JPS6175135A - Control device for working machine - Google Patents
Control device for working machineInfo
- Publication number
- JPS6175135A JPS6175135A JP59195742A JP19574284A JPS6175135A JP S6175135 A JPS6175135 A JP S6175135A JP 59195742 A JP59195742 A JP 59195742A JP 19574284 A JP19574284 A JP 19574284A JP S6175135 A JPS6175135 A JP S6175135A
- Authority
- JP
- Japan
- Prior art keywords
- pilot
- valve
- switching valve
- actuator
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2239—Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は油圧ショベル,ブルドーザ、油圧式クレーン等
の作業機械の制御装置に係り、特に作業用アクチュエー
タへの圧油の給配をパイロット操作形式の方向切換弁に
より行う油圧回路を備えた作業機械の制御装置に関する
ものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for working machines such as hydraulic excavators, bulldozers, hydraulic cranes, etc. The present invention relates to a control device for a working machine equipped with a hydraulic circuit operated by a directional control valve.
従来油圧ショベルのような作業機械においては。 In conventional working machines such as hydraulic excavators.
複数の作業用アクチュエータを作動するため、複数の油
圧ポンプからの圧油を各方向切換弁を介して各作業用ア
クチュエータに給配している。そして各作業用アクチュ
エータの作動を効率よく行うため,各油圧ポンプの圧油
を合流または分流して各作業用アクチュエータに給送す
ることが行われている。In order to operate a plurality of work actuators, pressure oil from a plurality of hydraulic pumps is distributed to each work actuator via each direction switching valve. In order to operate each work actuator efficiently, the pressure oil of each hydraulic pump is combined or divided and supplied to each work actuator.
第3図は,特開昭5 9−4 8 5 3 2号および
特開昭5 9−4 8 5 3 3号に開示されるよう
なローディグショベルのパケット刃先直線掘削制御の動
作図を示すもので,1はショベル本体、1aはその履帯
,2はブーム,3はアーム,4はパケット。FIG. 3 shows an operation diagram of packet cutting edge linear excavation control of a roading excavator as disclosed in Japanese Patent Application Laid-open No. 59-48532 and Japanese Patent Laid-Open No. 59-48533. 1 is the excavator body, 1a is its crawler track, 2 is the boom, 3 is the arm, and 4 is the packet.
5はブーム俯仰用のブームシ1)ンダ,6はアーム揺動
用のアームシリンダ、7はパケット回動用のパケットシ
リンダである。また、Paはショベル本体1とブーム2
との枢着点、P+はブーム2とアーム3との枢着点、P
シはアーム3とパケット4との枢着点(以下アーム先端
点という)、P3はパケット4の刃先点である。5 is a boom cylinder for raising and raising the boom; 6 is an arm cylinder for swinging the arm; and 7 is a packet cylinder for rotating the packet. In addition, Pa is the excavator body 1 and boom 2.
The pivot point between boom 2 and arm 3, P+ is the pivot point between boom 2 and arm 3, P
P3 is the pivot point between the arm 3 and the packet 4 (hereinafter referred to as the arm tip point), and P3 is the cutting edge point of the packet 4.
パケット刃先直線掘削は次のように行われる。Packet edge straight drilling is performed as follows.
まず、R帯11に接近した状態においてパケット4の刃
をほぼ垂直に立てた状態!から、パケット4を回動しな
がらブーム2を下げつつ、アーム3を押し出す動作を行
ってパケット刃先P3の移動軌跡が水平になるような制
御をする。パケット4が■の姿勢になった時点で、バケ
ツ1−4の回動を止め、以後はアームを押し出しつつブ
ーム2を下げればアーム先端点P:は常にG、Lに平行
に移動し、パケット4の姿勢はアーム3とパケットシリ
ンダ7とで構成される旧似平行リンク機構によってパケ
ット4がG、Lとなす角度がほぼ一定に保たれつつ■の
状態に至る。First, the blade of packet 4 is held almost vertically when approaching R band 11! Then, while rotating the packet 4 and lowering the boom 2, the arm 3 is pushed out to perform control so that the locus of movement of the packet cutting edge P3 becomes horizontal. When the packet 4 assumes the position shown in ■, stop rotating the bucket 1-4, and then lower the boom 2 while pushing out the arm. The arm tip point P: always moves parallel to G and L, and the packet The attitude of the packet 4 reaches the state (2) while the angles formed by the packet 4 with the G and L directions are kept almost constant by the old parallel link mechanism constituted by the arm 3 and the packet cylinder 7.
第4図は、上記ローディングショベルのアームシリンダ
6およびパケットシリンダ7の操作油圧回路を取り出し
たもので、8,9は油圧ポンプ、10、IIはそれぞれ
油圧ポンプ3,9の油圧をアームシリンダ6に給配する
パイロット操作形の方向切換弁、12は油圧ポンプ9の
圧油をパケットシリンダ7へ給配するパイロット操作形
の方向切換弁、13はアーム操作レバー、14はパケッ
ト操作レバー、15はアーム操作レバー13の操作量に
応じたパイロット圧を発生するパイロット弁、16はパ
ケット操作レバー14の操作量に応じたパイロット圧を
発生するパイロット弁、II。FIG. 4 shows the operating hydraulic circuit for the arm cylinder 6 and packet cylinder 7 of the loading excavator, where 8 and 9 are hydraulic pumps, and 10 and II are hydraulic pumps 3 and 9, respectively, which supply hydraulic pressure to the arm cylinder 6. 12 is a pilot operated directional switching valve that supplies and distributes pressure oil from the hydraulic pump 9 to the packet cylinder 7; 13 is an arm operating lever; 14 is a packet operating lever; 15 is an arm A pilot valve 16 generates a pilot pressure according to the amount of operation of the operating lever 13, and 16 is a pilot valve II that generates a pilot pressure depending on the amount of operation of the packet operating lever 14.
18はパイロット弁15からそれぞれ方向切換弁10.
11のパイロット操作回路、19はパイロット操作回路
18の途中に設けた切換弁、20は制御′/iL算器で
上記パケット刃先直線掘削を自動制御で行う場合にアー
ム3の押出し量に応じたパケット4の回OXを演算し電
気信号として出力したり、また、パケット4が第3図の
Hの状態に至ったことを感知した信号を入力して切換弁
19を図の5位行から3位行に切換える電気信号を出力
する。21は電気油圧変換弁で制御演算器20の出力の
電気信号をパイロット圧に変換する。22はシャトル弁
でパイロット弁16のパイロット圧と電気油圧変換弁2
1との高い方の圧力を選択する。18 are the pilot valves 15 to directional control valves 10.
11 is a pilot operation circuit, 19 is a switching valve provided in the middle of the pilot operation circuit 18, and 20 is a control'/iL calculator that controls the packet according to the amount of extrusion of the arm 3 when performing the above-mentioned packet cutting edge linear excavation under automatic control. 4 times OX is calculated and output as an electrical signal, and a signal that senses that the packet 4 has reached the state H in Fig. 3 is inputted to switch the switching valve 19 from the 5th row to the 3rd row in the diagram. Outputs an electrical signal to switch between rows. Reference numeral 21 denotes an electro-hydraulic conversion valve that converts the electrical signal output from the control calculator 20 into pilot pressure. 22 is a shuttle valve that connects the pilot pressure of the pilot valve 16 with the electro-hydraulic conversion valve 2.
1 and select the higher pressure.
23はシャトル弁22に接続されるパイロット操作回路
で途中で分岐し1分岐回路23aは切換弁 。23 is a pilot operation circuit connected to the shuttle valve 22, which is branched in the middle, and the first branch circuit 23a is a switching valve.
19へ2分岐回路23bは方向切換弁12に接続さ九る
。The two-branch circuit 23b to 19 is connected to the directional control valve 12.
上記パケット刃先直!A掘削を自動制御で行う場合には
、アーム操作レバー13のみを操作し、アーム3の押出
し量(枢着点P1での回転角またはアームシリンダ6の
伸縮量)を検出し、これに応じてパケット刃先点P3の
軌跡が水平となるべきブーム2の枢着点Poでの回転角
およびパケット4のアーム先端点P2での回た角を制御
演算器20によって演算出力し、操作口g4&介してブ
ーム用のパイロット操作形方向切換弁(図示せず)およ
びパケット用の方向切換弁12をパイロット圧によって
切換作動する。第4図ではブーム操作回路が省略さ九パ
ケット保作回路のみが電気油圧変換弁21、シャトル弁
22.パイロット操作口路23として図示されている。The above packet has a straight edge! When performing A excavation under automatic control, only the arm operation lever 13 is operated, the amount of extrusion of the arm 3 (the rotation angle at the pivot point P1 or the amount of expansion and contraction of the arm cylinder 6) is detected, and the amount of extension and contraction of the arm cylinder 6 is adjusted accordingly. The rotation angle at the pivot point Po of the boom 2 and the rotation angle at the arm tip point P2 of the packet 4, which should make the locus of the packet cutting edge point P3 horizontal, are calculated and output by the control calculator 20, and are outputted through the operation port g4& A pilot-operated directional control valve (not shown) for the boom and a directional control valve 12 for the packet are operated by pilot pressure. In FIG. 4, the boom operation circuit is omitted, and only the nine-packet maintenance circuit includes the electro-hydraulic conversion valve 21, shuttle valve 22. It is illustrated as a pilot operation port 23.
一方、手動操作を行う1合は、アーム操作レバー!3、
パケット操作レバー14および図示しffeいブーt、
l+%作レバーをそれぞれ誌作してパケット刃先直線掘
削を行うことになる。また、自動掘削中にパケット4の
回肋六をイ各圧しようとする場合は、パケット操作L/
バー16を操作することによって行う。On the other hand, the first option for manual operation is the arm control lever! 3,
The packet operation lever 14 and the boot shown in the figure,
The packet cutting edge straight line excavation will be performed by cutting the l+% cutting levers respectively. In addition, when attempting to pressurize the rotation ribs of packet 4 during automatic excavation, use the packet operation L/
This is done by operating the bar 16.
さて、パケット刃先直線嘱削時、第3@の■の状態から
Hの状態に至るまでの間では、制御演算器20 (また
はパイロット弁16)からパケット回動信号が出される
ので、切換弁I9は5位行に切換えられており、パイロ
ット操作回路18は切換弁19によって遮断されている
ので、パイロット弁!5よりのパイロット圧は方向切換
弁lOのみに送ら戯でおり、方向切換弁11にはパイロ
ット圧が加っていないので、アームシリンダhは油圧ポ
ンプ8の圧油のみによってI!!動されている。Now, during straight cutting of the packet cutting edge, a packet rotation signal is output from the control calculator 20 (or the pilot valve 16) from the third @ state ■ to the H state, so the switching valve I9 is switched to the 5th position row, and the pilot operation circuit 18 is cut off by the switching valve 19, so the pilot valve! The pilot pressure from 5 is only sent to the directional control valve lO, and no pilot pressure is applied to the directional control valve 11, so the arm cylinder h is moved only by the pressure oil from the hydraulic pump 8. ! being moved.
パケット4がHの状態に至ると、制御演算器20(また
けパイロン1へ弁16)は出カイご号が雰となるので、
切換弁19はb位置から図示のa位置にIt2時に切換
わり、パイロット弁15のパイロット圧が方向切B、H
zに加わり、アームシリンダ6は油圧ポンプ8.9の合
流した圧油によって駆動され、速度が、Hl、激に増す
、しかし5、切換弁19の切換り時には方向切換弁11
と切換弁19との間の管路18にパイロット弁15から
の圧油が流れ込むため、一時的に、パイロット操作回路
L7のパイロット圧が一瞬下がってしまうことがあり。When the packet 4 reaches the H state, the control arithmetic unit 20 (valve 16 to the straddle pylon 1) outputs the signal, so
The switching valve 19 switches from the b position to the illustrated a position at It2, and the pilot pressure of the pilot valve 15 changes to the direction switching B, H.
z, the arm cylinder 6 is driven by the combined pressure oil of the hydraulic pump 8.9, and the speed Hl increases sharply, but when the switching valve 19 switches, the arm cylinder 6 is driven by the combined pressure oil of the hydraulic pump 8.9.
Since pressure oil from the pilot valve 15 flows into the conduit 18 between the switching valve 19 and the switching valve 19, the pilot pressure in the pilot operation circuit L7 may temporarily drop for a moment.
アームシリンダ6の速度が一担遅くなって次に急激に早
くなるという現、為を起こす。これは方向切換弁11と
切換弁19の管路が長いほど顕著に表われる。This is caused by the fact that the speed of the arm cylinder 6 slows down one step and then suddenly speeds up. This becomes more noticeable as the pipe line between the directional switching valve 11 and the switching valve 19 becomes longer.
したがって、アーム3の上記切換時の動作が滑らかに行
われず、ぎくしゃくした作動を起す欠点があり、またパ
ケット刃先直線用削の精度に悪影響を及ぼす。特に自動
掘削運転を行っている際には制御応答性の遅れによる影
響も加味されて掘削時の直線性が損われる問題がある。Therefore, there is a drawback that the switching operation of the arm 3 is not performed smoothly, causing jerky operation, and also has a negative effect on the accuracy of straight line cutting of the packet cutting edge. Particularly when performing automatic excavation operation, there is a problem that the linearity during excavation is impaired due to the influence of delay in control response.
本発明は上記のような従来の問題点に鑑み、複数の作業
アクチュエータを複数の油圧ポンプからの圧油によって
各方向切換弁をして駆動し、第一の7クチユエータが複
数の油圧ポンプにそれぞれパイロット操作形の方向切換
弁を介して接続され、また第二のアクチュエータがパイ
ロット操作形の方向切換弁を介して油圧ポンプからの圧
油によって駆動され、前記第一の7クチユエータのパイ
ロット操作回路のうちの1つに切換弁を設け、この切換
弁の切換えを第二の7クチユエータのパイロット操作回
路よりのパイロット圧油によって切換えて、複数の油圧
ポンプからの圧油を合流または分流するようにした作業
機において、上記切換弁の切換時に発生するパイロツ圧
の一時的降下を阻止することを目的とする。In view of the above-mentioned conventional problems, the present invention drives a plurality of work actuators using pressure oil from a plurality of hydraulic pumps through directional switching valves, and the first seven actuators drive each of the plurality of hydraulic pumps. The second actuator is connected via a pilot-operated directional control valve, and the second actuator is driven by pressure oil from a hydraulic pump via the pilot-operated directional control valve. One of them was equipped with a switching valve, and this switching valve was switched by pilot pressure oil from the pilot operation circuit of the second 7-cut unit, so that the pressure oil from multiple hydraulic pumps could be combined or divided. The purpose of this invention is to prevent a temporary drop in pilot pressure that occurs when the switching valve is switched in a working machine.
この目的を達成するため本発明は、第二のアクチュエー
タの方向切換弁用パイロット圧を第一のアクチュエータ
の方向切換弁用パイロット操作回路に設けた切換弁の切
換り圧力附近で徐々に変化させる圧力演算制御手段を設
けて、切換弁の切換時に第一のアクチュエータのパイロ
ット操作圧の一時的降下を防止したものである。To achieve this object, the present invention provides a pressure that gradually changes the pilot pressure for the directional control valve of the second actuator near the switching pressure of the directional control valve provided in the pilot operation circuit for the directional control valve of the first actuator. A calculation control means is provided to prevent a temporary drop in the pilot operating pressure of the first actuator when switching the switching valve.
以下1本発明の一実施例を第1図および第2図により説
明する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第4図の制御演算器20はパケット4が第3図の■の状
態に至ったことを検出(パケット刃先点Piの向き、す
なわちパケット掘削角が水平方向に至ったことをブーム
、アームおよびパケットの各回転角から演算する)シ、
電気油圧変換弁21に対する出力を第212IのAに下
げる。そして徐々に出力をBまで下げ、Bから急激に零
にする。The control calculator 20 in FIG. 4 detects that the packet 4 has reached the state shown in FIG. Calculated from each rotation angle) shi,
The output to the electro-hydraulic conversion valve 21 is lowered to A of the 212I. Then, the output is gradually lowered to B, and then suddenly dropped to zero.
第2図は縦軸に制御演算器20の出力Xを横軸に時間℃
を取ったもので、前記出力A、Bの値を第4図の切換弁
19の切換り位1ia、bのパイロット圧A′、B=に
対応する前後の値とする。このようにすると、切換弁1
9は位[aからbに徐々に切換ねるので、切換弁19の
開口面積が徐々に変化し、パイロット弁15からのパイ
ロット圧が徐々にパイロット操作形方向切換弁11のパ
イロット部に作用するので、パイロット操作回路17の
パイロット圧が一瞬下がってしまうという現象が生じな
い。したがって、アームシリンダ6を油圧ポンプ8,9
の圧油が合流して作動する上記切換時の動作が滑らかに
行われ、アーム3がぎくしやくした動作を行うことがな
く、刃先直線自動掘削にも悪影響が生じることがない。In Figure 2, the vertical axis is the output X of the control calculator 20, and the horizontal axis is time °C.
Let the values of the outputs A and B be the values before and after the pilot pressures A' and B= at the switching positions 1ia and b of the switching valve 19 shown in FIG. In this way, the switching valve 1
9 is the position [Since the switching is gradual from a to b, the opening area of the switching valve 19 gradually changes, and the pilot pressure from the pilot valve 15 gradually acts on the pilot part of the pilot operated directional switching valve 11. , the phenomenon that the pilot pressure of the pilot operation circuit 17 drops momentarily does not occur. Therefore, the arm cylinder 6 is connected to the hydraulic pumps 8 and 9.
The above-mentioned switching operation in which the pressurized oils of 2 and 3 are combined to operate is performed smoothly, the arm 3 does not perform jerky movements, and automatic cutting in a straight line at the cutting edge is not adversely affected.
また゛、手動操作を行っている場合には、パケット操作
レバー14を中立に戻したことを制御演算器20に感知
させ、その時点から上記第2図に示すようなAから已に
至る出力を制御演算器20で発生させれば、同様に切換
弁19を徐々に切換えて、アーム3の上記切換時の動作
を滑らかに行うことができる。In addition, when manual operation is performed, the control calculator 20 senses that the packet control lever 14 has been returned to neutral, and from that point on, the output from A to B as shown in FIG. 2 is controlled. If it is generated by the computing unit 20, the switching valve 19 can be gradually switched in the same way, and the above-mentioned switching operation of the arm 3 can be performed smoothly.
第1図は制御演算器20の具体的実施内容をフロチャー
トで示したものである。FIG. 1 is a flowchart showing specific implementation details of the control calculator 20. As shown in FIG.
まず、ブロック100でパケット4が第3図のHの状態
の至ったことを検出(パケット動作終了)し、ブロック
101で時間t = oで出力X=Aを出力する。ブロ
ック102では出力x=x−ktを出力し、ブロック1
03でX≦Bを判定し、NOであればブロック104で
時間1=1+Δtとしブロック102に戻る。ブロック
102でY e sと判定されればブロック105で出
力X=Oとして切換弁19の切換を完了する。First, in block 100, it is detected that the packet 4 has reached the state H in FIG. 3 (packet operation is completed), and in block 101, output X=A is output at time t=o. Block 102 outputs the output x=x−kt, and block 1
In step 03, it is determined whether X≦B, and if NO, in block 104, time 1=1+Δt is set, and the process returns to block 102. If it is determined as Yes in block 102, then in block 105 the output X=O and the switching of the switching valve 19 is completed.
上記実施例によれば、パケット刃先直#!掘削時に、パ
ケット動作終了時のアーム3の油圧ポンプ8から油圧ポ
ンプ8,9による合流駆動切換を滑らかに行うことがで
き、パケット刃先直線掘削制御、特に自動掘削時の掘削
直線性に悪影響を及ぼすことがない。According to the above embodiment, the packet cutting edge is straight #! During excavation, it is possible to smoothly switch the merging drive from the hydraulic pump 8 of the arm 3 to the hydraulic pumps 8 and 9 at the end of the packet operation, which adversely affects the straight line excavation control of the packet cutting edge, especially the excavation linearity during automatic excavation. Never.
以上本発明をアームシリンダ6をパイロット操作形の方
向切換弁10.11を介して油圧ポンプ8.9に接続し
、パケットシリンダ7をパイロット操作形の方向切換弁
12を介して油圧ポンプ9コ
に接続し、パケット刃先点P3を直線に沿って動かすパ
ケット刃先直線掘削の場合を例に取り説明したが1本発
明は上記実施例に限定されるものではなく、アームシリ
ンダ6を二つのパイロット操作形の方向切換弁を介して
油圧ポンプ8,9に接続し、油圧ショベルの上部旋回体
用旋回モータ(図示せず)を油圧ポンプ9にパイロット
操作形の方向切換弁(図示せず)を介して接続した場合
。As described above, in the present invention, the arm cylinder 6 is connected to the hydraulic pump 8.9 via the pilot-operated directional control valve 10.11, and the packet cylinder 7 is connected to the hydraulic pump 9 via the pilot-operated directional control valve 12. The description has been made by taking as an example the case of straight-line excavation of the packet cutting edge in which the packet cutting edge point P3 is moved along a straight line; however, the present invention is not limited to the above embodiment, and the arm cylinder 6 can be connected to two pilot-operated types. are connected to the hydraulic pumps 8 and 9 through directional switching valves, and a swing motor (not shown) for the upper revolving body of the hydraulic excavator is connected to the hydraulic pump 9 via a pilot-operated directional switching valve (not shown). If connected.
アームシリンダ6の代りにブームシリンダ(図示せず)
が2つの油圧ポンプにより駆動されるよう接続される場
合および油圧ショベルの左右走行モータ (図示せず)
が他のアクチュエータと同時に操作された時にのみ1つ
の油圧ポンプの圧油が分流し、左右走行モータを駆動す
る場合等、複数の油圧ポンプからの圧油を合流または分
流して各作業アクチュエータを駆動する回路の1つのパ
イロット操作回路圧によって他のパイロット操作回路に
設けた切換弁を切換える場合、切換時のパイロット操作
回路の圧力降下を防ぐための手段として広く適用するこ
とができる。Boom cylinder (not shown) instead of arm cylinder 6
is connected to be driven by two hydraulic pumps, and the left and right travel motors of the hydraulic excavator (not shown)
When a hydraulic pump is operated at the same time as another actuator, the pressure oil from one hydraulic pump is diverted to drive the left and right travel motors, etc. In this case, the pressure oil from multiple hydraulic pumps is combined or divided to drive each work actuator. When switching a switching valve provided in another pilot operating circuit by the pressure of one pilot operating circuit of a circuit, it can be widely applied as a means for preventing a pressure drop in the pilot operating circuit at the time of switching.
また、第4図の切換弁19は切換時のパイロット圧の幅
A=、B=間が大きいほど効果が大きいので、切換時の
パイロット圧の幅の大きいものを使うと本発明の効果が
より良好となる。Furthermore, the effect of the switching valve 19 shown in FIG. 4 is greater as the pilot pressure width A= and B= at the time of switching is larger, so if a valve with a wider pilot pressure width at switching is used, the effect of the present invention will be further enhanced. Becomes good.
以上説明した本発明によれば、第一の7クチユエータが
複数のパイロット操作形方向切換弁を介して複数の油圧
ポンプに接続され、第二のアクチュエータがパイロット
操作形方向切換弁を介して油圧ポンプに接続され、前記
第一のアクチュエータの複数の方向切換弁用パイロット
操作回路のうちの少くとも1つに、前記第二のアクチュ
エータの方向切換弁層パイロット操作回路のパイロット
圧によって切換えられる切換弁が設けたられた作業機に
おいて、上記切換弁の切換り時における操作回路の圧力
降下を防ぎ、第一の7クチユエータの動作をスムースに
行わせることが出来ると共に特に自動制御時の制御動作
に悪影響を与えることを防止することが出来る。According to the present invention described above, the first seven actuators are connected to the plurality of hydraulic pumps via the plurality of pilot-operated directional valves, and the second actuator is connected to the hydraulic pumps via the pilot-operated directional valves. , and at least one of the plurality of directional valve pilot operating circuits of the first actuator includes a switching valve that is switched by pilot pressure of a directional valve layer pilot operating circuit of the second actuator. In the installed working machine, it is possible to prevent a pressure drop in the operation circuit when switching the switching valve, to allow the first seven cutter units to operate smoothly, and to have an adverse effect on the control operation particularly during automatic control. It is possible to prevent giving.
第1図は本発明の一実施例に係る制御装置の具体的内容
をプロチャートで示す図、第2図は第1図の制御関数の
例を示す図、第3図はローディングショベルのパケット
刃先直線掘削制御の作動図。
第4図はローディングショベルの油圧回路のアームおよ
びパケットの油圧回路を取り出した図である。
6・・・・・・第一のアクチュエータ(アームシリンダ
)7・・・・・・第二のアクチュエータ(パケットシリ
ンダ)8.9・・・・・・油圧ポンプ、10.11.1
2・・・・・・パイロット操作形方向切換弁、17,1
8.23・・・・・・パイロット操作回路、19・・・
・・切換弁、20・・・・・制御演算器。
第1図
第2図
工
′I
第3図
1a p3Fig. 1 is a diagram showing the specific contents of a control device according to an embodiment of the present invention using a professional chart, Fig. 2 is a diagram showing an example of the control function shown in Fig. 1, and Fig. 3 is a diagram showing a packet cutting edge of a loading shovel. Operation diagram of linear excavation control. FIG. 4 is a diagram showing the arm and packet hydraulic circuits of the loading shovel hydraulic circuit. 6...First actuator (arm cylinder) 7...Second actuator (packet cylinder) 8.9...Hydraulic pump, 10.11.1
2...Pilot operated directional valve, 17,1
8.23...Pilot operation circuit, 19...
...Switching valve, 20...Control computing unit. Figure 1 Figure 2 Artwork'I Figure 3 1a p3
Claims (1)
換弁を介して複数の油圧ポンプに接続され、第二のアク
チュエータがパイロット操作形方向切換弁を介して油圧
ポンプに接続され、前記第一のアクチュエータの複数の
方向切換弁用パイロット操作回路のうちの少くとも1つ
に、前記第二のアクチュエータの方向切換弁用パイロッ
ト操作回路のパイロット圧によつて切換えられる切換弁
が設けられた作業機械において、前記第二のアクチュエ
ータの方向切換弁用パイロット圧を前記第一のアクチュ
エータの方向切換弁用パイロット操作回路に設けた切換
弁の切換り圧力附近で徐々に変化させる圧力演算制御手
段を設けたことを特徴とする作業機械の制御装置。A first actuator is connected to a plurality of hydraulic pumps via a plurality of pilot-operated directional valves, a second actuator is connected to a hydraulic pump via a pilot-operated directional valve, and a second actuator is connected to a plurality of hydraulic pumps via a plurality of pilot-operated directional valves; In the working machine, at least one of the plurality of directional valve pilot operating circuits is provided with a switching valve that is switched by the pilot pressure of the directional switching valve pilot operating circuit of the second actuator. A pressure calculation control means is provided for gradually changing the pilot pressure for the directional switching valve of the second actuator in the vicinity of the switching pressure of the switching valve provided in the pilot operating circuit for the directional switching valve of the first actuator. A control device for a working machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59195742A JPS6175135A (en) | 1984-09-20 | 1984-09-20 | Control device for working machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59195742A JPS6175135A (en) | 1984-09-20 | 1984-09-20 | Control device for working machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6175135A true JPS6175135A (en) | 1986-04-17 |
JPH0429817B2 JPH0429817B2 (en) | 1992-05-20 |
Family
ID=16346211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59195742A Granted JPS6175135A (en) | 1984-09-20 | 1984-09-20 | Control device for working machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6175135A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6383405A (en) * | 1986-09-27 | 1988-04-14 | Hitachi Constr Mach Co Ltd | Oil pressure circuit for hydraulic machinery |
JPH02101852U (en) * | 1988-09-30 | 1990-08-14 | ||
US5005466A (en) * | 1988-04-07 | 1991-04-09 | Kabushiki Kaisha Kobe Seiko Sho | Cavitation-preventing pilot valve control system for power shovel hydraulic circuit |
-
1984
- 1984-09-20 JP JP59195742A patent/JPS6175135A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6383405A (en) * | 1986-09-27 | 1988-04-14 | Hitachi Constr Mach Co Ltd | Oil pressure circuit for hydraulic machinery |
US5005466A (en) * | 1988-04-07 | 1991-04-09 | Kabushiki Kaisha Kobe Seiko Sho | Cavitation-preventing pilot valve control system for power shovel hydraulic circuit |
JPH02101852U (en) * | 1988-09-30 | 1990-08-14 |
Also Published As
Publication number | Publication date |
---|---|
JPH0429817B2 (en) | 1992-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4528892A (en) | Hydraulic circuit system for construction machine | |
EP3647500B1 (en) | Travel control system for construction machinery and travel control method for construction machinery | |
KR100221808B1 (en) | Hydraulic driving apparatus of hydraulic shovel | |
US4561824A (en) | Hydraulic drive system for civil engineering and construction machinery | |
US6018895A (en) | Valve stack in a mini-excavator directing fluid under pressure from multiple pumps to actuable elements | |
US4614475A (en) | Hydraulic circuit system for civil engineering and architectural machinery | |
JPS6175135A (en) | Control device for working machine | |
JP2757089B2 (en) | Work machine interference prevention device | |
US6029446A (en) | Multifunction valve stack | |
JP2726997B2 (en) | Work automation equipment for construction machinery | |
JPH08218443A (en) | Hydraulic driving device for construction machine | |
EP0480037B1 (en) | Device for operating traveling and working machines of hydraulic excavator | |
JP3869281B2 (en) | Fluid pressure circuit | |
JPH086354B2 (en) | Hydraulic circuit of hydraulic excavator | |
KR200153467Y1 (en) | Excavator arm cylinder velocity control device | |
JPS61204427A (en) | Hydraulic circuit for civil engineering and construction machine | |
JP3604094B2 (en) | Hydraulic circuit of hydraulic excavator | |
JPH10292417A (en) | Front control device for construction machine | |
JP2757009B2 (en) | Fine operation control method for construction machinery | |
JPS5828040Y2 (en) | backhoe work machine | |
JPH116174A (en) | Actuator operating circuit for construction motor vehicle | |
JPH10299027A (en) | Hydraulic drive unit for construction machine | |
JPS61113932A (en) | Hydraulic circuit for auxiliary working machine for construction machinery | |
JPH0893000A (en) | Hydraulic pilot operating circuit | |
JP2685871B2 (en) | Hydraulic circuit at the gutter front |