JPS6175247A - Cure shrinking force measuring apparatus for thermosetting resin and cure shrinking force measurement using the same - Google Patents

Cure shrinking force measuring apparatus for thermosetting resin and cure shrinking force measurement using the same

Info

Publication number
JPS6175247A
JPS6175247A JP19745384A JP19745384A JPS6175247A JP S6175247 A JPS6175247 A JP S6175247A JP 19745384 A JP19745384 A JP 19745384A JP 19745384 A JP19745384 A JP 19745384A JP S6175247 A JPS6175247 A JP S6175247A
Authority
JP
Japan
Prior art keywords
temperature
strain gauge
measuring
resin
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19745384A
Other languages
Japanese (ja)
Other versions
JPH076932B2 (en
Inventor
Toshiya Ooshima
大嶋 敏也
Akihiko Kawakami
章彦 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19745384A priority Critical patent/JPH076932B2/en
Publication of JPS6175247A publication Critical patent/JPS6175247A/en
Publication of JPH076932B2 publication Critical patent/JPH076932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • G01N33/442Resins; Plastics

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To achieve a temperature correction for the measured value, by measuring a shrinking force working on a cylinder with the curing of a resin with a strain gauge attached on the inner surface of the cylinder errected in a container while the temperature is done with a temperature checking section at the upper end of the side wall of the cylinder. CONSTITUTION:A measuring apparatus 20 is heated empty with an electric oven gradually up to a high temperature from the room temperture while the temperature thereof is read from the input of a thermocouple 9 with a microcomputer 15. For example, the resistance of a strain gauge 4 is read at an interval of 10 deg. to detect an apparent strain. This operation is repeated until the addition of the temperature required for the hardening of a resin to be measured and the temperature of heat generated by hardening reaches, for example, 300 deg.C. Moreover, an apparent strain function due to temperature is determined with a microcomputer 15 to be memorized into a memory 16. Then, a thermosetting resin to be measured is placed into a space surrounded by the outer surface of a ring 3 and the inner bottom surface 2 of a container 1 and the inner surface and the same operation is done to calculate an apparent strain, which is corrected by an apparent strain function and then, the results are shown on a display 13 as measured value.

Description

【発明の詳細な説明】 産業上の利用 この発明は、熱硬化性樹脂の硬化収縮力測定用!置およ
びその装置を用いた硬化収縮力測定方法に関する。たと
えば、電子部品の外装等に用いられる熱硬化性樹脂は、
その硬化に伴う収縮力が強過ぎると電子部品をひび割れ
させたり、電子部品の特性を劣化させる原因になる。そ
こで、電子部品の外装樹脂としての熱硬化性樹脂は、予
めその硬化時の収縮力を知る必要がある。この発明は、
そのような熱硬化性樹脂の硬化時の収縮力を測定するた
めの改良された装置および方法に関するものである。
[Detailed Description of the Invention] Industrial Application This invention is for measuring the curing shrinkage force of thermosetting resin! This invention relates to a curing shrinkage force measuring method using the apparatus. For example, thermosetting resins used for the exterior of electronic components, etc.
If the shrinkage force accompanying the curing is too strong, it may cause cracks in the electronic component or deteriorate the characteristics of the electronic component. Therefore, it is necessary to know in advance the shrinkage force of the thermosetting resin used as the exterior resin for electronic components when it is cured. This invention is
The present invention relates to an improved apparatus and method for measuring the shrinkage force of such thermosetting resins during curing.

m1」口組 一般に、熱硬化性樹脂の硬化時の収縮力の測定にはひず
みゲージを用いる。たとえば、第5図に示すように、シ
リコーン製の有底上面開口の低い円筒状容器1の内底面
2中央部にたとえば鉄などの金属性のリング3を固定す
る。このリング3の内周面にひずみゲージ4を貼着し、
所定の電子回路(図示Vず)等と接続する。そして、空
温下で、リング3の外周面と容器1との間で規定される
空間に熱硬化性樹脂を注入し、電気オーブン装置等の中
へ入れて加熱し、注入した樹脂を硬化させる。
Generally, a strain gauge is used to measure the shrinkage force of a thermosetting resin during curing. For example, as shown in FIG. 5, a ring 3 made of metal, such as iron, is fixed to the center of the inner bottom surface 2 of a cylindrical container 1 made of silicone and having a bottom and a low upper opening. A strain gauge 4 is attached to the inner peripheral surface of this ring 3,
Connect to a predetermined electronic circuit (V in the figure), etc. Then, under air temperature, a thermosetting resin is injected into the space defined between the outer peripheral surface of the ring 3 and the container 1, and the injected resin is cured by placing it in an electric oven or the like and heating it. .

このとき、樹脂は硬化に伴って収縮し、リング3の外周
面に応力が加わる。そのため、ミクロ的に見ると、リン
グ3はまわりから締め付けられて縮みまたは歪み、その
ときの応力はリング3の内周面に添付されたひずみゲー
ジ4の抵抗値変化として現われる。したがって、このひ
ずみゲージ4の抵抗値変化からリング3に加わる応力、
言い換えれば熱硬化性樹脂の硬化時の収縮力を測定する
ことができる。
At this time, the resin contracts as it hardens, and stress is applied to the outer peripheral surface of the ring 3. Therefore, from a microscopic perspective, the ring 3 is compressed or distorted by being tightened from its surroundings, and the stress at that time appears as a change in the resistance value of the strain gauge 4 attached to the inner peripheral surface of the ring 3. Therefore, the stress applied to the ring 3 from this change in resistance value of the strain gauge 4,
In other words, the shrinkage force of the thermosetting resin during curing can be measured.

ところで、ひずみゲージ4は、一般にそのひずみ特性が
温度によって変化する。すなわら、第6図に示すように
、ひずみゲージ4の抵抗(ぼ1変化に基づいて求めるこ
とのできるひずみ、つまり見かけひずみは温度によって
大きく影響される。また、第6図にハツチングで示すよ
うに、温度変化に伴う見かけひずみの変化量は製品によ
って一定範囲内でのばらつきがあり、またその変化も非
直線的である。
By the way, the strain characteristics of the strain gauge 4 generally change depending on the temperature. In other words, as shown in Fig. 6, the strain that can be determined based on the change in resistance (approximately 1) of the strain gauge 4, that is, the apparent strain, is greatly affected by temperature. As shown, the amount of change in apparent strain due to temperature change varies within a certain range depending on the product, and the change is also non-linear.

そこで、実際にひずみゲージ4の出力に基づいて熱硬化
性樹脂の硬化収縮力を測定する際には、ひずみゲージ4
の見かけひずみではなく、真のひずみを求め、それに基
づいて硬化収縮力を測定しなければならない。このため
に、従来の装置では、予め見かけひずみ特性を測定した
見かけひずみ特性のほぼ等しいひずみゲージ4を2つ用
意し、一方のひずみゲージ4を実際に熱硬化性樹脂を注
入する測定用の装置のリング3に添付し、他方は熱硬化
性樹脂を注入しないダミー用の装置のリング3に添付し
て、両者を同時に電気オーブン装置に入れ、両者から得
られる出力によって真のひずみ。
Therefore, when actually measuring the curing contraction force of the thermosetting resin based on the output of the strain gauge 4, it is necessary to use the strain gauge 4.
It is necessary to determine the true strain, not the apparent strain, and measure the curing shrinkage force based on it. For this purpose, in conventional equipment, two strain gauges 4 having approximately the same apparent strain characteristics are prepared, and one strain gauge 4 is used as a measuring device for actually injecting the thermosetting resin. The other is attached to the ring 3 of the dummy device without injecting thermosetting resin, and both are placed in the electric oven device at the same time, and the true strain is determined by the output obtained from both.

を求めていた。つまり、測定用の装置に添付したひずみ
ゲージ4の出力をr+(t>、ダミー装置に添付したひ
ずみゲージ4の出力をr2 (t)として、 f  (t)−fl  (t)−f  2 (t)但し
、tは温度変化 によって真のひずみ値を求めていた。
was looking for. In other words, if the output of the strain gauge 4 attached to the measuring device is r+(t>, and the output of the strain gauge 4 attached to the dummy device is r2 (t), then f (t) - fl (t) - f 2 ( t) However, for t, the true strain value was determined by temperature change.

゛し  とする団 1、 しかしながら、このような測定装置および測定方法では
、熱硬化性樹脂がその硬化時に生じる発熱が考慮されて
おらず、硬化時に発熱を伴う熱硬化性樹脂の硬化収縮力
測定には利用することができないという欠点があった。
Group 1. However, such measurement devices and measurement methods do not take into account the heat generated by thermosetting resins when they cure. The disadvantage was that it could not be used.

というのは、測定用の装置とダミー装置とを同じ電気オ
ーブン装置に入れて熱したとしても、熱硬化性樹脂の硬
化に伴う発熱の分だけ測定用装置のひずみゲージ4の方
が温度が高くなり、ダミー装置のひずみゲージ4によっ
て得られる見かけひずみは測定用装置のものと同一条件
下で得られた特性とは言えなくなってしまうからである
。したがって、電子部品の外装に用いる熱硬化性樹脂、
特にセラミック電子部品に用いる熱硬化性樹脂には、硬
化に伴い発熱するものが多く、上述のような従来の装置
およびその装置を用いた測定方法は利用できないという
問題点があった。
This is because even if the measuring device and the dummy device are placed in the same electric oven and heated, the strain gauge 4 of the measuring device will have a higher temperature due to the heat generated as the thermosetting resin hardens. This is because the apparent strain obtained by the strain gauge 4 of the dummy device cannot be said to be the characteristic obtained under the same conditions as that of the measuring device. Therefore, thermosetting resins used for the exterior of electronic components,
In particular, many of the thermosetting resins used in ceramic electronic components generate heat upon curing, and the conventional apparatus and measurement method using the apparatus as described above cannot be used.

また、熱硬化性樹脂が硬化時に発熱しないものの場合で
も、上述のごとく、ひずみゲージ4は製品ごとにその見
かけひずみ特性にばらつきがある。
Furthermore, even if the thermosetting resin does not generate heat during curing, the strain gauge 4 has variations in apparent strain characteristics depending on the product, as described above.

よって、たとえ見かけひずみ特性の近いゲージをそれぞ
れ測定装置用とダミー装置用として用いても、両者の間
には多少の特性の差が存在し、その差は従来の装置では
黙認せざるをjqず、測定結果に厳密性を強く要求され
る場合には、従来の装置は使用できないという問題点も
あった。
Therefore, even if gauges with similar apparent strain characteristics are used for the measuring device and for the dummy device, there will be some differences in the characteristics between the two, and these differences must be tolerated with conventional devices. However, there is also the problem that conventional devices cannot be used when strict accuracy is required for the measurement results.

問題点を解決するための そこで、この発明の装置は、次のように構成されている
In order to solve the problem, the apparatus of the present invention is constructed as follows.

内底面と内側面とを有する容器と、その容器の内底面ほ
ぼ中央部に、中心軸が垂直方向になるように立てて配置
された円筒体とを含み、円筒体外周面と容器の内底面お
よび内側面とで規定される空間に被測定熱硬化性樹脂が
入れられるようにされており、さらに、円筒体内周面に
は熱硬化性樹脂が硬化するときの収縮力が外周面に加わ
ったとき、その圧力に応じて抵抗値が変化するひずみゲ
ージが添付され、また、円筒体の側壁の上端面には穴が
形成されていて、その穴内には温度検知手段の検温部が
挿入されている。湿度検知手段はひずみゲージの温度変
化に伴うひずみ弓を補正するために、ひずみゲージの温
度とみなすことのできる円筒体の温度を測定するように
されている。
A container having an inner bottom surface and an inner surface, and a cylindrical body disposed vertically in the center of the inner bottom surface of the container, the outer circumferential surface of the cylindrical body and the inner bottom surface of the container. The thermosetting resin to be measured is placed in the space defined by the inner surface and the inside surface, and the shrinkage force when the thermosetting resin hardens is applied to the outer circumferential surface of the cylindrical body. At this time, a strain gauge whose resistance value changes according to the pressure is attached, and a hole is formed in the upper end surface of the side wall of the cylindrical body, and a temperature measuring part of the temperature detection means is inserted into the hole. There is. The humidity sensing means measures the temperature of the cylindrical body, which can be regarded as the temperature of the strain gauge, in order to correct the strain bow caused by temperature changes in the strain gauge.

好ましい実施例では、温度検知手段は熱電対で構成され
、検温部が上述の穴内に入れられてシリコーンでそのす
き間が封入されている。また、容器はたとえばシリコー
ンで形成された離型性の良い内側面が円周形状のものが
用いられる。
In a preferred embodiment, the temperature sensing means comprises a thermocouple, the temperature measuring part being placed in the hole described above and the gap sealed with silicone. Further, the container is made of silicone and has a circumferential inner surface with good mold releasability.

この出願に係るもう1つの方法発明は、次の■〜■で示
す各ステップによって構成されている。
Another method invention according to this application is constituted by the following steps (1) to (4).

すなわち、 ■上述した測定5A置を準備する。■被測定樹脂を入れ
ない空の状態で、準備した装置を温度を可変できる雰囲
気内に配置する。たとえば、電気オーブンIf?il内
にその装置を配置する。■装置が配置された雰囲気の温
度を、室温から被測定樹脂の硬化に必要な温度にその樹
脂が硬化するときに生じる発熱温度を加えた温度まで上
昇させる。■雰囲気の温度上昇に伴って変化するひずみ
ゲージの抵抗値と、そのときに温度検知手段の検知する
湿度とを、複数のポイントで読出し、温度−抵抗値の関
係を求める。このとき、読出すポイント、すなわら温度
変化によってひずみゲージの抵抗値がいかに変化するか
の検出ポイントは、多ければ多いほどよい。■次に、・
求めた温度−抵抗値の関係に基づいて、ひずみゲージの
温度変化による抵抗値変化特性関数(見かけひずみ関数
) F (t )を演算する。この演算は、好ましくは
マイクロコンピュータによって行なえば、短時間で求め
ることができる。■次いで、準備した装置に被測定樹脂
を入れて温度を可変できる雰囲気内に配置する。
That is, (1) Prepare the above-mentioned 5A measurement device. ■Place the prepared device in an empty state with no resin to be measured in an atmosphere where the temperature can be varied. For example, electric oven If? Place the device in the il. (2) Raise the temperature of the atmosphere in which the device is placed from room temperature to the temperature required to cure the resin to be measured plus the exothermic temperature generated when the resin cures. (2) The resistance value of the strain gauge, which changes as the temperature of the atmosphere rises, and the humidity detected by the temperature detection means at that time are read out at a plurality of points, and the relationship between temperature and resistance value is determined. At this time, the more points to read out, ie, the points to detect how the resistance value of the strain gauge changes due to temperature changes, the better. ■Next,・
Based on the obtained temperature-resistance value relationship, a resistance value change characteristic function (apparent strain function) F (t ) due to temperature change of the strain gauge is calculated. If this calculation is preferably performed by a microcomputer, it can be obtained in a short time. (2) Next, the resin to be measured is placed in the prepared device and placed in an atmosphere where the temperature can be varied.

■そして、雰囲気の温度を室温から被測定樹脂の硬化に
必要な温度まで上昇させる。■このとき、雰囲気の温度
上昇に伴って変化するひずみゲージの抵抗値とそのとき
に温度検知手段によって検知される温度とを検出する。
(2) Then, the temperature of the atmosphere is raised from room temperature to the temperature necessary for curing the resin to be measured. (2) At this time, the resistance value of the strain gauge, which changes as the temperature of the atmosphere rises, and the temperature detected by the temperature detection means at that time are detected.

■検出した各温度におけるひずみゲージの抵抗値から既
に演算しておいた関数F(【)の値を引くことによって
、各温度ごとのひずみゲージの抵抗値を補正し、補正さ
れたひずみ特性を得る。
■By subtracting the value of the previously calculated function F ([) from the resistance value of the strain gauge at each detected temperature, the resistance value of the strain gauge at each temperature is corrected, and the corrected strain characteristics are obtained. .

l この発明の装置およびその5A@を用いた熱硬化性樹脂
の硬化収縮力測定方法では、装置を予め空の状態で加熱
し、ひずみゲージの温度変化に基づく見かけひずみ関数
を求める。次に、実際に被測定熱硬化性樹脂を入れて加
熱して該樹脂を硬化させ、そのときのひずみゲージのひ
ずみ変化を求める。そして、そのときに温度に対応する
見かけひずみを、上記関数によって補正するようにして
いる。ひずみゲージの温度は、装置が空の状態では雰囲
気の温度とほぼ一致しているが、装置に被測定樹脂を入
れた場合は、樹脂が硬化するときの発熱によって雰囲気
の温度とひずみゲージの温度とが一致しない。そこで、
この発明ではひずみゲージの各状態での正確な温度は、
温度検知手段によって検知される。したがって、上記見
かけひずみ関数およびその関数を用いた補正は正確にな
される。
l In the method of measuring the curing shrinkage force of a thermosetting resin using the apparatus of the present invention and its 5A@, the apparatus is heated in advance in an empty state, and an apparent strain function is determined based on the temperature change of the strain gauge. Next, a thermosetting resin to be measured is actually put in and heated to harden the resin, and the strain change on the strain gauge at that time is determined. At that time, the apparent strain corresponding to the temperature is corrected using the above function. The temperature of the strain gauge almost matches the ambient temperature when the device is empty, but when the resin to be measured is placed in the device, the temperature of the atmosphere and the temperature of the strain gauge will differ due to the heat generated when the resin hardens. do not match. Therefore,
In this invention, the exact temperature in each state of the strain gauge is
The temperature is detected by a temperature detection means. Therefore, the above apparent distortion function and correction using the function can be performed accurately.

衷31 第1図は、この発明の好ましい実施例の装置20および
その装置をマイクロコンピュータ15に接続した概略図
である。第2図は、第1図の装置20の拡大部分図であ
る。
31 FIG. 1 is a schematic diagram of the device 20 of the preferred embodiment of the invention and its connection to the microcomputer 15. FIG. 2 is an enlarged partial view of the apparatus 20 of FIG.

第1図および第2図を参照して、容器1は低い円筒状で
、底2を有している。容器1は、離型性の良いようにシ
リコーンで形成されている。容器1の内底面2中央部に
は、同心円状に筒形のたとえば鉄でできたリング3が配
置されている。リング3は容器内底面2と、たとえば接
着剤で固定されている。リング3の内周面には、ひずみ
ゲージ4が貼り付けられている。ひずみゲージ4はリン
グ3の高さ方向中央部付近に、リング3の円周方向に沿
って配置され、たとえばフェノール系の熱硬化型接摺剤
でリング3の内周面に密着するように貼り付けられてい
る。したがって、リング3のわずかな伸縮はそのままひ
ずみゲージ4に伝達される。
Referring to FIGS. 1 and 2, the container 1 is of low cylindrical shape and has a bottom 2. In FIG. The container 1 is made of silicone for good mold releasability. At the center of the inner bottom surface 2 of the container 1, a cylindrical ring 3 made of, for example, iron is arranged concentrically. The ring 3 is fixed to the inner bottom surface 2 of the container, for example with adhesive. A strain gauge 4 is attached to the inner peripheral surface of the ring 3. The strain gauge 4 is arranged near the center in the height direction of the ring 3 along the circumferential direction of the ring 3, and is pasted to the inner peripheral surface of the ring 3 using, for example, a phenolic thermosetting adhesive. It is attached. Therefore, slight expansion and contraction of the ring 3 is directly transmitted to the strain gauge 4.

ひずみゲージ4は、第2図に示すように、たとえばポリ
イミドのi[片41やベークライト紙片41等の上に、
たとえばニッケル・銅の合金でできた抵抗′l;A42
が所定方向に平行に複数本並ぶように配置されたもので
ある。そして、ひずみゲージ4は、それが貼り付けられ
た部材がミクロ的に見て伸縮することにより、抵抗線の
長さが変化して抵抗値が変化するものである。一般にこ
の抵抗値変化は電圧変化として測定され、貼り付けられ
た部材のひずみまたはその部材に加わる力が求められる
As shown in FIG.
For example, a resistor made of a nickel-copper alloy; A42
are arranged so that a plurality of them are lined up in parallel in a predetermined direction. In the strain gauge 4, the resistance value changes as the length of the resistance wire changes as the member to which it is attached expands and contracts microscopically. Generally, this resistance value change is measured as a voltage change, and the strain on the attached member or the force applied to the member is determined.

第2図をさらに参照して、リング3には、側壁の上端面
7から下方に向かって穴8が形成されていて、この穴8
に熱電対9が挿入されている。穴8の上端と熱電対9と
のすき間は、シリコーン10によって封入されている。
Further referring to FIG. 2, a hole 8 is formed in the ring 3 downward from the upper end surface 7 of the side wall.
A thermocouple 9 is inserted into. The gap between the upper end of the hole 8 and the thermocouple 9 is sealed with silicone 10.

この熱電対9によってリング3の温度、言い換えればリ
ング3に添付されたひずみゲージ4の温度とみなすこと
のできるリング3の温度が測定される。
This thermocouple 9 measures the temperature of the ring 3, in other words, the temperature of the ring 3, which can be regarded as the temperature of the strain gauge 4 attached to the ring 3.

ここで、第3A図〜第3C図を参照して、この実施例に
用いられているひずみゲージ4の抵抗変化の測定原理と
、その場合の結線方法とについて説明をする。
Here, with reference to FIGS. 3A to 3C, the principle of measuring the resistance change of the strain gauge 4 used in this embodiment and the wiring method in that case will be explained.

一般に、抵抗変化を測定するには、第3A図に示すよう
なブリッジ回路が用いられる。第3A図のブリッジ回路
には、次の等式が成立する。
Generally, a bridge circuit as shown in FIG. 3A is used to measure resistance changes. The following equation holds true for the bridge circuit of FIG. 3A.

e−(1/4)(ΔR1/R1−ΔR2/R2+ΔR3
/R3−ΔR4/R4)E ただし、ΔR/R:抵抗の変化率 そこで、抵抗R1に代えてひずみゲージ4を接続すれば
、出力電圧eの変化により、ひずみゲージの抵抗変化を
検出することができる。ところが、ひずみゲージ4をこ
のブリッジ回路に接続する場合、ひずみゲージ4からブ
リッジ回路までの接続用リード線が長い場合には、リー
ド線の抵抗値がひずみゲージ4の抵抗値に直列して加わ
り、かつリード線の抵抗は温度により微小に変化するの
で、これを除去しなければならない。そのため、第3B
図に示すように、この実施例ではいわゆる3線結線方式
がとられている。この3線結線方式は、等測的に第3C
図に示すブリッジ回路となり、ひずみゲージ4が接続さ
れた往復リード線43.44が、それぞれ片側ずつブリ
ッジ回路の相異なる両片に入り、両者は同抵抗値r、同
抵抗温度係数のため、その変化は相殺される。なお、引
込り一ド45の抵抗値rは電圧測定のために回路に影響
を与えない。
e-(1/4)(ΔR1/R1-ΔR2/R2+ΔR3
/R3-ΔR4/R4)E However, ΔR/R: Rate of change in resistance Therefore, if strain gauge 4 is connected in place of resistor R1, the change in resistance of the strain gauge can be detected by the change in output voltage e. can. However, when connecting the strain gauge 4 to this bridge circuit, if the connecting lead wire from the strain gauge 4 to the bridge circuit is long, the resistance value of the lead wire is added in series to the resistance value of the strain gauge 4, Moreover, since the resistance of the lead wire changes minutely depending on the temperature, this must be removed. Therefore, the 3rd B
As shown in the figure, this embodiment uses a so-called three-wire connection system. This three-wire connection system is isometrically
The bridge circuit shown in the figure is formed, and the reciprocating lead wires 43 and 44 to which the strain gauge 4 is connected enter two different halves of the bridge circuit, one on each side, and both have the same resistance value r and the same resistance temperature coefficient. The changes cancel out. Note that the resistance value r of the lead-in lead 45 does not affect the circuit because the voltage is measured.

第1図に戻って、ひずみゲージ4の出力および熱電対9
の出力は、たとえばマイクロコンピュータ15で構成さ
れる所定の回路に与えられる。すなわら、ひずみゲージ
4の出力は見かけひずみ検出回路11に与えられ、熱電
対9の出力は温度−見かけひずみ補正回路12に与えら
れる。見かけひずみ検出回路11では、上述した原理に
基づいて測定される抵抗変化率から見かけひずみが検出
され、温度−見かけひずみ補正回路12に出力される。
Returning to Figure 1, the output of strain gauge 4 and thermocouple 9
The output is given to a predetermined circuit constituted by, for example, the microcomputer 15. That is, the output of the strain gauge 4 is given to an apparent strain detection circuit 11, and the output of the thermocouple 9 is given to a temperature-apparent strain correction circuit 12. The apparent strain detection circuit 11 detects apparent strain from the rate of change in resistance measured based on the above-described principle, and outputs it to the temperature-apparent strain correction circuit 12.

温度−見かけひずみ補正回路12は、予め求められた見
かけひずみ関数F (t >が記憶されたメモリ16を
含んでおり、熱電対9から与えられる温度と見かけひず
み関数F (t )とに基づいて、ひずみゲージ4の抵
抗変化から求められる見かけひずみの補正をし、補正さ
れた値が表示装置13で表示され、かつ印字装置14に
よって印字される。
The temperature-apparent strain correction circuit 12 includes a memory 16 in which a predetermined apparent strain function F (t > is stored), and calculates the temperature based on the temperature given from the thermocouple 9 and the apparent strain function F (t ). , the apparent strain determined from the resistance change of the strain gauge 4 is corrected, and the corrected value is displayed on the display device 13 and printed by the printing device 14.

次に、上述したこの実施例を用いて熱硬化性樹脂の硬化
収縮力を測定する場合の測定方法について説明をする。
Next, a method for measuring the curing shrinkage force of a thermosetting resin using this embodiment described above will be explained.

以下の説明では、上述のようにこの実施例の装置20を
マイクロコンピュータ15に接続して、マイクロコンピ
ュータ15によってひずみゲージ4のひずみ値、言い換
えればひずみゲージ4が添付されたリング3に加わる熱
硬化性樹脂の収縮力の算出方法について説明をする。
In the following explanation, the device 20 of this embodiment is connected to the microcomputer 15 as described above, and the microcomputer 15 calculates the strain value of the strain gauge 4, in other words, the thermal hardening applied to the ring 3 to which the strain gauge 4 is attached. The method for calculating the shrinkage force of a plastic resin will be explained below.

第4A図および第4B図は、マイクロコンピュータ15
の動作を説明するためのフロー図であり、この実施例を
用いた熱硬化性樹脂の硬化収縮力測定は、このフロー図
に従う順序で行なわれる。第4A図および第4B図のう
ち、第4A図は、この装置2oを空の状態で加熱して、
予めひずみゲージ4の見かけひずみ関数F(t)を求め
る場合のフロー図であり、第4B図は、この装置20に
測定しようとする熱硬化性樹脂を入れてその硬化収縮力
を測定する場合のフロー図である。
4A and 4B show the microcomputer 15
1 is a flowchart for explaining the operation of this embodiment, and measurement of curing shrinkage force of a thermosetting resin using this embodiment is performed in the order according to this flowchart. Of FIGS. 4A and 4B, FIG. 4A shows heating the device 2o in an empty state.
4B is a flowchart for calculating the apparent strain function F(t) of the strain gauge 4 in advance, and FIG. It is a flow diagram.

まず、第4A図を参照して説明する。第1図に示すよう
に、この装置20を準備して、マイクロコンピュータ1
5に接続し、ひずみゲージ4の出力および熱電対9の出
力がマイクロコンピュータ15に与えられるようにする
。そして、この装置20をたとえば電気オープン1iW
1(図示せず)に入れ、該オーブン装置によって空温か
ら徐々に高温まで熱していく。マイクロコンピュータ1
5では、熱電対9の入力である温度を読取り、たとえば
温度が10℃上昇するごとにひずみゲージ4の抵抗値を
読取り、見かけひずみの検出を行なう。
First, explanation will be given with reference to FIG. 4A. As shown in FIG. 1, this device 20 is prepared and the microcomputer 1
5 so that the output of the strain gauge 4 and the output of the thermocouple 9 are given to the microcomputer 15. Then, this device 20 is connected to, for example, an electric open circuit 1iW.
1 (not shown), and gradually heated from air temperature to high temperature using the oven device. Microcomputer 1
At step 5, the temperature input to the thermocouple 9 is read, and the resistance value of the strain gauge 4 is read every time the temperature rises by 10°C, for example, to detect apparent strain.

そして、温度が予め定める被測定樹脂の硬化に必要な′
tfA度にその樹脂が硬化するときの発熱温度を加えた
温度、たとえば300℃まで上昇するまで、10℃刻み
で上記の温度の読取りおよび見かけひずみの検出を繰返
す。そして、測定が終了した場合、マイクロコンピュー
タでは、上記読取りおよび検出結果に基づいて、温度に
よる見かけひずみ間数F(t)を演算する。そして、そ
の関数F(1)をメモリ16に記憶して、動作を終える
Then, the temperature is set in advance to meet the required temperature for curing the resin to be measured.
The temperature reading and apparent strain detection described above are repeated in 10°C increments until the temperature rises to tfA degrees plus the exothermic temperature when the resin is cured, for example, 300°C. When the measurement is completed, the microcomputer calculates the apparent strain F(t) due to temperature based on the reading and detection results. Then, the function F(1) is stored in the memory 16, and the operation ends.

次に、この実施例の装[20に測定しようとする熱硬化
性樹脂を入れる。熱硬化性樹脂は、上述のようにリング
3の外周面と容器1の内底面2および内周面で囲まれた
空間に入れられる。そして、それをたとえば電気オーブ
ン装置内に入れ、電気オープン装置によって室温から所
定の硬化温度まで徐々に加熱される。このとき、この実
施例の装置20に接続されたマイクロコンピュータ15
によって、熱電対9の出力である温度がたとえば10℃
上昇するごとにひずみゲージ4で検出される抵抗変化が
読取られる。マイクロコンピュータ15では読取った抵
抗変化に基づいて、見かけひず1みStを算出する。
Next, the thermosetting resin to be measured is placed in the container 20 of this example. The thermosetting resin is placed in the space surrounded by the outer peripheral surface of the ring 3 and the inner bottom surface 2 and inner peripheral surface of the container 1 as described above. Then, it is placed in, for example, an electric oven device and gradually heated from room temperature to a predetermined curing temperature by an electric oven device. At this time, the microcomputer 15 connected to the device 20 of this embodiment
For example, the temperature that is the output of the thermocouple 9 is 10°C.
The resistance change detected by the strain gauge 4 is read every time the resistance rises. The microcomputer 15 calculates the apparent strain 1 St based on the read resistance change.

次に、算出、したびずみStを、メモリ16に記憶して
おいた間数F (t ’)に基づいて補正する。
Next, the calculated deflection St is corrected based on the gap number F (t') stored in the memory 16.

すなわち、たとえば温度t、のときに算出した見かけひ
ずみをSt+ とすれば、その算出したびずみSt+か
ら該温度[Iのときの関数F(tl)を減算して、ひず
みゲージ4の温度変化による見かけひずみを補正する。
That is, for example, if the apparent strain calculated at the temperature t is St+, then the function F(tl) at the temperature [I is subtracted from the calculated strain St+, and the result is calculated based on the temperature change of the strain gauge 4. Correct apparent distortion.

このようにして、たとえば温度が10℃上昇するごとに
測定を繰返して、熱硬化性樹脂が硬化し、空温に戻るま
で測定が行なわれる。そして、求められた測定値は、た
とえば表示袋W113に表示され、あるいは印字袋fF
J14によって印字されて測定動作は終了する。
In this way, measurements are repeated every time the temperature increases, for example, by 10° C., until the thermosetting resin is cured and the temperature returns to air. Then, the obtained measured value is displayed on the display bag W113 or printed bag fF, for example.
J14 is printed and the measurement operation ends.

なお、上記説明では、この装置の出力をマイクロコンピ
ュータに接続して計瀾、演算処理を行なうようにしたが
、見かけひずみ関数F (t )の算出およびその間数
F(()に基づいて測定した見かけひずみStを補正す
る演算は、マニュアル計算によっても行なうことができ
る。
In the above explanation, the output of this device was connected to a microcomputer to perform calculations and arithmetic processing. The calculation for correcting the apparent distortion St can also be performed by manual calculation.

11九11 以上のように、この発明によれば、熱硬化性樹脂の硬化
収縮力測定を正確に行なえる装置およびその装置を用い
た測定方法を提供することができる。特に、熱硬化性樹
脂が硬化時に発熱しても、その発熱によって生じるひず
みゲージの見かけひずみが補正され、実際の硬化収縮力
が正確に測定できる装置およびその装置を用いた測定方
法を提供することができる。
11911 As described above, according to the present invention, it is possible to provide an apparatus that can accurately measure the curing shrinkage force of a thermosetting resin, and a measuring method using the apparatus. In particular, to provide a device and a measuring method using the device, which can correct the apparent strain of a strain gauge caused by the heat generation even when a thermosetting resin generates heat during curing, and can accurately measure the actual curing contraction force. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の装置を示す斜視図であ
る。第2図は、第1図の装置の拡大部分図である。第3
A図〜第3C図は、ひずみゲージ4による抵抗変化率の
測定原理とその結線方法を示す回路図である。第4A図
、第4B図は、この装置をマイクロコンピュータに接続
して測定を行なう場合の動作順序を示すフロー図である
。第5図は従来例の熱−化性樹脂の硬化収縮力測定用装
置を示す斜視図である。第6図はひずみゲージのびずみ
一温度特性図である。 図において、1は容器、2は容器内底面、3は円筒状の
リング、4はひずみゲージ、8はリングに形成した穴、
9は熱電対を示す。 特許出願人 株式会社村田製作所 〜 第2図 第3B図 第4A図      第4B図 第5図 第6図 逼&(’C)
FIG. 1 is a perspective view showing an apparatus according to an embodiment of the present invention. 2 is an enlarged partial view of the apparatus of FIG. 1; FIG. Third
Figures A to 3C are circuit diagrams showing the principle of measuring the rate of change in resistance using the strain gauge 4 and its wiring method. FIGS. 4A and 4B are flowcharts showing the sequence of operations when this device is connected to a microcomputer to perform measurements. FIG. 5 is a perspective view showing a conventional apparatus for measuring curing shrinkage force of thermosetting resin. FIG. 6 is a strain-temperature characteristic diagram of the strain gauge. In the figure, 1 is a container, 2 is an inner bottom surface of the container, 3 is a cylindrical ring, 4 is a strain gauge, 8 is a hole formed in the ring,
9 indicates a thermocouple. Patent applicant Murata Manufacturing Co., Ltd. ~ Figure 2 Figure 3B Figure 4A Figure 4B Figure 5 Figure 6 逼&('C)

Claims (8)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂が入れられて加熱され、該樹脂の硬
化に伴つて生じる収縮力を測定するための装置であつて
、 内底面と内側面とを有する容器と、 前記容器の内底面ほぼ中央部に、中心軸が垂直方向にな
るように立てて配置された円筒体とを含み、 前記円筒体外周面と前記容器の内底面および内側面とで
規定される空間に前記樹脂が入れられるようにされてお
り、さらに、 前記円筒体内周面に添付され、前記樹脂が硬化するとき
の収縮力が前記円筒体外周面に加わったとき、その収縮
力に応じて抵抗値が変化するひずみゲージと、 前記円筒体の側壁の上端面に穴が形成されていて、その
穴内に検温部が挿入され、前記ひずみゲージの温度変化
に伴うひずみ量を補正するために、前記ひずみゲージの
温度とみなすことのできる前記円筒体の温度を測定する
温度検知手段とを含む、熱硬化性樹脂の硬化収縮力測定
用装置。
(1) A device for measuring the shrinkage force generated as a thermosetting resin is placed and heated and the resin hardens, comprising: a container having an inner bottom surface and an inner surface; and an inner bottom surface of the container. a cylindrical body disposed vertically with its central axis in a vertical direction; the resin is placed in a space defined by the outer peripheral surface of the cylindrical body and an inner bottom surface and an inner surface of the container; and further, a strain that is attached to the inner peripheral surface of the cylindrical body and whose resistance value changes according to the contractile force when the resin hardens and the contractile force is applied to the outer peripheral surface of the cylindrical body. A hole is formed in the upper end surface of the side wall of the gauge and the cylindrical body, and a temperature measuring part is inserted into the hole, and the temperature of the strain gauge is adjusted to compensate for the amount of strain caused by the temperature change of the strain gauge. A device for measuring curing shrinkage force of a thermosetting resin, comprising a temperature detection means for measuring the temperature of the cylindrical body.
(2)前記温度検知手段は熱電対である、特許請求の範
囲第1項記載の熱硬化性樹脂の硬化収縮力測定用装置。
(2) The apparatus for measuring curing shrinkage force of a thermosetting resin according to claim 1, wherein the temperature detection means is a thermocouple.
(3)前記熱電対は、その検温部が前記穴に入れられて
シリコーンですき間が封入されている、特許請求の範囲
第2項記載の熱硬化性樹脂の硬化収縮力測定用装置。
(3) The device for measuring the curing shrinkage force of a thermosetting resin according to claim 2, wherein the temperature measuring part of the thermocouple is placed in the hole and a gap is sealed with silicone.
(4)前記容器は離型性の良い容器である、特許請求の
範囲第1項、第2項または第3項記載の熱硬化性樹脂の
硬化収縮力測定用装置。
(4) The apparatus for measuring curing shrinkage force of a thermosetting resin according to claim 1, 2, or 3, wherein the container is a container with good mold releasability.
(5)前記容器はシリコーンで形成されていて、前記内
側面が円周形状をしている、特許請求の範囲第4項記載
の熱硬化性樹脂の硬化収縮力測定用装置。
(5) The apparatus for measuring curing shrinkage force of a thermosetting resin according to claim 4, wherein the container is made of silicone and the inner surface has a circumferential shape.
(6)前記ひずみゲージは、前記円筒体の円周方向に沿
つて熱硬化性接着剤で接着されている、特許請求の範囲
第1項、第2項または第5項記載の熱硬化性樹脂の硬化
収縮力測定用装置。
(6) The thermosetting resin according to claim 1, 2, or 5, wherein the strain gauge is bonded with a thermosetting adhesive along the circumferential direction of the cylindrical body. A device for measuring curing shrinkage force.
(7)さらに、前記ひずみゲージに電気的に接続され、
前記ひずみゲージに生じる抵抗変化に基づいて前記円筒
体外周面に加わる前記圧力を産出する圧力算出手段と、 前記温度検知手段および前記圧力算出手段に結合され、
前記ひずみゲージに生じる抵抗変化のうち温度変化に基
づく変化量を補正して、前記圧力算出手段の出力を補正
する補正演算手段とを含む、特許請求の範囲第1項、第
2項または第6項記載の熱硬化性樹脂の硬化収縮力測定
用装置。
(7) further electrically connected to the strain gauge;
pressure calculation means for producing the pressure applied to the outer peripheral surface of the cylindrical body based on a resistance change occurring in the strain gauge; coupled to the temperature detection means and the pressure calculation means;
Claims 1, 2, or 6 further include a correction calculation means for correcting the output of the pressure calculation means by correcting the amount of change in resistance caused by the temperature change among the resistance changes occurring in the strain gauge. An apparatus for measuring curing shrinkage force of a thermosetting resin as described in 1.
(8)熱硬化性樹脂が入れられて加熱され、該樹脂の硬
化に伴つて生じる収縮力を測定するための装置であつて
、内底面と内側面とを有する容器と、前記容器の内底面
ほぼ中央部に、中心軸が垂直方向になるように立てて配
置された円筒体とを含み、前記円筒体外周面と前記容器
の内底面および内側面とで規定される空間に前記樹脂が
入れられるようにされており、さらに、前記円筒体内周
面に添付され、前記樹脂が硬化するときの収縮力が前記
円筒体外周面に加わったとき、その収縮力に応じて抵抗
値が変化するひずみゲージと、前記円筒体の側壁の上端
面に穴が形成されていて、その穴内に検温部が挿入され
、前記ひずみゲージの温度変化に伴うひずみ量を補正す
るために、前記ひずみゲージの温度とみなすことのでき
る前記円筒体の温度を測定する温度検知手段とを含む装
置を準備し、 前記装置に被測定樹脂を入れない空の状態で、前記装置
を温度を可変できる雰囲気内に配置し、前記雰囲気の温
度を、室温から被測定樹脂の硬化に必要な温度にその樹
脂が硬化するときの発熱温度を加えた温度まで上昇させ
、 前記雰囲気の温度上昇に伴つて変化する前記ひずみゲー
ジの抵抗値と、そのときに前記温度検知手段の出力する
温度とを検出して、複数の温度におけるひずみゲージの
抵抗値−温度の関係を求め、前記求めた抵抗値−温度の
関係に基づいて、前記ひずみゲージの温度変化による抵
抗値変化特性関数を予め演算しておき、 前記装置に被測定樹脂を入れて、前記装置を温度を可変
できる雰囲気内に配置し、 前記雰囲気の湿度を室温から被測定樹脂の硬化に必要な
温度まで上昇させ、 前記雰囲気の温度上昇に伴つて変化する前記ひずみゲー
ジの抵抗値とそのときに前記温度検知手段によつて得ら
れる温度とを検出し、 前記予め演算しておいた前記抵抗値変化特性関数と前記
温度検知手段によって得られた温度とによつて、前記検
出された抵抗値から温度による変化量を修正するように
した、硬化収縮力測定用装置を用いた熱硬化性樹脂の硬
化収縮力測定方法。
(8) A device for measuring the shrinkage force generated as a thermosetting resin is placed and heated and the resin hardens, the container having an inner bottom surface and an inner surface, and an inner bottom surface of the container. a cylindrical body disposed in an upright manner with its central axis in a vertical direction substantially in the center, and the resin is placed in a space defined by the outer peripheral surface of the cylindrical body and an inner bottom surface and an inner surface of the container. and further, a strain that is attached to the inner peripheral surface of the cylinder, and whose resistance value changes according to the contractile force when the resin hardens and the contractile force is applied to the outer peripheral surface of the cylinder. A hole is formed in the upper end surface of the side wall of the gauge and the cylindrical body, and a temperature measuring part is inserted into the hole to adjust the temperature of the strain gauge and correct the amount of strain due to temperature change of the strain gauge. preparing a device including a temperature detection means for measuring the temperature of the cylindrical body, which can be regarded as a cylindrical body, and placing the device in an atmosphere where the temperature can be varied in an empty state with no resin to be measured; The temperature of the atmosphere is raised from room temperature to the temperature required for curing the resin to be measured plus the heat generation temperature when the resin is cured, and the resistance of the strain gauge changes as the temperature of the atmosphere rises. value and the temperature output by the temperature sensing means at that time to determine the resistance value-temperature relationship of the strain gauge at a plurality of temperatures, and based on the determined resistance value-temperature relationship, A resistance value change characteristic function due to temperature change of the strain gauge is calculated in advance, a resin to be measured is placed in the device, the device is placed in an atmosphere where the temperature can be varied, and the humidity of the atmosphere is changed from room temperature to the temperature to be measured. Raising the temperature to a temperature necessary for curing the resin, detecting the resistance value of the strain gauge that changes as the temperature of the atmosphere increases and the temperature obtained by the temperature detection means at that time, and calculating the temperature in advance. A curing shrinkage force measuring device is used, which corrects the amount of change due to temperature from the detected resistance value based on the resistance value change characteristic function that has been set and the temperature obtained by the temperature detection means. Method for measuring curing shrinkage force of thermosetting resin.
JP19745384A 1984-09-19 1984-09-19 Apparatus for measuring cure shrinkage force of thermosetting resin and method for measuring cure shrinkage force using the apparatus Expired - Lifetime JPH076932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19745384A JPH076932B2 (en) 1984-09-19 1984-09-19 Apparatus for measuring cure shrinkage force of thermosetting resin and method for measuring cure shrinkage force using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19745384A JPH076932B2 (en) 1984-09-19 1984-09-19 Apparatus for measuring cure shrinkage force of thermosetting resin and method for measuring cure shrinkage force using the apparatus

Publications (2)

Publication Number Publication Date
JPS6175247A true JPS6175247A (en) 1986-04-17
JPH076932B2 JPH076932B2 (en) 1995-01-30

Family

ID=16374759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19745384A Expired - Lifetime JPH076932B2 (en) 1984-09-19 1984-09-19 Apparatus for measuring cure shrinkage force of thermosetting resin and method for measuring cure shrinkage force using the apparatus

Country Status (1)

Country Link
JP (1) JPH076932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067077A1 (en) * 2000-03-07 2001-09-13 Ibiden Co., Ltd. Method and apparatus for measuring thermal expansion, and thermally designed structure
JP2019138843A (en) * 2018-02-14 2019-08-22 リンテック株式会社 Distortion detection device
CN114486718A (en) * 2022-02-14 2022-05-13 北京理工大学 Die, method and device for detecting internal stress of adhesive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331015B1 (en) * 2011-11-25 2013-11-19 한국건설생활환경시험연구원 Apparatus for Estimating Thermal Crack Susceptibility of Concrete and Method using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067077A1 (en) * 2000-03-07 2001-09-13 Ibiden Co., Ltd. Method and apparatus for measuring thermal expansion, and thermally designed structure
JP2019138843A (en) * 2018-02-14 2019-08-22 リンテック株式会社 Distortion detection device
CN114486718A (en) * 2022-02-14 2022-05-13 北京理工大学 Die, method and device for detecting internal stress of adhesive

Also Published As

Publication number Publication date
JPH076932B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US6505398B2 (en) Very high pressure miniature sensing and mounting technique
US3665756A (en) Strain gauge temperature compensation system
JP6728500B2 (en) Force/torque sensor temperature compensation
KR20100002146A (en) A piezoresistive pressure-measuring plug for a combustion engine
JP6714083B2 (en) Sensor element for pressure sensor
JPH0264430A (en) Semiconductor pressure converter
CN221630633U (en) Strain detection device
CN104181191A (en) Expanded rubber volume elastic modulus testing and sample preparation apparatus, and method thereof
CN101460819A (en) Strain gauge and measurement variable sensor having at least one strain gauge
JPS6175247A (en) Cure shrinking force measuring apparatus for thermosetting resin and cure shrinking force measurement using the same
US3527099A (en) Strain gage pressure transducer
US3130578A (en) Strain gauge bridge calibration
EP0178368A2 (en) Process variable transmitter and method for correcting its output signal
US3611241A (en) Mounting assembly for plurality of strain gages
Larsen et al. Measurement of package-induced stress and thermal zero shift in transfer molded silicon piezoresistive pressure sensors
CN105531570B (en) Wide scope precision constant volume gas thermometer
KR20110040903A (en) Method for thermally compensating a gaging device and thermally compensated gaging station
Chadda et al. 3D-printed strain gauges based on conductive filament for experimental stress analysis
JP2914636B2 (en) Hot isostatic pressing method
Mühleisen et al. In-line monitoring of a curing process with a multi-sensor concept
JP3275117B2 (en) High temperature strain gauge apparent strain compensation circuit
CN218036159U (en) Young modulus force measurement measuring frame for material performance measurement
JPS6199802A (en) Measuring instrument for apparent strain due to temperature of high-temperature strain gauge
Karimov Digital enhancement of analog measurement systems for temperature compensation of strain gages
JPH02221849A (en) Instrument for measuring curing shrinkage force of thermosetting resin and method of measuring curing shrinkage force by using this instrument

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term