に示された半導体製造装置に
適用した場合を第6図に示す。
In FIG. 5, five groups of microlenses (for example, fly's eye lenses) having the same focal length are provided for each exit window on the exit side of the optical block 4 shown in FIG. FIG. 6 shows a case where this optical block 4 and microlens 5 are applied to the semiconductor manufacturing apparatus shown in FIG. 1.

第6図によるとレーザー源(LS)から発した平行光束
は光学ブロック6を通り、光路を直角に折り曲げられる
。その後レンズ5の焦点位置Fに−II’J集光したあ
とコンデンサーレンズ7の作用でマスクMを透過し、投
影系(PS)の瞳面8に集光して輝点群となる。そして
、瞳面8に結像した光源像(いまの場合は輝点群)(E
S)を有効光源と呼んでいる。
According to FIG. 6, a parallel beam of light emitted from a laser source (LS) passes through an optical block 6, and its optical path is bent at a right angle. Thereafter, the light -II'J is focused on the focal point F of the lens 5, and then transmitted through the mask M by the action of the condenser lens 7, and is focused on the pupil plane 8 of the projection system (PS), forming a group of bright spots. Then, the light source image (in this case, bright spot group) (E
S) is called an effective light source.

一競゛に、照明光源像を投影系の瞳面上に結ばせる照明
方法をケーラー照明といい、物体面(マスクM)の照度
ムラをなくする手段である。
In comparison, an illumination method that focuses an illumination light source image on the pupil plane of the projection system is called Koehler illumination, and is a means of eliminating uneven illuminance on the object plane (mask M).

又、第6図の配置をとる事により、有効光源(ES)を
均一化できるという利点もある。
Further, by adopting the arrangement shown in FIG. 6, there is an advantage that the effective light source (ES) can be made uniform.

第7図は、−次元状の有効光源を回転させて時間的に平
均化し、等価的に二次元状の有効光源をつくりだす実施
例を示したものである。第7図に示された一次元状の有
効光源をつくるための光学ブロック9を例えば第6図に
適用しくレーザーはこの場合第6図の真上から入射させ
る。)、軸c −c’を中心として回転させる。第8図
は、第7図の光学ブロック9を第6図に適用し軸c −
c′を中心として回転させた場合を投影系の瞳8上で観
察したときの状態を示す。
FIG. 7 shows an embodiment in which a -dimensional effective light source is rotated and averaged over time to create an equivalent two-dimensional effective light source. The optical block 9 for creating a one-dimensional effective light source shown in FIG. 7 can be applied to, for example, FIG. 6, and in this case the laser is incident from directly above FIG. ), rotate around axis c-c'. FIG. 8 shows an example in which the optical block 9 of FIG. 7 is applied to the optical block 9 of FIG.
This shows the state observed on the pupil 8 of the projection system when rotated around c'.

第9図は第7図と構成が異なるが、第7図と同じく一次
元状の有効光源を回転させて時間的に平均化し、等価的
に二次元状の有効光源をつくりだす実施例を示したもの
である。第9図に示された一次元状の有効光源をつくる
ための光学ブロック10を例えば第6図に適用し、軸C
−σを中心として回転させる。第10図は、第9図の光
学ブロック10を第6図に適用し軸c −c’を中心と
して回転させた場合を投影系の瞳8上で観察したときの
状態を示す。
Although FIG. 9 has a different configuration from FIG. 7, it shows an example in which a one-dimensional effective light source is rotated and averaged over time to create an equivalent two-dimensional effective light source, as in FIG. 7. It is something. For example, the optical block 10 for creating a one-dimensional effective light source shown in FIG. 9 is applied to FIG.
Rotate around −σ. FIG. 10 shows a state when the optical block 10 of FIG. 9 is applied to FIG. 6 and rotated about the axis c-c' as observed on the pupil 8 of the projection system.

次に回転させることなく二次元状の有効光源をつくりだ
すように構成させた本発明の実施例を第11図に示す。
Next, FIG. 11 shows an embodiment of the present invention configured to create a two-dimensional effective light source without rotation.

この場合円錐形状或いは切頭円錐形状のハーフミラ−1
2,13およびミラー14を同心状に複数個配列する。
In this case, the half mirror 1 has a conical shape or a truncated conical shape.
A plurality of mirrors 2, 13 and mirrors 14 are arranged concentrically.

隣接するハーフミラ−、ミラー間の間隔はレーザー光の
コヒーレント長より長くしておく。
The distance between adjacent half mirrors is set longer than the coherent length of the laser beam.

又この場合射出側にはリング状のトーリックレンズ15
をすき間なく配置する。第7図、第9図および第11図
において射出側にレンズ5.15を配置しであるが、一
般には特に用いなくても射出側でインコヒーレントな大
光束を得ることができ、光量損失もない。
Also, in this case, a ring-shaped toric lens 15 is provided on the exit side.
Place them without any gaps. In Figs. 7, 9, and 11, the lens 5.15 is placed on the exit side, but in general, a large incoherent luminous flux can be obtained on the exit side without using it, and there is no light loss. do not have.

以上説明したとおり本発明の光束インコヒーレット化装
置に依れば、コヒーレントな光束から任意の断面強度分
布を有するインコヒーレント光束をうろことができる。
As explained above, according to the luminous flux incoherentization device of the present invention, an incoherent luminous flux having an arbitrary cross-sectional intensity distribution can be obtained from a coherent luminous flux.

更に半導体製造装置に適用した場合、スペックル等によ
る光学系の解像性能の劣下を防ぐことができ、lpm近
辺の微細パターンを安定して焼きつけることが可能とな
る。
Furthermore, when applied to semiconductor manufacturing equipment, it is possible to prevent deterioration of the resolution performance of the optical system due to speckles, etc., and it is possible to stably print fine patterns in the vicinity of lpm.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は投影式の半導体製造装置の概略図、第2図は本
発明の光束インコヒーレント化装置の基本的構成を示し
た図、 第3図は本発明の光束インコヒーレント化装置の他の実
施例を示した図、 第4図は第3図に示された光学ブロックを2次元状マト
リクスに拡張した場合を示した図。 第5図は第4図の光学ブロックの射出側に微小レンズ群
を配した場合を示した図、 。 第6図は本発明の光束インコヒーレント化装置を半導体
製造装置に適用した場合を示した図、第7図は一次元状
の有効光源を回転させて時間的に平均化し、等価的に二
次元状の有効光源をつくりだす実施例を示した図、 第8図は第7図の光学ブロック9を第6図に適用し軸c
 −c’を中心として回転させた場合を投影系の瞳8上
で観察したときの状態を示した図、 第9図は第7図と構成が異なるが、第7図と同じく一次
元状の有効光源を回転させて時間的に平均化し、等価的
に二次元状の有効光源をつくりだす実施例を示した図、 第10図は第9図の光学ブロックlOを第6図に適用し
軸c −c’を中心として回転させた場合を投影系の瞳
8上で観察したときの状態を示した図、 第11図は回転させることなく二次元状の有効光源をつ
くりだすように構成された本発明の実施例を示した図で
ある。 1−−−ハーフミラ−12−m−ミラー、4−m−光学
ブロック、5−m−微小レンズ、8−m−瞳面。 特開昭Gl−75523(6)
FIG. 1 is a schematic diagram of a projection type semiconductor manufacturing apparatus, FIG. 2 is a diagram showing the basic configuration of a beam incoherent device of the present invention, and FIG. 3 is another example of a beam incoherent device of the present invention. FIG. 4 is a diagram showing an example in which the optical block shown in FIG. 3 is expanded into a two-dimensional matrix. FIG. 5 is a diagram showing a case where a microlens group is arranged on the exit side of the optical block shown in FIG. 4. Fig. 6 shows a case where the luminous flux incoherence making device of the present invention is applied to semiconductor manufacturing equipment, and Fig. 7 shows a case in which a one-dimensional effective light source is rotated and averaged over time, and equivalently two-dimensional Figure 8 shows an example of creating an effective light source with axis c.
Figure 9 is a diagram showing the state observed on the pupil 8 of the projection system when rotated around -c' as the center. Figure 9 has a different configuration from Figure 7, but like Figure 7, it has a one-dimensional shape. Figure 10 shows an example in which an effective light source is rotated and averaged over time to create an equivalent two-dimensional effective light source. A diagram showing the state observed on the pupil 8 of the projection system when rotated about -c' as the center. Figure 11 is a book configured to create a two-dimensional effective light source without rotation. It is a figure showing an example of the invention. 1--half mirror, 12-m-mirror, 4-m-optical block, 5-m-microlens, 8-m-pupil plane. JP-A-Sho Gl-75523 (6)

Claims (5)

【特許請求の範囲】[Claims] (1)コヒーレントな光束を入射される少なくとも2個
以上の光学素子を有し、前記光学素子によって射出され
る光束をインコヒーレントにするために、隣接する光学
素子間の間隔 を入射光束のコヒーレント長より長くする ことを特徴とする光束インコヒーレント化 装置。
(1) It has at least two optical elements into which a coherent light flux is incident, and in order to make the light flux emitted by the optical element incoherent, the distance between adjacent optical elements is set to the coherent length of the incident light flux. A device for making a luminous flux incoherent, which is characterized by making it longer.
(2)前記光学素子は一次元状に配置されることを特徴
とする、特許請求の範囲第1項記載の光束インコヒーレ
ント化装置。
(2) The light beam incoherence device according to claim 1, wherein the optical elements are arranged one-dimensionally.
(3)前記光学素子は二次元状に配置されることを特徴
とする、特許請求の範囲第1項記載の光束インコヒーレ
ント化装置。
(3) The light beam incoherence device according to claim 1, wherein the optical elements are arranged two-dimensionally.
(4)前記光学素子はハーフミラー又はミラーであるこ
とを特徴とする、特許請求の範囲第1項記載の光束イン
コヒーレント化装置。
(4) The light beam incoherence device according to claim 1, wherein the optical element is a half mirror or a mirror.
(5)前記光学素子は、射出光束断面内で任意の光強度
分布を得るために種々の透過率を有することを特徴とす
る、特許請求の範囲第1項記載の光束インコヒーレント
化装置。
(5) The device for making a beam incoherent according to claim 1, wherein the optical element has various transmittances in order to obtain an arbitrary light intensity distribution within a cross section of the emitted beam.
JP59197867A 1984-09-21 1984-09-21 Apparatus for obtaining incoherent light flux Pending JPS6175523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197867A JPS6175523A (en) 1984-09-21 1984-09-21 Apparatus for obtaining incoherent light flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197867A JPS6175523A (en) 1984-09-21 1984-09-21 Apparatus for obtaining incoherent light flux

Publications (1)

Publication Number Publication Date
JPS6175523A true JPS6175523A (en) 1986-04-17

Family

ID=16381649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197867A Pending JPS6175523A (en) 1984-09-21 1984-09-21 Apparatus for obtaining incoherent light flux

Country Status (1)

Country Link
JP (1) JPS6175523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095304A1 (en) * 1998-07-09 2001-05-02 Cymer, Inc. Multiplexer for laser lithography
US6894839B2 (en) 2001-02-22 2005-05-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Illumination optical system and laser processor having the same
JP2010153875A (en) * 2008-12-23 2010-07-08 Carl Zeiss Smt Ag Illumination system of microlithographic projection exposure apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1095304A1 (en) * 1998-07-09 2001-05-02 Cymer, Inc. Multiplexer for laser lithography
EP1095304A4 (en) * 1998-07-09 2005-05-04 Cymer Inc Multiplexer for laser lithography
US6894839B2 (en) 2001-02-22 2005-05-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Illumination optical system and laser processor having the same
JP2010153875A (en) * 2008-12-23 2010-07-08 Carl Zeiss Smt Ag Illumination system of microlithographic projection exposure apparatus

Similar Documents

Publication Publication Date Title
KR100506497B1 (en) Illumination apparatus, exposure apparatus using the same, and device fabricating method
KR101336404B1 (en) Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
JPH08328261A (en) Illumination means for projection microlithographic apparatus
KR100768111B1 (en) Illuminating system for the vuv-microlithography
JP2007150295A (en) Optical device comprising raster element, and irradiation system comprising the optical device
JPH11271619A (en) Illumination optical device and exposure device provided with illumination optical device
JPH05217855A (en) Illumination apparatus for exposure
US6069739A (en) Method and lens arrangement to improve imaging performance of microlithography exposure tool
USRE34634E (en) Light illumination device
JPH07211621A (en) Projection aligner and fabrication of device
JP2002116379A (en) Illumination system for microlithography
JP2002208551A (en) Reflection/refraction optical system and projection aligner
JPH01114035A (en) Aligner
JPS6175523A (en) Apparatus for obtaining incoherent light flux
JP4305611B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP2003015314A (en) Illumination optical device and exposure device provided with the same
JP2011053441A (en) Lens array and optical system
JP2005310942A (en) Aligner, exposure method, and device manufacturing method using it
CN105446085B (en) Illuminating and optical apparatus, exposure device and the method for manufacturing article
JP5446856B2 (en) Lens array and optical system
JP3563888B2 (en) Illumination apparatus and projection exposure apparatus using the same
JPS6380243A (en) Illuminating optical device for exposing device
JP3562592B2 (en) Exposure equipment
JP2005005637A (en) Circular arc region lighting optical device and projection aligner using it
JPH0196929A (en) Illuminating device for exposure using laser