JPS6173911A - Optical fiber core - Google Patents

Optical fiber core

Info

Publication number
JPS6173911A
JPS6173911A JP59197476A JP19747684A JPS6173911A JP S6173911 A JPS6173911 A JP S6173911A JP 59197476 A JP59197476 A JP 59197476A JP 19747684 A JP19747684 A JP 19747684A JP S6173911 A JPS6173911 A JP S6173911A
Authority
JP
Japan
Prior art keywords
liquid crystalline
crystalline polyester
secondary coating
optical fiber
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59197476A
Other languages
Japanese (ja)
Other versions
JPH034883B2 (en
Inventor
Yoshito Shiyudo
義人 首藤
Fumio Yamamoto
山本 二三男
Shinzo Yamakawa
山川 進三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59197476A priority Critical patent/JPS6173911A/en
Publication of JPS6173911A publication Critical patent/JPS6173911A/en
Publication of JPH034883B2 publication Critical patent/JPH034883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain excellent bendability without an increase in transmission loss owing to a change in service temp. by using a thermoplastic resin mixed and synthesized with a specific oxazoline compd. under melting of liquid crystalline polyester forming an anisotropic melt for a secondary coating layer. CONSTITUTION:The liquid crystalline polyester forming the anisotropic melt is used and the secondary coating layer of the thermoplastic resin formed by adding the phenylene bisoxazoline expressed by the formula (R1-8 are H or methyl) thereto and mixing and synthesizing the same under melting of said polyester is provided. The liquid crystalline polyester which has at least 0.3 intrinsic viscosity, contains the groups of the formulas II and III at an equal ratio within an about 18-38mol% and contains 64-24mol% the group of the formula IV is used. The resulted product obtd. by mixing and reaction of the above-mentioned oxazoline compd. as the chain extender of the liquid crystalline polyester under melting of said polyester has the excellent ultimate elongation. Such resulted product is used as the secondary coating material for an optical fiber, by which the good bendability is obtd. without the increase in the transmission loss owing to the change in the service temp. for a long length.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は線膨張率の低い熱可塑性樹脂で被覆された光フ
アイバ心線に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a cored optical fiber coated with a thermoplastic resin having a low coefficient of linear expansion.

「従来の技術」 周知の1うに、光7アイパはその直径が150μm以下
のぜい弱な材料であるため、その製造中またはケーブル
化工程において、その表面に傷が発生し易く、これが応
力集中源となり、外部から応力が加わると容易に破断す
る欠点がある。この九め、光ファイバ表面を保護し、そ
の初期強度を維持することを目的とし、光ファイバの紡
糸直後に、ファイバ素面にプラスチックを被覆すること
が行なわれている。
``Prior Art'' As is well known, Hikari 7-IPA is a fragile material with a diameter of 150 μm or less, so scratches tend to occur on its surface during manufacturing or cable-making processes, which can become a source of stress concentration. However, it has the disadvantage that it easily breaks when stress is applied from the outside. Ninth, for the purpose of protecting the optical fiber surface and maintaining its initial strength, the bare surface of the optical fiber is coated with plastic immediately after spinning.

このプラスチック被覆は一般に1v<被覆層と2次被覆
層からなっている。1次被覆層は低ヤング率材料であり
、光ファイバの初期強度の維持および2次被覆の不均一
によるファイバのマイクロベンディング費ス増を防ぐこ
とを目的としている。
This plastic coating generally consists of a 1v< coating layer and a secondary coating layer. The primary coating layer is made of a low Young's modulus material and is intended to maintain the initial strength of the optical fiber and to prevent increased fiber microbending costs due to non-uniformity of the secondary coating.

一方、2次被覆層はポリアミドの工つな熱可塑性樹脂か
ら成り、ケーブル化等におけるハンドリングを容具にす
ることを目的とじている。
On the other hand, the secondary coating layer is made of a tough thermoplastic resin such as polyamide, and is intended to be used as a container for handling in making cables, etc.

従来、上記のような光7アイパ心線として次に示す2つ
のタイプの光フアイバ心線が提案されている。1つはタ
イト傳造聾心線であシ、シリコーン樹脂等の熱硬化性も
しくは紫外線硬化性樹脂からなる1次被覆層とポリアミ
ド樹脂等の熱可塑性樹脂から成る2次被覆層がタイトに
密着している構造である。他の1つはルースチューブ型
心線テあり、アクリル某樹脂等の熱硬化性もしくは紫外
a硬化性樹脂からなる1次被覆層が、ポリエチレンテレ
フタレート、ポリプロピレン等の熱可塑性樹脂から成る
保護プラスチックチューブ(2次被覆層)内でルーズに
保持する構造である。
Conventionally, the following two types of optical fiber core wires have been proposed as the above-mentioned optical fiber core wires. One is a tight-engineered deaf core wire, in which a primary coating layer made of thermosetting or ultraviolet curable resin such as silicone resin and a secondary coating layer made of thermoplastic resin such as polyamide resin are tightly adhered to each other. The structure is The other type is a loose tube type core wire, in which the primary coating layer is made of a thermosetting resin such as acrylic resin or an ultraviolet a-curing resin, and the protective plastic tube is made of a thermoplastic resin such as polyethylene terephthalate or polypropylene. It has a structure in which it is held loosely within the secondary coating layer.

「発明が解決しエリとする問題点」 上記タイトg造型心線は、1次被覆層に工って被覆の不
均一にLるファイバのマイクロベンディングロス増が防
とされているので、2次被覆工程における高い被覆均一
性を要しないという利点を有している。しかしながら、
従来の2次被覆材料の線膨gk率は10 ℃オーダであ
り、この値は7アイパ自体の線膨張率10 ℃ オーダ
に比較してはるかに大きい、このため、温度変化にLる
2人波ei+−の膨張・収縮にエリファイバに曲がりが
生じ、マイクロベンディングロス増がある。一方。
"Problems to be Solved and Eliminated by the Invention" The above-mentioned tight g-shaped core fiber is designed to prevent the increase in microbending loss of fibers with uneven coating by modifying the primary coating layer. It has the advantage of not requiring high coating uniformity in the coating process. however,
The coefficient of linear expansion GK of conventional secondary coating materials is on the order of 10 °C, and this value is much larger than the coefficient of linear expansion of 7-IPA itself, on the order of 10 °C. Due to the expansion and contraction of ei+-, bending occurs in the eli fiber, resulting in an increase in microbending loss. on the other hand.

ルースチューブ型心線は、2次被覆である保護プラスチ
ックの膨張・収縮によるマイクロベンディングロス増を
、ルースチューブ内の7アイパ余長を適当にとることに
工って緩和できるという利点を有している。しかしなが
ら、2次被覆層とファイバ自体の線膨張率の差は大きい
ので、2次被覆層の膨張・収縮にLるマイクロベンディ
ングロス増は依然として生じている。
The loose tube type core wire has the advantage that the increase in microbending loss due to expansion and contraction of the protective plastic, which is the secondary coating, can be alleviated by appropriately setting the extra length of the 7-eyeper in the loose tube. There is. However, since the difference in linear expansion coefficient between the secondary coating layer and the fiber itself is large, an increase in microbending loss due to expansion and contraction of the secondary coating layer still occurs.

これに対し、本発明者らは、2次被覆層とファイバの線
膨張率の違いによるマイクロベンディングロス増を防止
する之め、現用押出成型方法で10−’C−’オーダの
低線膨張率を示す液晶性ポリエステルを2次被覆材料と
する光フアイバ心線を提案した。しかしながら、この液
晶性ポリエステルは、低線膨張率°でかつ高弾性率であ
る反面、極限伸びが著しく低く、シたがってこの材料を
被覆した心線は曲げに工9容易に折れるという欠点を有
している。
On the other hand, in order to prevent the increase in microbending loss due to the difference in linear expansion coefficient between the secondary coating layer and the fiber, the present inventors have developed a low linear expansion coefficient on the order of 10-'C-' using the current extrusion molding method. We proposed an optical fiber core using liquid crystalline polyester as a secondary coating material. However, although this liquid crystalline polyester has a low coefficient of linear expansion and a high modulus of elasticity, its ultimate elongation is extremely low, and therefore, a core wire coated with this material has the disadvantage that it easily breaks during bending. are doing.

本発明は上記事情に鑑みてなされたもので、長尺にわた
って使用温度の変化に工ろ伝送損失の増加がなく、屈曲
性に優れた光フアイバ心線を提供することを目的とする
ものである。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a cored optical fiber that does not increase transmission loss due to changes in operating temperature over a long length and has excellent flexibility. .

r問題点を解決するための手段」 および 「作用」 周知の1うに、ある種の結晶性ポリマは加熱されるとき
、融解して液体となる前に、結晶の異方性と液体の流動
性を有する状態を経由することがある。この状態f:液
晶という、このような液晶性物質として液晶性ポリエス
テル樹脂があるが1本発明者らは、既にこの液晶性ポリ
エステル樹脂を用い、光7アイパ素線への押出被覆を検
討した。
It is well known that when certain crystalline polymers are heated, the anisotropy of the crystals and the fluidity of the liquid change before melting and becoming a liquid. It is possible to go through a state of having . This state f: A liquid crystalline material called liquid crystal is a liquid crystalline polyester resin. The present inventors have already studied the extrusion coating of Hikari 7 AiPa wire using this liquid crystalline polyester resin.

その結果、特願昭58−80797号明細書に記載され
ている工うに10” 8@+!−”μ上の高ぜん断速度
下で押出され九樹脂が10 ℃ オーダの低線膨張率を
示すことを見出した。特に、液晶性ポリエステル樹脂が
、フェノールとテトククロロエタンの3=2(容積比)
の混合液中9.5P/dの濃度で、30℃で測定した固
有粘腿が0.3以上であり、下記3つの2価の基からな
り、そのうち基(5)お工び基181を18〜38モル
%の範囲内で等量ずつ含み、基1clt−64〜24モ
ル%含む工うなポリエテし/テレフタレートーP−ヒド
ロキシ安息香酸共重合体CPET/FOB共重合体)で
ある場合には+  102sec−’以上のせん断配同
にエリ、I X 10=℃−1以下の低線膨張率と4G
Pa以上の+a  −0−CH2−CH2−0− しかしながら、せん断配向により低線膨張率化・高弾性
率化した上記液晶性ポリエステル樹脂に極限伸びが1%
幀匿しかなく、この材料を被覆した光7アイパ心線は曲
げにニジ容易に2人波&l−が割れるという欠点を有し
ている。
As a result, the resin described in Japanese Patent Application No. 58-80797, which was extruded at a high shear rate of 10"8@+!-"μ, had a low coefficient of linear expansion on the order of 10°C. I found out that it shows. In particular, the liquid crystalline polyester resin is 3=2 (volume ratio) of phenol and tetoxchloroethane.
At a concentration of 9.5 P/d in a mixed solution, the intrinsic viscosity measured at 30°C is 0.3 or more, and it is composed of the following three divalent groups, among which group (5) In the case of polyester/terephthalate-P-hydroxybenzoic acid copolymer (CPET/FOB copolymer) containing equal amounts within the range of 18 to 38 mol% and containing 1clt-64 to 24 mol% of groups, + 102sec-' or more shear alignment, low linear expansion coefficient of I x 10 = °C-1 or less and 4G
+a of Pa or more -0-CH2-CH2-0- However, the ultimate elongation of the above liquid crystalline polyester resin, which has a low coefficient of linear expansion and a high modulus of elasticity due to shear orientation, is 1%.
Optical 7-IPA core wire coated with this material has the disadvantage that the two-wavelength &l- easily breaks when bent.

本元明者らは上記液晶性ポリエステル樹脂(PET/P
OB共重合体すの極限伸びを向上するため、鋭意検討を
行なった結果、溶融下のこの液晶tlポリエステルにポ
リエステル樹脂の鎖延長剤として公知なフェニレンビス
オキサゾリンをこの液晶性ポリエステルに対し0.1〜
4重惺%添加・混合し、反応せしむることにより、最終
生成物の極限伸びが向上することを見出し1本発明に至
った。
Akira Motomoto et al.
In order to improve the ultimate elongation of the OB copolymer, we conducted intensive studies and found that phenylenebisoxazoline, which is known as a chain extender for polyester resin, was added to the melted liquid crystalline tl polyester at a rate of 0.1 ~
It has been discovered that the ultimate elongation of the final product can be improved by adding and mixing 4% by weight and allowing the reaction to occur, leading to the present invention.

本発明に用いられるフェニレンビスオキサシリ/は下記
一般式 (但し、式中R工〜R8は水素原子又はメチル基を示す
)で表わされる化合物であり、¥!fK液晶形成能の点
から(ベンゼン環に対して)p−置換体お工びm−置換
体であって、R□〜R8の全てが水素原子であることが
好ましい、この工つな化合物の具体例としては、2.2
’−p−フェニレンビス(2−オキサゾリン)−2+ 
2  m−フェニレンビス(2−オキサゾリン)、2t
i−p−フェニレンビス(4−メチル−2−オキサゾリ
ン)。
Phenylenebisoxacyl/ used in the present invention is a compound represented by the following general formula (wherein R8 to R8 represent a hydrogen atom or a methyl group), and ¥! From the point of view of fK liquid crystal forming ability (for the benzene ring), this complex compound is preferably a p-substituted compound or an m-substituted compound, and all of R□ to R8 are hydrogen atoms. As a specific example, 2.2
'-p-phenylenebis(2-oxazoline)-2+
2 m-phenylenebis(2-oxazoline), 2t
i-p-phenylenebis(4-methyl-2-oxazoline).

2.2’−p−フェニレンビス(4,4−ジメチル−2
−オキサゾリン)−2,2’−m−フェニレンビス(4
−メチル−2−オキサゾリン)、2.2’−m−フェニ
レンビス<4.4′−ジメチル−2−オキサゾリン)等
があけられる。フェニレンビスオキサゾリンの添加社溶
融下の液晶性ポリエステルに加え、混合しても良いし、
固体状態の液晶性ポリエステルとあらかじ虻I混合して
おいてから溶融反むさビても良いつ特に反ら後著しく増
粘するため、押出能力(払い出し能力)を有する反応機
内で行なわれることが好ましい。例えば混合能力の高い
2軸エクストルーダーを使用して液晶性ポリエステルと
フェニレンビスオキサゾリンt−S融混合してマスター
チップを作製する方法は優れている。こうし工作製した
マスターチップは通常の(1軸)押出機を用いて、光フ
アイバ素線上に押出被覆することができる。
2.2'-p-phenylenebis(4,4-dimethyl-2
-oxazoline)-2,2'-m-phenylenebis(4
-methyl-2-oxazoline), 2,2'-m-phenylenebis<4,4'-dimethyl-2-oxazoline), etc. Phenylenebisoxazoline may be added to the melted liquid crystalline polyester and mixed.
It is also possible to mix it with the liquid crystalline polyester in a solid state and then melt it and heat it. However, since the viscosity increases significantly after warping, it is recommended that this process be carried out in a reactor that has extrusion capacity (dispensing capacity). preferable. For example, an excellent method is to prepare a master chip by melt-mixing liquid crystalline polyester and phenylenebisoxazoline t-S using a twin-screw extruder with high mixing capacity. The master chip manufactured in this way can be extrusion coated onto an optical fiber using a conventional (single-screw) extruder.

フェニレンとスオキナゾリンの添加鍮は液晶性ポリエス
テルに対し、0.1重!IkX〜41を敗%である。こ
れは、0.1重tXエク少ない場合には最終生成物の極
限伸びの向上は認めら1ず、4λ避%を越えると異方性
!8−物形成能力が失われ、10sec  以上のせん
断速度ドでも線膨張率が1O−5℃−1以上となるため
である。より好ましくは0.3〜25重#%の範囲で添
加するのがよい。
The added brass of phenylene and suoquinazoline is 0.1 weight compared to liquid crystalline polyester! IkX~41 is a loss%. This means that when 0.1 weight tX is less than 0.1%, no improvement in the ultimate elongation of the final product is observed, and when it exceeds 4λ elongation, anisotropy occurs! This is because the ability to form 8-products is lost and the linear expansion coefficient becomes 1O-5°C-1 or more even at a shear rate of 10 seconds or more. More preferably, it is added in a range of 0.3 to 25% by weight.

以下1本発l3IIJを実施的にエリさらに詳しく説明
する。なお2本見明は以下の実施例に限定きれるもので
はない。
Below, the single-shot I3IIJ will be explained in more detail. It should be noted that the two views are not limited to the following examples.

「実#A1F111」 PUB含有渣が50モル%のPETlPOB共重合体(
−有粘度0.65 )にzoMLy%の2.2′−m−
フェニレンビス(2−オキサゾリン)ヲ溶融下gi加し
て得らt′Lだ反応物(固有粘度1.29 )で、ダイ
スff11.3鴎、二ッグル径0.9譚、ダイス−口の
ランド長10噸の押出部を有する押出機を用い、押出温
匠(ダイス川口I!i反)240℃。
"Real #A1F111" PETlPOB copolymer with 50 mol% PUB-containing residue (
-viscosity 0.65) and 2.2'-m- of zoMLy%
The reaction product (intrinsic viscosity 1.29) obtained by adding phenylenebis(2-oxazoline) to the melt was prepared using a die with a diameter of 11.3 mm, a diameter of 0.9 mm, and a die-mouth land. Extrude at 240°C using an extruder with a 10-length extrusion section (dice Kawaguchi I!i).

I X 1 G35ec”のぜん断連に下で、外径40
0 Am(7アイパ外径125μm)の光ファイバ素巌
上に押し出して外径1.0 [(引落比LO)の心線を
作製した。こうして作製した心線の2次被覆層(PET
/POB共重合体層)のヤング率、線膨張率、極限伸び
は各々9.4GPa、5X10 ℃、5.2%であり、
心線の許容曲げ半径は1.5−であった、また、素線段
階での20℃における伝送損失は波長0.85μmでZ
45dし〜1本発明による心Hの損失は波長0,85μ
m、20℃において144 dB/にテあり、−60℃
から60℃まで損失増加は認められなかった。
I
A core wire with an outer diameter of 1.0 [(drawdown ratio LO)] was prepared by extruding it onto a bare optical fiber of 0 Am (7 eye diameter: 125 μm). The secondary coating layer (PET
/POB copolymer layer) Young's modulus, coefficient of linear expansion, and ultimate elongation are 9.4 GPa, 5×10 °C, and 5.2%, respectively.
The permissible bending radius of the core wire was 1.5 -, and the transmission loss at 20°C in the strand stage was Z at a wavelength of 0.85 μm.
45d~1 The loss of the core H according to the present invention is at a wavelength of 0.85μ
m, 144 dB/te at 20°C, -60°C
No increase in loss was observed from 60°C to 60°C.

「実施例2」 POB含有量が50モル%のPET/POB共重合体(
固有粘度0.65 )と1.5重置%の2.2′−m−
フェニレンビス(2−オキサゾリン)粉末を混合し、2
90Cに加温され比2軸エクストルーダー七通して得ら
れた反応物(固有粘度1.22)金、ダイス径1.3鴎
、ニップル径α9IIIm、ダイス出口のランド長10
層の押出品を有する押出機を用い、押出温度(ダイス出
口温度)280℃、I X 10 sec  のせん断
速度下で、外径400μm(7アイパ外径125μm)
の光7アイパ素線上に押し出して外径1.0 m (引
落比1.0)の心線を作製し友、こうして作製した心線
の2次被覆層(PET/POB共重合体屑)共重合体重
、a膨張率、極限伸びは各々&6GPa、7X10  
℃。
“Example 2” PET/POB copolymer with a POB content of 50 mol% (
2.2'-m- with an intrinsic viscosity of 0.65) and 1.5%
Mix phenylene bis(2-oxazoline) powder,
Reactant (intrinsic viscosity 1.22) gold heated to 90C and passed through a ratio twin-screw extruder seven times, die diameter 1.3mm, nipple diameter α9IIIm, land length at die exit 10
Using an extruder with a layered extrudate, at an extrusion temperature (die exit temperature) of 280°C and a shear rate of I x 10 sec, the outer diameter was 400 μm (7-eyeper outer diameter 125 μm).
A core wire with an outer diameter of 1.0 m (drawdown ratio 1.0) was prepared by extruding it onto the Aipa bare wire. Polymer weight, a expansion rate, and ultimate elongation are &6GPa, 7X10, respectively.
℃.

5.6%であり、心線の許容曲げ半径は1.5晴であっ
た。また素線段階での20℃における伝送損失は波長0
.85層1mで145dB/b、本発明による心線の損
失は波長0.85μm、20℃において246 dB/
−であり、−60℃から60℃まで損失増加は認められ
なかった。
5.6%, and the allowable bending radius of the core wire was 1.5 degrees. In addition, the transmission loss at 20°C in the strand stage is at wavelength 0.
.. The loss of the core wire according to the present invention is 246 dB/b at a wavelength of 0.85 μm and 20°C.
-, and no increase in loss was observed from -60°C to 60°C.

「比較例」 POB含有量が50モル%のPET/PoB共重合体(
固有粘度α65)を実施f111と同一押出条件で押し
出して、外径LQmO心線を作製し尺。
"Comparative Example" PET/PoB copolymer with a POB content of 50 mol% (
A core wire with an outer diameter of LQmO was produced by extruding the material with an intrinsic viscosity of α65) under the same extrusion conditions as in Example f111.

こうして作製した心線の2次被覆層(PET/POB共
重合本NA)のヤング率、線膨張率、極限伸びは各々I
L3GPa、2X1G”℃−’、1.8%であり、心線
の許容曲げ半径は4鱈であった。
The Young's modulus, coefficient of linear expansion, and ultimate elongation of the secondary coating layer (PET/POB copolymer real NA) of the core wire produced in this way are each I
L3GPa, 2X1G"°C-', 1.8%, and the allowable bending radius of the core wire was 4 degrees.

「発明の効果」 以上説明し比ように本発明の光7アイパ心線は、大きな
極限伸びと低線膨張率を示す溶融液晶性熱可塑性樹脂を
光7アイパ2次被α材料として用いるので、長尺にわた
って使用風度の変化による伝送損失の増加がなく、屈曲
性に富むすぐれたものである。
"Effects of the Invention" As explained above and compared, the Hikari 7 Eyepa core wire of the present invention uses a molten liquid crystalline thermoplastic resin exhibiting large ultimate elongation and low coefficient of linear expansion as the secondary α material of the Hikari 7 Eyer. There is no increase in transmission loss due to changes in wind speed over a long length, and it has excellent flexibility.

■入 日本II話公社■ Enter Japan II story public corporation

Claims (2)

【特許請求の範囲】[Claims] (1)異方性溶融物を形成する液晶性ポリエステルと、
この液晶性ポリエステルに対し0.1重量%〜4重量%
の下記一般式 ▲数式、化学式、表等があります▼ (ただし、式中R_1〜R_8は水素原子またはメチル
基を示す)で表わされるフエニレンビスオキサゾリンと
を、前記液晶性ポリエステルの溶融下混合して合成した
熱可塑性樹脂からなる2次被覆層を有してなる光ファイ
バ心線。
(1) A liquid crystalline polyester that forms an anisotropic melt;
0.1% to 4% by weight based on this liquid crystalline polyester
Phenylenebisoxazoline represented by the following general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. An optical fiber core having a secondary coating layer made of a thermoplastic resin synthesized by
(2)液晶性ポリエステルが、少なくとも0.3の固有
粘度をもち下記(A)および(B)式 (A)▲数式、化学式、表等があります▼ (B)−O−CH_2−CH_2−O− で表わされる基(A)および(B)を18〜38モル%
の範囲内で各々等量ずつ含むと同時に、下記(C)式(
C)▲数式、化学式、表等があります▼ で表わされる基(C)を64〜24モル%含むポリエス
テルであることを特徴とする特許請求の範囲第1項記載
の光ファイバ心線。
(2) The liquid crystalline polyester has an intrinsic viscosity of at least 0.3 and has the following formulas (A) and (B) (A) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (B) -O-CH_2-CH_2-O - groups (A) and (B) represented by 18 to 38 mol%
Equal amounts of each are included within the range of and at the same time, the following formula (C) (
C) The optical fiber core according to claim 1, characterized in that it is a polyester containing 64 to 24 mol% of the group (C) represented by ▼ (numerical formula, chemical formula, table, etc.).
JP59197476A 1984-09-20 1984-09-20 Optical fiber core Granted JPS6173911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59197476A JPS6173911A (en) 1984-09-20 1984-09-20 Optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59197476A JPS6173911A (en) 1984-09-20 1984-09-20 Optical fiber core

Publications (2)

Publication Number Publication Date
JPS6173911A true JPS6173911A (en) 1986-04-16
JPH034883B2 JPH034883B2 (en) 1991-01-24

Family

ID=16375114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59197476A Granted JPS6173911A (en) 1984-09-20 1984-09-20 Optical fiber core

Country Status (1)

Country Link
JP (1) JPS6173911A (en)

Also Published As

Publication number Publication date
JPH034883B2 (en) 1991-01-24

Similar Documents

Publication Publication Date Title
US4324575A (en) Low TG soft UV-curable coatings
EP0155070A1 (en) Coated optical fiber, fabrication process thereof and fabrication apparatus thereof
NL8100975A (en) POLYMERIC SURFACES FOR BLOOD-CONTACTING SURFACES OF A BIOMEDICAL DEVICE AND METHODS FOR FORMING THEREOF.
FR2606782A1 (en) USE OF POLYAMIDE MIXTURES AND POLYAMIDE ELASTOMERS FOR THE MANUFACTURE OF OPTICAL CONDUCTOR PROTECTIVE POLYMER LAYERS
US4274709A (en) Optical fiber for transmission
JPS6173911A (en) Optical fiber core
JPS6058829A (en) Manufacture of liquid crystal polymer molding high in elastic modulus with low coefficient of linear expansion
JPS6114616A (en) Optical fiber core
JPS6173912A (en) Optical fiber core having low coefficient of linear expansion
JPS6093407A (en) Optical fiber core
JPS62158142A (en) Clad material for optical glass fiber
JPH0549613B2 (en)
JPS59206803A (en) Optical fiber core
JPS6158842A (en) Manufacture of high tensile strength light wave guide
JPS6291519A (en) Curable resin composition
JPS61238821A (en) High-speed production of cladded optical fiber core of low linear expansion coefficient
JPS63213808A (en) Optical fiber tape
JPH0627888B2 (en) Low linear expansion coefficient coated optical fiber
JPS63236004A (en) Core-clad type optical fiber
KR20000059987A (en) A slot spacer for optical cable and a method for producting it
JPS616155A (en) Cladding material for optical glass fiber
JPS6231812A (en) Optical fiber core
KR100382194B1 (en) Non-Blocking typed UV radiation curable matrix compositions for optical fiber ribbons
JPS634211A (en) Liquid crystal high-polymer coated optical fiber core
JPS6024922B2 (en) Optical fiber for communication