JPS6174627A - Gas permselective membrane - Google Patents

Gas permselective membrane

Info

Publication number
JPS6174627A
JPS6174627A JP59196521A JP19652184A JPS6174627A JP S6174627 A JPS6174627 A JP S6174627A JP 59196521 A JP59196521 A JP 59196521A JP 19652184 A JP19652184 A JP 19652184A JP S6174627 A JPS6174627 A JP S6174627A
Authority
JP
Japan
Prior art keywords
group
tables
formulas
carbon atoms
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59196521A
Other languages
Japanese (ja)
Other versions
JPH051050B2 (en
Inventor
Kenko Yamada
山田 建孔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59196521A priority Critical patent/JPS6174627A/en
Priority to US06/746,568 priority patent/US4644046A/en
Publication of JPS6174627A publication Critical patent/JPS6174627A/en
Publication of JPH051050B2 publication Critical patent/JPH051050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/54Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3893Low-molecular-weight compounds having heteroatoms other than oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages

Abstract

PURPOSE:To obtain a gas permselective membrane capable of filming by interfacial polymerization by using a copolymer of both polyamine having at least two pieces of amino group shown by a specified formula and the cross-linking agent component having at least two pieces of functional group allowing to react with amino group. CONSTITUTION:A soln. of the following amino compd. e.g. 3-(2-amino ethylaminoproplyl)-tris (trimethylsiloxane)-silane is impregnated into a supporter wherein >=50mol% all polyamines has two or more pieces of primary and/or secondary amino group shown by the formula 1 and/or 2 and thereafter excess soln. is separated. A soln. of multifunctional compd. having two or more pieces of functional group allowing to react with amino group e.g. diphenylmethane diisocyanate is introduced onto the surface of the supporter and both the compds. are allowed to react with each other on the surface of the supporter. The gas permselective composite membrane is obtained by washing the solvent and the nonreacted compd. and drying same.

Description

【発明の詳細な説明】 く目 的〉 本発明は、各科混合ガス中より特定成分、特に酸素ガス
を分離することに用いる気体分離用選択透過膜に関する
ものである。
[Detailed Description of the Invention] Purpose> The present invention relates to a selectively permeable membrane for gas separation used to separate a specific component, particularly oxygen gas, from a mixed gas of various families.

〈従来技術〉 優れた気体選択透過性を有する素材としては名神のもの
が知られているが、優れた気体選択透過性を有し、かつ
膜厚1μm、以下の薄膜が容易に成型できる素材は少な
い。1um以下の薄膜が容易に得られる成型方法として
は、水面展開法、界面重合法がある。本発明者らは、界
面重合により製膜可能41気体選択分離膜として、主鎖
にシロキサン結合を有づるものを提案したく特開昭58
−193703号公報参照) これも優れた選択透過性を有してるが、本発明者は、更
に優れた、界面重合可能な素材を鋭意研究した結果、本
発明に到達した。
<Prior art> Meishin is known as a material that has excellent gas selective permselectivity, but there is no material that has excellent gas selective permselectivity and can be easily formed into a thin film with a thickness of 1 μm or less. few. Molding methods that can easily produce a thin film of 1 um or less include a water surface spreading method and an interfacial polymerization method. The present inventors would like to propose a 41 gas selective separation membrane that can be formed by interfacial polymerization and has a siloxane bond in its main chain.
(Refer to Publication No. 193703) Although this material also has excellent permselectivity, the inventors of the present invention have arrived at the present invention as a result of intensive research into materials that are even more superior and can be interfacially polymerized.

〈発明の構成〉 本発明は全ポリアミン成分の少なくとも50モル%が下
記式(1)及び/または(2) (l」−N+a A(:N−B−8i −R2) b 
−・・・(1)ROR3 で表わされる、1級及び/または2級アミノ基を少くと
も2個有するアミノ化合物であるポリアミン成分と、ア
ミノ基と反応しうる官能基を少くとも2個右する多官能
性化合物からなる架橋剤成分との反応により得られた重
合体から形成されたことを特徴とする気体分離用選択透
過膜である。
<Structure of the Invention> In the present invention, at least 50 mol% of all polyamine components is represented by the following formula (1) and/or (2) (l'-N+a A(:N-B-8i -R2) b
-...(1) A polyamine component which is an amino compound having at least two primary and/or secondary amino groups represented by ROR3 and at least two functional groups capable of reacting with the amino groups. This is a selectively permeable membrane for gas separation, characterized in that it is formed from a polymer obtained by reaction with a crosslinking agent component consisting of a polyfunctional compound.

前記式(11,(2)においてポリアミン成分として、
ジアミンを用い架橋剤成分として2官能のものを用いた
場合には、通常の溶液重合等により、可溶性のポリマー
を得ることができ、コーティング法、水面展開法等によ
り製膜することができる。
In the formula (11, (2)), as the polyamine component,
When a bifunctional diamine is used as a crosslinking agent component, a soluble polymer can be obtained by ordinary solution polymerization or the like, and can be formed into a film by a coating method, a water surface development method, or the like.

しかし、ポリアミン成分及び/又は架橋剤成分として3
官能以上のものを用いた場合には、一般に溶媒には不溶
であるため界面重合法により気体選択透過膜を得ること
が必要である。
However, as a polyamine component and/or a crosslinking agent component, 3
When using a substance more than functional, it is generally insoluble in a solvent, so it is necessary to obtain a gas selective permeation membrane by an interfacial polymerization method.

本発明における界面重合法とは 1級及び/または2級アミノ基を少なくとも2個右する
アミン基含有化合物或いはそれを水または水と自由に混
和しうる有機液体または、かかる有機液体と水との混合
物に溶解させたアミン基含有化合物溶液と該アミノ基含
有化合物と反応しうる官能基を少くとも2個有する多官
能性化合物(架橋剤成分)或いはその溶液どの両者を用
意し、その一方の化合物を溶液状態で多孔性支持体に含
浸せしめた後、他方の化合物を溶液状またはガス状で支
持体の表面に導入することにより、支持体の表面で両化
合物の反応を生起せしめ、しかしてガス選択透過性薄膜
を形成する。
The interfacial polymerization method in the present invention refers to an amine group-containing compound having at least two primary and/or secondary amino groups, water or an organic liquid that is freely miscible with water, or a combination of such an organic liquid and water. Prepare a solution of an amine group-containing compound dissolved in a mixture, a polyfunctional compound (crosslinking agent component) having at least two functional groups that can react with the amine group-containing compound, or a solution thereof, and add one of the compounds. is impregnated into a porous support in a solution state, and then the other compound is introduced into the surface of the support in a solution or gas state to cause a reaction between both compounds on the surface of the support. Forms a permselective thin film.

また、アミノ基含有化合物溶液と、多官能性化合物溶液
を接触させ、その界面に生成した界面重合膜をついで支
持体の上に担持することによりガス選択透過性薄膜を形
成することもできる。ここでアミノ1;4含有化合物と
しては前記式(1)または(2)で表わされるポリアミ
ンを用いる。
Alternatively, a gas selectively permeable thin film can be formed by bringing an amino group-containing compound solution into contact with a polyfunctional compound solution, and then supporting an interfacially polymerized film formed at the interface on a support. Here, as the amino 1;4-containing compound, a polyamine represented by the above formula (1) or (2) is used.

前記式(11:1:たけ(2)中Δは、a+b価又はc
十d化の脂肪族炭化水素基、芳香族炭化水素基またはオ
ルガノシリル基であり、アミノ基1個当たりの分子量は
14〜800好ましくは14〜500である。14以下
では反応性が低下し800以上では膜の強面が低下しや
すい。
Δ in the formula (11:1:take (2)) is a + b value or c
It is a deca-d aliphatic hydrocarbon group, aromatic hydrocarbon group or organosilyl group, and the molecular weight per amino group is 14-800, preferably 14-500. If it is less than 14, the reactivity decreases, and if it is more than 800, the strength of the film tends to decrease.

(1)式中Roは、水素原子又は炭素原子数1〜6のア
ルキル基またはAとも結合して−Ro−N−八一で環を
へ成している炭素原子数1〜6のアルギル基である。炭
素原子数が6以上になると、アミノ基の反応性が低下し
好ましくない。
(1) In the formula, Ro is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an argyl group having 1 to 6 carbon atoms which is also bonded to A to form a ring with -Ro-N- It is. When the number of carbon atoms is 6 or more, the reactivity of the amino group decreases, which is not preferable.

(1)式中aは1以上の整数を表わし、Roはそれぞれ
異なっていてもよく、またa+bは2以上の整数を表わ
す。また(2)式中Cは2以上の整数を表わす。
(1) In the formula, a represents an integer of 1 or more, Ro may be different from each other, and a+b represents an integer of 2 or more. Further, in formula (2), C represents an integer of 2 or more.

前記式(1)中の8は、炭素原子数10以下のアルキレ
ン基又はフェニレン基である。
8 in the formula (1) is an alkylene group or a phenylene group having 10 or less carbon atoms.

前記式(1)中のR+ 、R2、R3はそれぞれ独立に
−fCHZテKCl−13(Kは1〜9)。
In the formula (1), R+, R2, and R3 each independently represent -fCHZteKCl-13 (K is 1 to 9).

千〇H2+、oH(pはO〜4)等のアルキル基(ただ
し水素原子は、フッソ原子により置換されていてもよい
。またここで炭素原子数10以上では選択性が低下しや
すい)、フェニル基、または、−0−8i−Rs。
Alkyl groups such as 1,000H2+, oH (p is O to 4) (however, the hydrogen atom may be substituted with a fluorine atom.If the number of carbon atoms is 10 or more, the selectivity tends to decrease), phenyl group, or -0-8i-Rs.

Ra     Rn (R4〜R1+は炭素原子数1〜6のアルキル基を表わ
す。)のうちの一つを表わす。ここでR4−Rhは脂肪
族または脂環族アルキル基またはフェニル基を表わす(
ただし、水素原子は1部フッソ原子ににり置換されてい
てもにい)。
Ra represents one of Rn (R4 to R1+ represent an alkyl group having 1 to 6 carbon atoms). Here, R4-Rh represents an aliphatic or alicyclic alkyl group or a phenyl group (
However, some of the hydrogen atoms may be replaced by fluorine atoms).

(1)式中のb及び(2)式中のdは1以上の整数を表
わしそれぞれB、R+ 、R2、R3が異なっていても
よい。
b in formula (1) and d in formula (2) represent an integer of 1 or more, and B, R+, R2, and R3 may be different from each other.

ここでポリアミンの具体的構造としては、前記式(1)
または(2)中の下記式(3)で表わされる−13−8
! −R2・・・・・・(3)■ シリル基をXとして表わすと 1」N (: CH2+n N H2。
Here, the specific structure of the polyamine is the formula (1) above.
or -13-8 represented by the following formula (3) in (2)
! -R2...(3) ■ When the silyl group is represented as X, it is 1''N (: CH2+n N H2.

× H−N[、(CH2ケnNH廿r叶CH2s N H2
× H-N
.

■ X      X        × モCH2−C++n CH2 N −1−1 ■ × (ただしnは1〜10の整数を表わし、mは1以上の整
数、ρは2以上の整数を表わす。)等で表ね(nは1〜
10の整数)等で表わされる脂環族ポリアミン; × (りは2以上の整数を表ね寸。) 等で表わされる芳香族ポリアミン; GH3 N2 N(−Ct12 +n  Si  (−CH2+
n  NN2  。
■ X n is 1~
Alicyclic polyamines represented by x (integer of 10 or more), etc.; Aromatic polyamines represented by GH3 N2 N(-Ct12 +n Si (-CH2+
nNN2.

CI−13 HX (nは1〜10の整数、Dは2」メ」二の整姿りを表わ
す、、)等で表ねされるり一イ素含有ポリアミンが挙げ
られる。ただし、ポリアミン成分としては前記に限らず
1級及び/または2級アミノ基を2個以上有し、かつ前
記式(3)で表わされるシリル基を有するポリアミンで
あればいずれも用いることができる。
CI-13 HX (n is an integer of 1 to 10, D represents a 2" square shape, etc.), and mono-iron-containing polyamines can be mentioned. However, the polyamine component is not limited to those mentioned above, and any polyamine having two or more primary and/or secondary amino groups and a silyl group represented by the above formula (3) can be used.

ポリアミン化合物の好ましい具体例としては、2−アミ
ノTデルアミツメデル1〜リメチルシラン。
Preferred specific examples of polyamine compounds include 2-amino T delamizmedel 1-limethylsilane.

3−(2−アミノエチルアミノプロビル)へブタメチル
トリシロキサン、3− (2−アミノエチルアミノプロ
ビル)トリス(1〜リメチルシロキシ)シラン。
3-(2-aminoethylaminopropyl)hebutamethyltrisiloxane, 3-(2-aminoethylaminopropyl)tris(1-lymethylsiloxy)silane.

1」 11」 N  [CH2CH2Nイ丑CH2−1−3St  −
(0−8i  (−Ct−h  )3  )3  ]2
  。
1"11" N [CH2CH2NiiCH2-1-3St -
(0-8i (-Ct-h)3 )3 ]2
.

(rcH2−CH2’)n CH2N1−1fCH2+38i (CH3) 3HI
−1、Ct−h l     1     1 N2 NCH2CH2NCH2Cl−12N(−cH2
+3(Si−0+3Si (E−CH3) 3■ GH3 N2 NfCH2−CH2−N+n’C’H2CH2N
N2■ (C1−h −)3 Si  [0−3i (−CH3
) 3  コ3等の脂肪族ポリアミン;ジブチルー:3
−(4−ピペリジルメチルアミノプロビル)シラン、ジ
メチルフェニル−4−ピペリジルメチルアミノメチルシ
ラン、3〜(4−ピペリジルメチルアミノプロビル)ト
リス(1〜リメヂルシロキシ)シラン等の脂環族ポリア
ミン; 3 。
(rcH2-CH2')n CH2N1-1fCH2+38i (CH3) 3HI
-1, Ct-hl 1 1 N2 NCH2CH2NCH2Cl-12N(-cH2
+3(Si-0+3Si (E-CH3) 3■ GH3 N2 NfCH2-CH2-N+n'C'H2CH2N
N2■ (C1-h -)3 Si [0-3i (-CH3
) 3 Aliphatic polyamine such as 3; dibutyl: 3
Alicyclic polyamines such as -(4-piperidylmethylaminopropyl)silane, dimethylphenyl-4-piperidylmethylaminomethylsilane, 3-(4-piperidylmethylaminopropyl)tris(1-rimedylsiloxy)silane; 3.

CH3 ↓ 等の芳市族ポリアミン: ■ CI−13 GH3 N3 0(rsi  O+n  Si  (CH3)3
(CH2)3 HNそCH2−E)3  S i  (E−CH3) 
 3H3 ■ [ト12N  イー GH2+ 3  ]St   そ
 CH2ミド 3   NN2   ](CN2テ3 
3i  (−CH3)3等のケイ素含有ポリアミンが挙
げられる。
Aromatic polyamines such as CH3 ↓: ■ CI-13 GH3 N3 0(rsi O+n Si (CH3)3
(CH2)3 HNsoCH2-E)3 S i (E-CH3)
3H3 ■ [T12N E GH2+ 3 ] St So CH2 Mid 3 NN2 ] (CN2 Te3
Examples include silicon-containing polyamines such as 3i (-CH3)3.

また、架橋剤としての多官能性化合物としてはイソシア
ネート基または酸クロライド基を少くとも2個有する化
合物を用いる。(ここで“架橋剤″とは、必ずしも三次
元架橋をおこさせることを常に意味しているわけではな
い。〉インシアネート基または酸クロライド基を少くと
も2個有する化合物としては、特に制限はないが炭素原
子数4〜15特に好まし・くは6〜13のポリイソシア
ネートまたはポリ酸クロライドが用いられる。
Further, as the polyfunctional compound as a crosslinking agent, a compound having at least two isocyanate groups or acid chloride groups is used. (The term "crosslinking agent" here does not necessarily mean that it causes three-dimensional crosslinking.) There are no particular restrictions on the compound having at least two incyanate groups or acid chloride groups. Polyisocyanates or polyacid chlorides having 4 to 15 carbon atoms, preferably 6 to 13 carbon atoms, are used.

具体例として、トルイレンジイソシアネート。A specific example is toluylene diisocyanate.

ジフェニルメタンジイソシアネート、ナフタレンジイソ
シアネート。
Diphenylmethane diisocyanate, naphthalene diisocyanate.

(nは1〜10の整数)等の芳香族ポリイソシアネート
;ヘキザメヂレンジイソシアネート、1.3ビス(イソ
シアナー1へメチル)シクロヘキザン、1ヘリメヂルヘ
キザメチレンジイソシアネート、イソホロンジイソシア
ネート、キシリレンジイソシアネー1〜. 4.4’ 
メチレンビス(シクロヘキシルイソシアネ−1〜)、メ
チルシクロへキシルジイソシアネート、2.6ジイソシ
アナートメチルカプロレート。
Aromatic polyisocyanates such as (n is an integer of 1 to 10); hexamethylene diisocyanate, 1.3 bis(isocyaner 1 to methyl) cyclohexane, 1 herimedyl hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate Ne 1~. 4.4'
Methylene bis(cyclohexyl isocyanate-1-), methyl cyclohexyl diisocyanate, 2.6 diisocyanate methyl caprolate.

CO ■ 0CN(l−CH2)4  C−C−0−(CH2す2
NCO等の脂肪族ポリイソシアネート; CI−13CH3 等のシリコン系ポリイソシアネート;イソフタル酸クロ
ライド、テレフタル酸クロライド、トリメリット酸クロ
ライド等の芳香族酸クロライド;アジピン酸クロライド
等の脂肪族酸クロライドを挙げることができる。これら
は一種または二種以上混合して用いることができる。特
に好ましくは、ポリイソシアネート化合物である。
CO ■ 0CN(l-CH2)4 C-C-0-(CH2su2
Aliphatic polyisocyanates such as NCO; silicone polyisocyanates such as CI-13CH3; aromatic acid chlorides such as isophthalic acid chloride, terephthalic acid chloride, trimellitic acid chloride; and aliphatic acid chlorides such as adipic acid chloride. can. These can be used alone or in combination of two or more. Particularly preferred are polyisocyanate compounds.

アミン基含有化合物と、多官能性化合物の組合わせは、
どのような組合わせでもよいが、生成した該重合体中に
前記式(2)のシリル基を10〜80モル%好ましくは
20〜70モル%を含むものが特に好ましい例どして挙
げられる。
The combination of an amine group-containing compound and a polyfunctional compound is
Any combination may be used, but a particularly preferred example is one containing 10 to 80 mol%, preferably 20 to 70 mol%, of the silyl group of formula (2) in the produced polymer.

該ポリアミン化合物の溶媒としては、水または水と任意
に混和しうる液体が好ましく、特に水、メタノール、エ
タノール、イソプロパツール、メチルセルソルブ、ジオ
キサン、■チレングリコール、ジエチレングリコール、
トリエチレングリコ一ル、ジプロピレングリコール、グ
リセリンまたはこれらの2種以上の混合溶媒が好ましく
、該アミンをo、19/ 100m+!以上好ましくは
0,597100mm以上可溶であることが好ましい。
The solvent for the polyamine compound is preferably water or any liquid miscible with water, particularly water, methanol, ethanol, isopropanol, methylcellosolve, dioxane, ethylene glycol, diethylene glycol,
Triethylene glycol, dipropylene glycol, glycerin, or a mixed solvent of two or more thereof is preferred, and the amine is mixed with o, 19/100m+! More preferably, it is soluble at 0,597,100 mm or more.

該アミン基含有化合物の濃度としては1100pp〜1
0wt%0了1: L <は200ppm〜2wt%で
ある。
The concentration of the amine group-containing compound is 1100 pp to 1
0 wt% 1: L< is 200 ppm to 2 wt%.

該多官能性化合物の溶媒としては、前記アミノ基含有化
合物の溶媒の少なくとも1種と界面を形成するものが用
いられるが、好ましくは、炭素原子数6〜18の脂肪族
炭化水素、またはハロゲン化炭化水素であり、具体例と
しては、n−ヘキサン、n−ペプタン、n−オクタンシ
クロヘキザン、n−デカン、n−テトラデカン、ヘキサ
デセン−1、四塩化炭素、トリフロロトリクロロエチレ
ン等が挙げられる。多官能性化合物の濃度は20ρpm
〜5W1%好ましくは50ppm〜3wt%である。
As the solvent for the polyfunctional compound, a solvent that forms an interface with at least one of the solvents for the amino group-containing compound is used, preferably an aliphatic hydrocarbon having 6 to 18 carbon atoms, or a halogenated solvent. It is a hydrocarbon, and specific examples thereof include n-hexane, n-peptane, n-octanecyclohexane, n-decane, n-tetradecane, hexadecene-1, carbon tetrachloride, trifluorotrichloroethylene, and the like. The concentration of polyfunctional compound is 20ρpm
~5W1%, preferably 50ppm ~3wt%.

多孔性支持体の材質は、ポリスルボン、ポリエーテルス
ルホン、セルロースアセテート、セルロース、ナイロン
6、ポリアクリロニトリル、塩化ビニル、ポリメチルメ
タアクリレート等の有機ポリマー及び、ガラス多孔質材
、焼結金属、セラミック等が挙げられる。
Porous support materials include organic polymers such as polysulfone, polyethersulfone, cellulose acetate, cellulose, nylon 6, polyacrylonitrile, vinyl chloride, and polymethyl methacrylate, as well as glass porous materials, sintered metals, and ceramics. Can be mentioned.

かかる多孔性支持体の表面の平均孔径は5〜500n+
n 1好ましくは7〜1000mである。5nmより小
さい場合は透過性が低く、500nm以上では、選択性
のある膜が得られにくい。またかかる支持体の25℃に
おける空気の透過速度は、1X10−5〜5ac/Cl
l−8ec −cmHcJ 、好ましくは1xio−’
t〜0’、5cc/Crl−5ec −cm l−1(
Iである。1x 10−5 cc/ci −sec −
cmHQ以下では、透過性が低く実用的ではない。また
5CC/cffl 6 sec−cmH(3以上にする
と支持体の強度が低下し、使用に耐えなくなりやすい。
The average pore diameter of the surface of such a porous support is 5 to 500n+
n 1 is preferably 7 to 1000 m. When it is smaller than 5 nm, the permeability is low, and when it is 500 nm or more, it is difficult to obtain a membrane with selectivity. The air permeation rate of this support at 25°C is 1X10-5 to 5ac/Cl.
1-8ec-cmHcJ, preferably 1xio-'
t~0', 5cc/Crl-5ec-cm l-1(
It is I. 1x 10-5 cc/ci-sec-
Below cmHQ, the transparency is low and impractical. Moreover, when it is 5 CC/cffl 6 sec-cmH (3 or more), the strength of the support decreases and it tends to become unusable.

かかる支持体の形状としては、平膜状。The shape of such a support is a flat film.

中空糸状、チューブ状等いずれでも用いることができる
。該アミノ基含有化合物または該多官能性化合物を支持
体に含浸せしめる方法としては、浸漬法、ロールコーテ
ィング法、スプレーコーティング法、加圧圧入法、減圧
吸入法等如何なる方法でもよいが、多孔質支持体の表面
近傍に十分含浸させることが重要である。
It can be used in any form such as a hollow fiber shape or a tube shape. Any method may be used to impregnate the support with the amino group-containing compound or the polyfunctional compound, such as dipping, roll coating, spray coating, pressure injection, and vacuum inhalation. It is important to sufficiently impregnate the area near the surface of the body.

アミノ基含有化合物または多官能性化合物の一方の溶液
を支持体に含浸せしめた後、支持体表面にイ」着してい
る過剰の溶液を液切したのち他方の溶液ンj:た(4化
合物の蒸気を導入づることにJ:す、2液の界面または
気液の界面において反応が進行し、ガス選択透過性薄膜
が形成される。この場合、2液の界面を形成さけること
がより好ましい。界面を形成させるに際し、溶液の導入
方法としては、浸漬法、加圧法等いずれでも用いること
ができる。
After impregnating a support with one solution of an amino group-containing compound or a polyfunctional compound, the excess solution adhering to the surface of the support was drained off, and then the other solution was soaked (4 compounds). When vapor is introduced, a reaction proceeds at the interface between the two liquids or at the interface between gas and liquid, forming a gas selectively permeable thin film.In this case, it is more preferable to avoid forming the interface between the two liquids. When forming the interface, any method such as immersion method or pressurization method can be used as a method for introducing the solution.

アミノ基含有化合物と多官能f)1化合物どのかかる界
面反応はO〜100 ’C好ましくは20〜50°Cの
)晶[σにおいて5秒〜10分好ましくは、10秒〜5
分間行なう。
Such an interfacial reaction between the amino group-containing compound and the polyfunctional f)1 compound is carried out at 0 to 100 °C, preferably from 20 to 50 °C, for 5 seconds to 10 minutes at [σ], preferably from 10 seconds to 5 minutes.
Do this for minutes.

かくして、該支持体の表面上にガス選択透過↑(1をイ
1?lる薄膜が形成された複合膜が得られる。更に必要
に応じで残存している溶媒及びアミノ阜含イf化合物、
多官1111↑11化合物を洗浄し、乾燥することによ
り本発明の気体選択透過+1複合膜が19られる。
In this way, a composite membrane is obtained in which a thin film of selective gas permeation is formed on the surface of the support.Additionally, if necessary, the remaining solvent and amino acid-containing if compound,
By washing and drying the polyfunctional 1111↑11 compound, the gas selective permeation +1 composite membrane 19 of the present invention is obtained.

ガス選I戸透過(11を右する薄膜の厚みは5部m〜5
71 m好ましくは7部m〜1μmであり、特に好まし
くは10部m〜300nmである。
Gas selection I door permeation (the thickness of the thin film to the right of 11 is 5 parts m ~ 5
71 m, preferably 7 parts m to 1 μm, particularly preferably 10 parts m to 300 nm.

効  果 本発明のガス分離用気体透過膜は、その優れた単位体積
当たりの透過量及び優れた選択性を利用して、各種ガス
の分離に用いることができる。例えば、空気から酸素を
濃縮する装置に組み込み、燃焼炉、エンジン等の燃焼効
率の効上呼吸器疾患者の治療器として、また、工業有と
して水素と一酸化炭素の分離等各種ガスの分離を効率よ
く行なうことができる。
Effects The gas permeable membrane for gas separation of the present invention can be used to separate various gases by utilizing its excellent permeation amount per unit volume and excellent selectivity. For example, it can be incorporated into equipment that condenses oxygen from air, used in combustion furnaces, engines, etc. to improve combustion efficiency, and used as a treatment device for people with respiratory disorders.In industrial applications, it can also be used to separate various gases such as hydrogen and carbon monoxide. It can be done efficiently.

以下実施例をあげて、本発明を記述するが、本発明はこ
れらに限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例中“′部°′を示す。In the examples, "'part °'" is indicated.

参考例1 (ポリスルホン中空多孔質支持体の製法)ポリスルボン
(日産化学、Udel p3500 ) 20部、N−
メチル−2−ピロリドン5フ部、塩化リチウム3部及び
2−メトキシエタノール20部からなる溶液を調整し、
30℃において芯液として水を用い環状スリン1〜より
上記溶液を吐出させ、25°Cの水中に浸漬し凝固さl
!た。
Reference Example 1 (Production method of polysulfone hollow porous support) 20 parts of polysulfone (Nissan Chemical, Udel p3500), N-
Prepare a solution consisting of 5 parts of methyl-2-pyrrolidone, 3 parts of lithium chloride and 20 parts of 2-methoxyethanol,
Using water as the core liquid at 30°C, the above solution was discharged from circular Surin 1~, and immersed in water at 25°C to solidify.
! Ta.

かしくて外径(100I1m内径500uTrLのポリ
スルホン中空多孔質支持体を得た。この中空支持体をポ
リカーボネー1〜製のパイプ中に詰め、両端部を接着剤
で固め中空糸膜モジュールを得た。乾燥時のこの中空糸
膜の25℃にお1プる空気の透過量は1×1O−2(C
C(STP)/cd−3eC−cmHq)であった。気
体の透過f]としては適当な値である。
Thus, a polysulfone hollow porous support with an outer diameter of 100 Il and an inner diameter of 500 uTr was obtained. This hollow support was packed into a pipe made of polycarbonate 1, and both ends were solidified with an adhesive to obtain a hollow fiber membrane module. The amount of air that permeates through this hollow fiber membrane at 25°C during drying is 1 x 1O-2 (C
C(STP)/cd-3eC-cmHq). This is an appropriate value for gas permeation f].

参考例2 (不織布補強ポリスルホン多孔質膜の製造法)密に織っ
たダクロン(Dacron )1不織布(目((I t
7!  +80!7/ rrj、 )をガラス板上に固
定した。次いで、該不織布上にポリスルホン12,5w
t%、メチルセルソルブ12 、5W t%、および残
部ジメチルホルムアミドを含む溶液を厚さ約0.2μm
の層状にキャス]〜lノ、直15にポリスルホン層を室
温の水浴中にてゲル化さけることにより、不織布補強多
孔性ポリスルボン膜を19だ。
Reference Example 2 (Production method of non-woven fabric reinforced polysulfone porous membrane) Dacron 1 non-woven fabric ((It
7! +80!7/rrj, ) was fixed on a glass plate. Next, polysulfone 12.5w was applied on the nonwoven fabric.
t%, Methyl Cellsolve 12, 5W t%, and the balance dimethylformamide to a thickness of approximately 0.2 μm.
A non-woven reinforced porous polysulfone membrane was prepared by gelling the polysulfone layer in a water bath at room temperature.

このJ、うにして得られた多孔性ポリスルホン層は厚み
が約40〜70μであり、非対称構造を有しており、か
つ表面には約50〜600人の微孔が多数残存すること
が電子顕微鏡写真により観察された。
The porous polysulfone layer obtained by this method has a thickness of about 40 to 70μ, has an asymmetric structure, and has a large number of micropores of about 50 to 600 pores remaining on the surface. Observed by micrograph.

またこれらの多孔性基材は25℃における空気の透過速
度は5X10’ 〜1x10’cc/7−sec −c
mHgであった。
In addition, these porous substrates have an air permeation rate of 5 x 10' to 1 x 10' cc/7-sec -c at 25°C.
It was mHg.

実施例1 2−アミノエチルアミノメチルトリメチルシラン4.2
部を゛ジメチルアセトアミド50部に溶解したのち、室
温にてジフェニルメタンジイソシアネート 7.5部を
添加し3時間撹拌したのち、脱泡し、テフロン板上にキ
ャスティングし、熱風乾燥機中、150℃2時間乾燥し
、厚さ24μmのフィルムを得た。この膜の透過特性を
表1に示す。
Example 1 2-aminoethylaminomethyltrimethylsilane 4.2
After dissolving 1 part in 50 parts of dimethylacetamide, 7.5 parts of diphenylmethane diisocyanate was added at room temperature, stirred for 3 hours, defoamed, cast on a Teflon plate, and dried in a hot air dryer at 150°C for 2 hours. It was dried to obtain a film with a thickness of 24 μm. Table 1 shows the permeation characteristics of this membrane.

実施例2 3−(2−アミンエチル)アミノプロピルヘプタメチル
トリシロキサン6.5部をジメチルアセトアミド50部
に溶解したのちジフェニルメタンジイソシアネート 5
,4部を加え以後実施例1と同様にして厚さ30μmの
フィルムを得た。この膜の性能を表1に示す。
Example 2 6.5 parts of 3-(2-amine ethyl)aminopropylheptamethyltrisiloxane was dissolved in 50 parts of dimethylacetamide, followed by 5 parts of diphenylmethane diisocyanate.
, 4 parts were added and the procedure was repeated in the same manner as in Example 1 to obtain a film with a thickness of 30 μm. The performance of this membrane is shown in Table 1.

(以下余白) 表1 23一 実施例3 3−(2−アミノエチルアミノプロビル)トリス(トリ
メチルシロキシ)シランの0.1wt%エチレングリコ
ール溶液を参考例1で示した中空糸支持体の内面に導入
し、I Kg/ ciの加圧状態で1分間保持した。次
いで窒素ガスにて内部の残液を液切りしたのち、ジフェ
ニルメタンジイソシアネ−1・の250ppmへキサデ
セン溶液を1 m/minの線速度で導入し、3分間2
5℃にて反応させた。その後流水中で10水洗したのち
十分風乾させ中空糸複合膜を得た。この股の透過性能を
表2に示す。
(Leaving space below) Table 1 23-Example 3 A 0.1 wt% ethylene glycol solution of 3-(2-aminoethylaminopropyl)tris(trimethylsiloxy)silane was applied to the inner surface of the hollow fiber support shown in Reference Example 1. was introduced and maintained at a pressure of I Kg/ci for 1 minute. Next, after draining the residual liquid inside with nitrogen gas, a 250 ppm xadecene solution of diphenylmethane diisocyanate-1 was introduced at a linear velocity of 1 m/min, and the mixture was heated for 3 minutes.
The reaction was carried out at 5°C. Thereafter, the membrane was washed with running water for 10 minutes and then thoroughly air-dried to obtain a hollow fiber composite membrane. Table 2 shows the transmission performance of this crotch.

実施例4 3−(2−アミンエチルアミノプロピル)へブタメチル
トリシロキサンのo、5wt%エチレングリコール溶液
に参考例2で示した平膜支持体を10分間浸漬した。次
いでゴムローラーにて液切し、トルイレンジイソシアネ
ートの0.1wt%溶液に1分間浸漬して反応させた。
Example 4 The flat membrane support shown in Reference Example 2 was immersed in a 5 wt % ethylene glycol solution of 3-(2-amineethylaminopropyl)hebutamethyltrisiloxane for 10 minutes. Next, the liquid was drained using a rubber roller, and the sample was immersed in a 0.1 wt % solution of toluylene diisocyanate for 1 minute to react.

次いで流水中で1日水洗したのち、風乾し複合膜を得た
。この膜の性能を表2に示す。
The composite membrane was then washed in running water for one day and then air-dried to obtain a composite membrane. The performance of this membrane is shown in Table 2.

実施例5 ]−1 l 82N(E−C[−12+2N(−CH2+2NモCH
2テ38i [0−3iモCH3h ]3の0.1wt
%プロピレングリコール溶液を実施例3と同様に中空糸
支持体に圧入したのち、イソホロンジイソシアネートの
3ooppmオクタデセン溶液を1 m/n+inの線
速度で中空糸内面に導入し、3分間25℃にて反応させ
た。ついで流水中で1日水洗し、十分風乾させ複合膜を
得た。この膜の性能を表2に示す。
Example 5 ]-1 l 82N(E-C[-12+2N(-CH2+2NmoCH
2te 38i [0-3i mo CH3h] 3's 0.1wt
% propylene glycol solution was injected into the hollow fiber support in the same manner as in Example 3, a 30ppm octadecene solution of isophorone diisocyanate was introduced into the inner surface of the hollow fiber at a linear velocity of 1 m/n+in, and reacted for 3 minutes at 25°C. Ta. Then, it was washed under running water for one day and thoroughly air-dried to obtain a composite membrane. The performance of this membrane is shown in Table 2.

実施例6 ジブチルメチルー3−(4−ピペリジルメチルアミノプ
ロピル)シランの0.15wt%エチレングリコール溶
液を用い実施例3と同様に支持体に圧入したのち、キシ
リレンジイソシアネート500ppmのへキサデセン溶
液と実施例3と同様にして反応さゼ、水洗、風乾するこ
とにより複合膜を19だ。
Example 6 A 0.15 wt% ethylene glycol solution of dibutylmethyl-3-(4-piperidylmethylaminopropyl)silane was injected into the support in the same manner as in Example 3, and then a hexadecene solution of 500 ppm of xylylene diisocyanate and Example 3 were added. The composite membrane was prepared in the same manner as above by reacting, washing with water, and air drying.

この膜の性能を表2に示す。The performance of this membrane is shown in Table 2.

(以下余白) 表2(Margin below) Table 2

Claims (1)

【特許請求の範囲】 全ポリアミン成分の少なくとも50モル%が下記式(1
)及び/または(2) ▲数式、化学式、表等があります▼・・・・・・(1) ▲数式、化学式、表等があります▼・・・・・・(2) 〔但し、式中Aはa+b価又はc+d価の脂肪族炭化水
素基、芳香族炭化水素基またはオルガノシリル基であり
、Bは炭素原子数10以下のアルキレン基またはフェニ
レン基でありR_0は水素原子、炭素原子数1〜6のア
ルキル基またはAとも結合して▲数式、化学式、表等が
あります▼ で環を形成している炭素原子数1〜6のアルキレン基で
あり、aは0以上、bは1以上、a+bは2以上、cは
2以上、dは1以上の整数であり、R_1、R_2、R
_3はそれぞれ独立に、炭素原子数1〜10のアルキル
基またはフェニル基、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼(R_4〜R_1_
1は同一若し くは異なり炭素原子数1〜6のアルキル基を表わし、n
は1以上の整数を表わす。)の中の1つを表わす。 表わされる、1級及び/または2級アミノ基を少くとも
2個有するアミノ化合物であるポリアミン成分と、アミ
ノ基と反応しうる官能基を少くとも2個有する多官能性
化合物からなる架橋剤成分との反応により得られた重合
体から形成されたことを特徴とする気体選択透過膜。
[Scope of Claims] At least 50 mol% of all polyamine components has the following formula (1
) and/or (2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(2) [However, in the formula A is an a+b-valent or c+d-valent aliphatic hydrocarbon group, aromatic hydrocarbon group, or organosilyl group, B is an alkylene group or phenylene group having 10 or less carbon atoms, and R_0 is a hydrogen atom, and 1 carbon atom. It is an alkylene group having 1 to 6 carbon atoms that is also bonded to an alkyl group of ~6 or A to form a ring with ▲ ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ , where a is 0 or more, b is 1 or more, a+b is 2 or more, c is 2 or more, d is an integer of 1 or more, R_1, R_2, R
Each of _3 is independently an alkyl group or phenyl group having 1 to 10 carbon atoms, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (R_4~R_1_
1 represents the same or different alkyl group having 1 to 6 carbon atoms, and n
represents an integer greater than or equal to 1. ). a polyamine component which is an amino compound having at least two primary and/or secondary amino groups; and a crosslinking agent component which is a polyfunctional compound having at least two functional groups capable of reacting with amino groups. A gas selectively permeable membrane formed from a polymer obtained by the reaction of
JP59196521A 1984-06-20 1984-09-21 Gas permselective membrane Granted JPS6174627A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59196521A JPS6174627A (en) 1984-09-21 1984-09-21 Gas permselective membrane
US06/746,568 US4644046A (en) 1984-06-20 1985-06-19 Ultrathin film, process for production thereof, and use thereof for concentrating a specific gas from a gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196521A JPS6174627A (en) 1984-09-21 1984-09-21 Gas permselective membrane

Publications (2)

Publication Number Publication Date
JPS6174627A true JPS6174627A (en) 1986-04-16
JPH051050B2 JPH051050B2 (en) 1993-01-07

Family

ID=16359118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196521A Granted JPS6174627A (en) 1984-06-20 1984-09-21 Gas permselective membrane

Country Status (1)

Country Link
JP (1) JPS6174627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948400A (en) * 1988-06-30 1990-08-14 Nippon Steel Chemical Co., Ltd. Separation membranes and process for preparing the same
WO2014031271A1 (en) * 2012-08-21 2014-02-27 General Electric Company Amino-siloxane flux enhancing agent for improving composite polyamide reverse|osmosis membrane performance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948400A (en) * 1988-06-30 1990-08-14 Nippon Steel Chemical Co., Ltd. Separation membranes and process for preparing the same
WO2014031271A1 (en) * 2012-08-21 2014-02-27 General Electric Company Amino-siloxane flux enhancing agent for improving composite polyamide reverse|osmosis membrane performance
JP2015530924A (en) * 2012-08-21 2015-10-29 ゼネラル・エレクトリック・カンパニイ Aminosiloxane flux enhancer for improving the performance of polyamide composite reverse osmosis membranes
US9914098B2 (en) 2012-08-21 2018-03-13 General Electric Company Flux enhancing agent for improving composite polyamide reverse osmosis membrane performance

Also Published As

Publication number Publication date
JPH051050B2 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
EP0094050B1 (en) Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
KR20120120989A (en) Method for producing porous silicon molded bodies
JPS59209609A (en) Permselective membrane
JPS59209610A (en) Permselective membrane
JPS5959221A (en) Prearation of composite perrmeable membrane for separating gas
JPS62227423A (en) Gas separating membrane
JPS59209608A (en) Permselective membrane
JPH07114937B2 (en) Separation membrane
JPS6274406A (en) Separating membrane
JPH0230292B2 (en)
JPS643134B2 (en)
JPH0824830B2 (en) Separation membrane
JPS6174627A (en) Gas permselective membrane
JPH022608B2 (en)
JPH0260370B2 (en)
JPH0322206B2 (en)
JPS61111121A (en) Composite membrane for separating gas
JPH0194904A (en) Production of hollow composite membrane for separating gas
JPS58193703A (en) Manufacture of composite membrane having selective permeability for gas separation
JPS62227409A (en) Method for repairing permselective composite membrane
JPS614507A (en) Separation membrane and its manufacture
JPH0378128B2 (en)
JPS5949808A (en) Production of selectively permeable composite membrane for separation of gas
JPS60175505A (en) Preparation of gas separation composite membrane
JPH0224577B2 (en)