JPS6175250A - Method and apparatus for detecting fuel density liquid fuel battery - Google Patents

Method and apparatus for detecting fuel density liquid fuel battery

Info

Publication number
JPS6175250A
JPS6175250A JP59196437A JP19643784A JPS6175250A JP S6175250 A JPS6175250 A JP S6175250A JP 59196437 A JP59196437 A JP 59196437A JP 19643784 A JP19643784 A JP 19643784A JP S6175250 A JPS6175250 A JP S6175250A
Authority
JP
Japan
Prior art keywords
fuel
liquid fuel
liquid
gas sensor
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196437A
Other languages
Japanese (ja)
Inventor
Saburo Yasukawa
安川 三郎
Ryota Doi
良太 土井
Tsutomu Tsukui
津久井 勤
Motoo Yamaguchi
元男 山口
Toshio Shimizu
利男 清水
Shuzo Iwaasa
岩浅 修蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59196437A priority Critical patent/JPS6175250A/en
Publication of JPS6175250A publication Critical patent/JPS6175250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To achieve a stable and highly accurate measurement without electric contact with an electrolytic liquid from outside, by detecting a partial vapor pressure of a liquid fuel in the gaseous phase of the electrolytic liquid mixed with the liquid fuel with a semiconductor gas sensor. CONSTITUTION:A fuel pole chamber 11 and an air pole chamber 12 are arranged on both sides of a laminated fuel battery 10 and an electrolytic liquid 18 in an electrolytic liquid reservoir 17 is mixed with a liquid fuel 16 from a tank 15 to be supplied and circulated with a pump 14 to the fuel pole chamber 11 through an electrolytic liquid reservoir 17 and supply paths 11A and 11B. Air for an oxidizing agent is supplied to the air pole chamber 12 with a fan 13 through supply paths 12A and 12B. Moreover, a semiconductor gas sensor 26 is arranged in the gaseous phase of the liquid reservoir 17 and the partial vapor pressure of fuel in the gaseous phase, hence changes in the resistance of the gas sensor 26 due to the gas density thereof, is detected with an ammeter 21 to measure the density of the liquid fuel in the electrolytic liquid 18. Then, a temperature correction of a sensor 20 at a correcting section 20 is done with a temperature detection thermistor 25 while the supply of the liquid fuel 16 from the fuel tank 15 is controlled by adjusting the opening/closing frequency of a solenoid valve 19.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は液体燃料を直接電気化学反応させて電気エネル
ギーを発生する燃料電池の電解液中の燃料濃度を測定す
る方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for measuring fuel concentration in an electrolyte of a fuel cell that generates electrical energy by directly electrochemically reacting liquid fuel.

〔発明の背景〕[Background of the invention]

通常、燃料電池性能(出力電圧)は電解液中の燃料濃度
に強く依存する為、電解液中の燃料濃度を検出し、一定
範囲内にコントロールする必要がある。ちなみに、メタ
ノールを燃料とした酸性電解液型の燃料電池では、電解
液中の燃料濃度が低く過ぎると反応燃料不足で電池性能
が低下し、逆に高過ぎると燃料の直接燃焼増大等により
電池性能が低下するので、電解液11に対し、メタノー
ル燃料濃度を0.5から1.5 mob/lの範囲に制
御する必要がある。
Normally, fuel cell performance (output voltage) strongly depends on the fuel concentration in the electrolyte, so it is necessary to detect the fuel concentration in the electrolyte and control it within a certain range. By the way, in acidic electrolyte fuel cells using methanol as fuel, if the fuel concentration in the electrolyte is too low, there will be insufficient reaction fuel, resulting in a decrease in cell performance, and if it is too high, the direct combustion of fuel will increase, leading to a decrease in cell performance. Therefore, it is necessary to control the methanol fuel concentration to the electrolytic solution 11 within a range of 0.5 to 1.5 mob/l.

燃料電池における電解液中の液体燃料濃度の検出方法の
従来例としては特開昭56−118273号に示されて
いるようなメタノール燃料電池におけるメタノール濃度
検出法がある。これは、電解液中のメタノール濃度が定
電位下での電気分屏電流に依存する事を応用して、電解
液中に正・負両測定電極を浸漬し、外部よシミ層液に一
定の電解電圧を加え、該両極間を流れる電解電流を定量
評価する手法である。電解液は通常燃料電池出力電圧の
7〜8割程の電位をもっておシ、上記方法では上記濃度
測定電極、供給電流源、検出回路は、全て燃料電池系と
完全に電気的に絶縁された外部電源系である必要があっ
た。
A conventional example of a method for detecting the concentration of liquid fuel in an electrolyte in a fuel cell is a method for detecting methanol concentration in a methanol fuel cell, as disclosed in Japanese Patent Laid-Open No. 118273/1983. This method takes advantage of the fact that the methanol concentration in the electrolyte depends on the electric current under a constant potential.Both the positive and negative measuring electrodes are immersed in the electrolyte, and the stain layer is applied to the outside at a constant level. This is a method of applying an electrolytic voltage and quantitatively evaluating the electrolytic current flowing between the two electrodes. The electrolytic solution normally has a potential of about 70 to 80% of the fuel cell output voltage, and in the above method, the concentration measuring electrode, supply current source, and detection circuit are all externally isolated from the fuel cell system. It had to be a power supply system.

第2図は上記方法を用いた燃料電池の燃料供給系統を示
す。電解液溜17中の電解液18に燃料り/り15から
液体燃料16(この場合メタノール)を混入させ、燃料
供給ボンデ14により、供給通路11 A 、 11 
Bを介し、積層燃料電池本体10の燃料極室11へ、混
液を循環供給する。酸化剤の空気はファン13により供
給通路12A。
FIG. 2 shows a fuel supply system for a fuel cell using the above method. Liquid fuel 16 (methanol in this case) is mixed from the fuel tank 15 into the electrolytic solution 18 in the electrolytic solution reservoir 17, and the fuel supply bond 14 feeds the supply passages 11A, 11.
The mixed liquid is circulated and supplied to the fuel electrode chamber 11 of the stacked fuel cell main body 10 via B. The oxidizer air is supplied to the supply passage 12A by the fan 13.

12Bを介し、空気極室12へ供給される。電池本体1
0内では、外部負荷に応じて、電解液中の燃料を消費す
る。かかる燃料電池において電解液中のメタノール燃料
濃度を検出するには、特開昭56−118273号記載
の方法によれば、電解液溜17中の電解液18に測定用
電極22.23を浸漬し、これを電源兼補正部に接続し
、該電極に流れる電解液中の液体燃料濃度に依存した電
解電流を電流計21にて検出し、これを熱電対24検出
温度で補正部20にて補正評価する。この評価結果によ
って弁19を調節して電解液18中の燃料濃度を一定に
制御する。
It is supplied to the air cathode chamber 12 via 12B. Battery body 1
Within 0, fuel in the electrolyte is consumed depending on the external load. In order to detect the methanol fuel concentration in the electrolyte in such a fuel cell, according to the method described in JP-A-56-118273, the measuring electrodes 22 and 23 are immersed in the electrolyte 18 in the electrolyte reservoir 17. , which is connected to a power supply and correction section, and an electrolytic current depending on the concentration of liquid fuel in the electrolytic solution flowing to the electrode is detected by an ammeter 21, and this is corrected by a correction section 20 using the temperature detected by a thermocouple 24. evaluate. Based on this evaluation result, the valve 19 is adjusted to control the fuel concentration in the electrolytic solution 18 to be constant.

上記の燃料濃度検出方法の最大の問題は、測定用電極2
2.23およびこれに接続され電気回路よプなる測定系
を燃料電池本体と電気的に完全に絶縁した状態にしなけ
ればならないことである。
The biggest problem with the above fuel concentration detection method is that the measurement electrode 2
2.23 and the measurement system connected thereto, such as an electric circuit, must be completely electrically insulated from the fuel cell main body.

この問題を、第3図に示した等価電気回路図を用いて説
明すると、燃料電池本体30は開閉器32を介し電気負
荷31に電力を供給する。これと同時に電池本体30の
正・負極は、循環する電解液18の等価抵抗34により
ミ気に橋絡される。
To explain this problem using the equivalent electric circuit diagram shown in FIG. 3, the fuel cell main body 30 supplies power to the electric load 31 via the switch 32. At the same time, the positive and negative electrodes of the battery body 30 are bridged by the equivalent resistance 34 of the circulating electrolyte 18.

電解液中に浸漬された正・負の測定用電極22および2
3は、一方では燃料電池の電圧によりミ層液抵抗34に
より分圧された電位をとろうとし、また他方では、測定
電解用の外部電源35の電圧の影響を受け、これら両電
源系の複合電位としての電解電流を電流計21が検出す
るととKなる。
Positive and negative measurement electrodes 22 and 2 immersed in electrolyte
3 attempts to obtain a potential divided by the layer liquid resistance 34 by the voltage of the fuel cell on the one hand, and on the other hand is affected by the voltage of the external power supply 35 for measurement electrolysis, and is a composite of these two power supply systems. When the ammeter 21 detects the electrolytic current as a potential, it becomes K.

通常、燃料電池の電圧は負荷電流により大きく変動する
ので、検出電流に大幅なる変動をもたらす。
Normally, the voltage of a fuel cell varies greatly depending on the load current, resulting in a large variation in the detected current.

又燃料電池を他の電源の存在しない場所での独立電源と
して用いる場合、測定電解用電源35を燃料電池による
電源よシ作シ出す必要がある。
Further, when the fuel cell is used as an independent power source in a place where no other power source exists, it is necessary to connect the measuring electrolysis power source 35 to the power source from the fuel cell.

このような理由から、燃料電池系と測定電解系との完全
な電気的絶縁、すなわち両系が電解液を介して電気的に
通しないようにすることが必要であり、このため系の構
成は極めて複雑になるという問題があった。
For these reasons, it is necessary to completely electrically isolate the fuel cell system and the measurement electrolyte system, that is, to prevent electrical conduction between the two systems via the electrolyte. The problem was that it was extremely complicated.

また、通常、測定電極としては白金およびその表面に白
金触媒を塗着したものが使用され、電極部が高価である
こと、寿命が短く安定性に欠ける等の問題もあった。
Furthermore, platinum or a platinum catalyst coated on the surface of the platinum electrode is usually used as the measurement electrode, which has problems such as the electrode part being expensive and having a short lifespan and lacking in stability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題に鑑み、燃料電池の電
解液に外部から電気的接触を加えることなしに電解液中
の燃料濃度を安定に精度良く検出し得る方法および装置
を提供するにある。
In view of the above-mentioned conventional problems, an object of the present invention is to provide a method and apparatus that can stably and accurately detect the fuel concentration in an electrolyte of a fuel cell without applying electrical contact to the electrolyte from the outside. be.

〔発明の概要〕[Summary of the invention]

本発明は、液体燃料を用いる燃料電池において、液体燃
料を混入した電解液の気相中における液体燃料の蒸気分
圧が該電解液中の液体燃料の濃度の関数であることを利
用して、該蒸気分圧を半導体ガスセンサにより検出する
ことにより、上記電解液中の液体燃料の濃度を検出する
ものであり、これにより前記従来例における如き測定系
と燃料電池系との電気的絶縁のための複雑な構成は回避
される。
The present invention utilizes the fact that, in a fuel cell using a liquid fuel, the vapor partial pressure of the liquid fuel in the gas phase of an electrolyte mixed with the liquid fuel is a function of the concentration of the liquid fuel in the electrolyte. By detecting the vapor partial pressure with a semiconductor gas sensor, the concentration of liquid fuel in the electrolyte is detected. Complex configurations are avoided.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によ)説明する。積層
燃料電池本体10の両側に燃料極室11および空気極室
12を配し、液体燃料16をそのタンク15から電解液
溜17中の電解液18に混入させ?ンf14によりミ層
液溜17、供給通路11A、IIBを介し燃料極室11
に供給箪循環させる。一方、酸化剤の空気はファン13
により供給通路12A 、 12Bを介し空気極室12
に供給する。電解液溜17の気相部に半導体ガスセンサ
26を配し、気相中の燃料蒸気分圧、従ってそのガス濃
度によるガスセンサ2σの抵抗の変化を電流計21によ
り検知し、電解液18中の液体燃料濃度を、電解液18
とは電気的に絶縁された状態にて測定する。又、気相中
には、温度検出用にサーミスタ25を配し、ガスセンサ
26の出力の温度補正を補正部20で行う。補正部20
は半導体ガスセンサ26に対する電源も含んでいる。検
出したセンサ出力に基づき、電解液中の液体燃料濃度を
規定範囲に内に保つ様、燃料タンク15からの液体燃料
16の供給を、電磁パルプ19の開閉頻度(又は時間゛
間隔)の調整によって制御する。
An embodiment of the present invention will be described below with reference to FIG. A fuel electrode chamber 11 and an air electrode chamber 12 are arranged on both sides of the stacked fuel cell body 10, and the liquid fuel 16 is mixed into the electrolyte 18 in the electrolyte reservoir 17 from the tank 15. The fuel electrode chamber 11 is supplied to the fuel electrode chamber 11 via the micro-layer liquid reservoir 17, the supply passages 11A and IIB by the input f14.
The supply can be circulated. On the other hand, the oxidizer air is supplied by the fan 13.
air cathode chamber 12 through supply passages 12A and 12B.
supply to. A semiconductor gas sensor 26 is disposed in the gas phase of the electrolyte reservoir 17, and the ammeter 21 detects changes in the resistance of the gas sensor 2σ due to the partial pressure of fuel vapor in the gas phase, and therefore the gas concentration, and detects the liquid in the electrolyte 18. Fuel concentration, electrolyte 18
Measurements are made in an electrically insulated state. Further, a thermistor 25 is disposed in the gas phase for temperature detection, and a correction section 20 performs temperature correction on the output of the gas sensor 26. Correction section 20
also includes a power source for the semiconductor gas sensor 26. Based on the detected sensor output, the supply of liquid fuel 16 from the fuel tank 15 is controlled by adjusting the opening/closing frequency (or time interval) of the electromagnetic pulp 19 so as to maintain the liquid fuel concentration in the electrolyte within a specified range. Control.

半導体ガスセンサは、電圧の印加された電極間に介在す
る半導体がガスに曝されたときの電極間抵抗の変化から
ガス濃度を検知するものであり(例えば下記の文献1.
.2.3参照)、本発明では公知の半導体ガスセンサの
うちから特性に応じて適切なものを使用することができ
る。
A semiconductor gas sensor detects gas concentration from a change in resistance between electrodes when a semiconductor interposed between electrodes to which a voltage is applied is exposed to gas (for example, see Document 1 below).
.. 2.3), in the present invention, suitable semiconductor gas sensors can be used from among known semiconductor gas sensors depending on the characteristics.

文献l・・・「エレクトロニクス」昭和59年6月号、
107〜109頁 文献2・・・同上、昭和55年1月号、47〜55頁 文献3・・・「計装J1983年4月号、27〜30頁 第4図は、液体燃料としてメタノールを用いたメタノー
ル燃料電池を例にとって、燃料濃度検出の実測例を示し
たものである。半導体ガスセンサとして、5n02を主
成分とした市販のガスセンサ(フィガロ社製TGS+8
13)を用いた。横軸に電解液溶液中のメタノール濃度
(mob/l )、縦軸に半導体センサ抵抗をとシ、両
者の関係を示した。
Literature l..."Electronics" June 1980 issue,
Reference 2, pp. 107-109...Ibid., January 1983 issue, pp. 47-55 Document 3...``Instrument J April 1983 issue, pp. 27-30 Figure 4 shows methanol as a liquid fuel. This figure shows an actual measurement example of fuel concentration detection using the methanol fuel cell used as an example.As a semiconductor gas sensor, a commercially available gas sensor (TGS+8 manufactured by Figaro) whose main component is 5n02 was used.
13) was used. The horizontal axis represents the methanol concentration (mob/l) in the electrolyte solution, and the vertical axis represents the semiconductor sensor resistance, and the relationship between the two is shown.

メタノール燃料電池においては、電解溶液中の液体燃料
メタノールの濃度が0.5から1.5 (mot/l)
の範囲で最も電池性能が良く、安定した運転が出来る事
が知られているが、第4図によれば、この濃度領域内で
のセンサ抵抗の変化が充分大きく、感度の高い濃度セン
サであることが判る。
In methanol fuel cells, the concentration of liquid fuel methanol in the electrolyte solution is between 0.5 and 1.5 (mot/l).
It is known that the battery performance is the best and stable operation is possible within this concentration range.According to Figure 4, the change in sensor resistance within this concentration range is sufficiently large, making it a highly sensitive concentration sensor. I understand that.

液体燃料の蒸気圧は、温度に依存する(第5図参照)の
で、第4図には上記半導体ガスセ/す抵抗の温度依存性
も示した。実用温度範囲である20℃から60℃の範囲
において、センサ抵抗変化は充分な感度を有する事が判
る。
Since the vapor pressure of liquid fuel depends on temperature (see FIG. 5), FIG. 4 also shows the temperature dependence of the semiconductor gas resistance. It can be seen that the sensor resistance change has sufficient sensitivity in the practical temperature range of 20° C. to 60° C.

第6図は、温度補正回路系および、燃料パルプ19の駆
動回路を示したものである。燃料電池の出力電圧100
を三端子レギュレータ101で定電圧化し、半導体ガス
センサ26のヒータ電源とする。半導体センサ出力抵抗
と並列に、温度補正用サーミスタ25を配し、両者の出
力電圧の差分出力をコンノ平レータ104を介し、燃料
供給パルプ19の開閉信号とする。
FIG. 6 shows a temperature correction circuit system and a drive circuit for the fuel pulp 19. Fuel cell output voltage 100
is made into a constant voltage by a three-terminal regulator 101 and used as a heater power source for the semiconductor gas sensor 26. A temperature correction thermistor 25 is arranged in parallel with the semiconductor sensor output resistor, and the differential output between the output voltages of both is used as an opening/closing signal for the fuel supply pulp 19 via the connograph 104.

第7図は、半導体がスセ/すとしてS no 2を主成
分とした素子の検知ガス濃度特性(フィガロ社カタログ
値TGSす813)を示したものである。液体燃料とし
て最も期待されるアルコール(蒸気)に対する感度が著
しく高いことがわかる。このことは他のガスの影響を受
けKくい事にもなる。またS no 2は、電解液に含
まれているH2SO4,KOI(。
FIG. 7 shows the detected gas concentration characteristics (Figaro Catalog value TGS 813) of an element mainly composed of S no 2 as a semiconductor. It can be seen that the sensitivity to alcohol (vapor), which is most expected as a liquid fuel, is extremely high. This also means that it will be affected by other gases. In addition, S no 2 is H2SO4, KOI (.

H3PO4等の酸やアルカIJ K由来する気相中の微
量な腐食性蒸気に対する耐浸性が高いという点において
も、本発明に用いる燃料電池濃度検出用半導体ガスセン
サとして好ましい材料である。
It is also a preferred material for the semiconductor gas sensor for fuel cell concentration detection used in the present invention in that it has high resistance to acids such as H3PO4 and trace amounts of corrosive vapor in the gas phase derived from alkali IJK.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液体燃料電池において、電解液にセン
サが接触することなく電解液中の液体燃料の濃度を検出
できるため、発明の背景で述べた電極浸漬式のセンサの
場合のような電池系と測定系の間の電解液を介しての影
響の問題がないので、簡単で信頼性が高く寿命も長くす
ることができ、又市販の半導体ガスセンサを用い得るた
め安価で且つメンテナンスも単にセンサ素子交換により
極めて容易に行うことができる。
According to the present invention, in a liquid fuel cell, the concentration of liquid fuel in the electrolyte can be detected without the sensor coming into contact with the electrolyte. Since there is no problem of influence via the electrolyte between the system and the measurement system, the sensor is simple, reliable, and has a long service life.Also, since a commercially available semiconductor gas sensor can be used, it is inexpensive and easy to maintain. This can be done extremely easily by replacing the elements.

勿論、本発明により得られた燃料濃度の検出値を燃料電
池の電解液中の燃料濃度の制御に利用し得ることは云う
までもない。
Of course, it goes without saying that the detected value of fuel concentration obtained by the present invention can be used to control the fuel concentration in the electrolyte of a fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料濃度検出装置を用いた燃料電池の
燃料供給系のフロー図、 第2図は従来型の燃料濃度検出装置を用いた燃料電池の
燃料供給系のフロー図、 第3図は第2図の電気的等価回路図、 第4図は電解液中のメタノール燃料濃度と半導体ガスセ
ンサ抵抗との相関図、 第5図はメタノール濃度と温度との相関図、第6図は本
発明実施例における濃度センサの温度補正および燃料パ
ルプ駆動回路図、第7図はSnO□半導体ガスセ/すの
特性図である。 符号の説明 10・・・積層燃料電池本体 11・・・燃料極室12
・・・空気極室    13・・・ファン14・・・ポ
ンプ     15・・・燃料貯蔵タンク16・・・液
体燃料    17・・・電解液溜18・・・電解液 
    19・・・燃料供給パルプ20・・・補正電気
回路兼電源 21・・・電流計 22・・・測定電解用電極(正) 23・・・測定電解用電極(負) 24・・・サーミスタ又は熱電対 25・・・サーミスタ 26・・・半導体ガスセンサ30・・・燃料電池本体3
1・・・電気負荷    34・・・電解液抵抗35・
・・外部電源    36・・・電流計100・・・燃
料電池本体 101・・・定電圧三端子レギュレーター104・・・
コンパレータ 第1図 牌 第2図 第3図 第4図 電鱈J伎中のスフノール3息炭(−”//)第5図 遅斐j (t) 第6図 第7図 力゛ス5息&(%)
FIG. 1 is a flow diagram of a fuel supply system of a fuel cell using the fuel concentration detection device of the present invention, FIG. 2 is a flow diagram of a fuel supply system of a fuel cell using a conventional fuel concentration detection device, and FIG. The figure is an electrical equivalent circuit diagram of Figure 2, Figure 4 is a correlation diagram between methanol fuel concentration in the electrolyte and semiconductor gas sensor resistance, Figure 5 is a correlation diagram between methanol concentration and temperature, and Figure 6 is a diagram of the main FIG. 7 is a temperature correction and fuel pulp drive circuit diagram of the concentration sensor in the embodiment of the invention, and a characteristic diagram of the SnO□ semiconductor gas chamber. Explanation of symbols 10...Stacked fuel cell main body 11...Fuel electrode chamber 12
... Air electrode chamber 13 ... Fan 14 ... Pump 15 ... Fuel storage tank 16 ... Liquid fuel 17 ... Electrolyte reservoir 18 ... Electrolyte
19... Fuel supply pulp 20... Correction electric circuit/power supply 21... Ammeter 22... Electrode for measuring electrolysis (positive) 23... Electrode for measuring electrolysis (negative) 24... Thermistor or Thermocouple 25...Thermistor 26...Semiconductor gas sensor 30...Fuel cell main body 3
1... Electric load 34... Electrolyte resistance 35.
...External power supply 36...Ammeter 100...Fuel cell main body 101...Constant voltage three-terminal regulator 104...
Comparator Fig. 1 Tile Fig. 2 Fig. 4 Fig. 4 Sufnor 3 breaths in electric cod J (-”//) Fig. 5 Slow j (t) &(%)

Claims (1)

【特許請求の範囲】 1、液体燃料を用いる燃料電池における液体燃料を混入
した電解液の気相中の該液体燃料の蒸気分圧を半導体ガ
スセンサで検出することにより該電解液中の液体燃料の
濃度を検出することを特徴とする液体燃料電池の燃料濃
度検出方法。 2、上記気相の温度を検出する温度センサの出力により
上記半導体ガスセンサの出力の温度補正を行う特許請求
の範囲第1項に記載した液体燃料電池の燃料濃度検出方
法。 3、液体燃料がメタノールであり、半導体ガスセンサが
SnO_2を主成分とする半導体ガスセンサである特許
請求の範囲第1項又は第2項に記載した液体燃料電池の
燃料濃度検出方法。 4、液体燃料を用いる燃料電池における液体燃料を混合
した電解液の供給系中に設けた液溜の気相中に設置され
た半導体ガスセンサと、上記気相中の液体燃料の蒸気分
圧に依存した該半導体センサの出力に応答する検出回路
とを備えたことを特徴とする液体燃料電池の燃料濃度検
出装置。 5、上記液溜の気相中に更に温度センサを設置し、上記
検出回路は該温度センサの出力により温度補正された上
記半導体ガスセンサの出力に応答するようにした特許請
求の範囲第4項に記載の液体燃料電池の燃料濃度検出装
置。 6、液体燃料がメタノールであり、半導体ガスセンサが
SnO_2を主成分とする半導体ガスセンサである特許
請求の範囲第4項又は第5項に記載した液体燃料電池の
燃料濃度検出装置。
[Claims] 1. In a fuel cell using liquid fuel, the vapor partial pressure of the liquid fuel in the gas phase of the electrolyte mixed with the liquid fuel is detected by a semiconductor gas sensor, so that the amount of liquid fuel in the electrolyte is detected. A method for detecting fuel concentration in a liquid fuel cell, characterized by detecting concentration. 2. The method for detecting fuel concentration in a liquid fuel cell according to claim 1, wherein the output of the semiconductor gas sensor is temperature-corrected based on the output of a temperature sensor that detects the temperature of the gas phase. 3. The method for detecting fuel concentration in a liquid fuel cell according to claim 1 or 2, wherein the liquid fuel is methanol and the semiconductor gas sensor is a semiconductor gas sensor containing SnO_2 as a main component. 4. A semiconductor gas sensor installed in the gas phase of a liquid reservoir provided in the supply system of an electrolyte mixed with liquid fuel in a fuel cell using liquid fuel, and depending on the vapor partial pressure of the liquid fuel in the gas phase. 1. A fuel concentration detection device for a liquid fuel cell, comprising: a detection circuit that responds to the output of the semiconductor sensor. 5. A temperature sensor is further installed in the gas phase of the liquid reservoir, and the detection circuit responds to the output of the semiconductor gas sensor whose temperature is corrected by the output of the temperature sensor. The fuel concentration detection device for the liquid fuel cell described above. 6. The fuel concentration detection device for a liquid fuel cell according to claim 4 or 5, wherein the liquid fuel is methanol and the semiconductor gas sensor is a semiconductor gas sensor containing SnO_2 as a main component.
JP59196437A 1984-09-19 1984-09-19 Method and apparatus for detecting fuel density liquid fuel battery Pending JPS6175250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196437A JPS6175250A (en) 1984-09-19 1984-09-19 Method and apparatus for detecting fuel density liquid fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196437A JPS6175250A (en) 1984-09-19 1984-09-19 Method and apparatus for detecting fuel density liquid fuel battery

Publications (1)

Publication Number Publication Date
JPS6175250A true JPS6175250A (en) 1986-04-17

Family

ID=16357809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196437A Pending JPS6175250A (en) 1984-09-19 1984-09-19 Method and apparatus for detecting fuel density liquid fuel battery

Country Status (1)

Country Link
JP (1) JPS6175250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218397A (en) * 2007-02-08 2008-09-18 Toyota Motor Corp Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218397A (en) * 2007-02-08 2008-09-18 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
US6896781B1 (en) Gas sensor with electrically conductive, hydrophobic membranes
US4645572A (en) Method of determining concentration of a component in gases and electrochemical device suitable for practicing the method
JP3470012B2 (en) Gas analyzer and its calibration method
US4814059A (en) Electrochemical device having a heater and leak protection electrode
EP0880026B1 (en) Gas sensor
US4543176A (en) Oxygen concentration detector under temperature control
JPS634660B2 (en)
JPH1038845A (en) Nitrogen oxides measuring method
JPS6310781B2 (en)
US4769124A (en) Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
JP2011164087A (en) Gas sensor control device and gas sensor control method
KR100355133B1 (en) Limit Current Sensor for Determining Lambda Values in Gas Mixtures
AU3919999A (en) Gas sensor with dual electrolytes
JP2000111514A (en) Method for inspecting measurement sensor
Schelter et al. Highly selective solid electrolyte sensor for the analysis of gaseous mixtures
US7279133B2 (en) Planar sensor and a method for measuring the temperature of same
JP2003083936A (en) Gas sensor element
JPS6175250A (en) Method and apparatus for detecting fuel density liquid fuel battery
US6805782B2 (en) Compound layered type of sensing device for multiple measurement
JP3563399B2 (en) Gas analyzer
US6589409B2 (en) Multilayered gas sensing element employable in an exhaust system of an internal combustion engine
JPH09297119A (en) Nitrogen oxides detecting device
JP2004205357A (en) Detection method of gas concentration
US6524467B2 (en) Method for adjusting output characteristics of a gas sensing element based on application of electric power to this sensing element