JPS6173803A - Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet - Google Patents

Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet

Info

Publication number
JPS6173803A
JPS6173803A JP59194244A JP19424484A JPS6173803A JP S6173803 A JPS6173803 A JP S6173803A JP 59194244 A JP59194244 A JP 59194244A JP 19424484 A JP19424484 A JP 19424484A JP S6173803 A JPS6173803 A JP S6173803A
Authority
JP
Japan
Prior art keywords
precipitate
gadolinium
pellets
uranium
powder mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59194244A
Other languages
Japanese (ja)
Other versions
JPH0374959B2 (en
Inventor
Yoshinobu Kamei
亀井 義信
Wataru Shirato
白土 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP59194244A priority Critical patent/JPS6173803A/en
Publication of JPS6173803A publication Critical patent/JPS6173803A/en
Publication of JPH0374959B2 publication Critical patent/JPH0374959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce a stable powder mixture composed of UO2 and Gd2O3 as a raw material for nuclear fuel pellets by precipitating the compd. of U and Gd from an aq. nitric acid soln. of U and Gd having a specific concn. and filtering and drying the precipitate then subjecting the same to reduction roasting. CONSTITUTION:Thoroughly dried U3O8 and Gd2O3 are weighed to a suitable weight so that the content of Gd in UO2 pellets contg. Gd attains 6wt% in terms of the concn. of Gd2O3 and after the compd. is dissolved in a nitric acid, distilled water is added thereto to prepare the nitric acid soln. of 750 deg.C having 60-110g/l concn. of (U+Gd). Ammonia water is added to the soln. under stir ring to adjust the pH thereof to >8 thereby forming the precipitate consisting of (NH4)2U2O7 and Gd(OH)3. The precipitate is filtered and is dried for 16hr at 150 deg.C and is then roasted at >=550 deg.C in gaseous N2; in succession, the gaseous atm. is changed over to H2 and the precipitate is subjected to the hydrogen reduction at >=550 deg.C, by which the stable powder mixture composed of UO2+Gd2O3 is produced.

Description

【発明の詳細な説明】 (産業分野) 本発明は核燃料ペレット製造用の安定な二酸化。[Detailed description of the invention] (industrial field) The present invention provides stable carbon dioxide for the production of nuclear fuel pellets.

ウラン・酸化ガドリニウム混合粉末の製造方法に関する
、 (従来技術とその問題点) 核燃料は原子炉に装荷されてから約3年間使用される。
Regarding the manufacturing method of uranium/gadolinium oxide mixed powder (prior technology and its problems) Nuclear fuel is used for about three years after being loaded into a nuclear reactor.

使用期間が長くなるほど、原子炉の運転効率は向上する
。長期間使用に耐える燃料は高燃焼度の性能を持ってい
なければならない。すなわち、核分裂性のTJ−235
の濃度を高くすることが必要であり、この場合、余剰反
応度を運転サイクル初期に吸収するための可燃性中性子
吸収体(可燃性中性子毒物質、以下可燃毒物という)が
使用されている。可燃毒物の例としては現在ホウケイ酸
ガラスがイ吏用されているが、使用後の廃莱物として累
積してくる。
The longer the life of the reactor, the more efficient the reactor becomes. Fuel that can withstand long-term use must have high burnup performance. That is, fissile TJ-235
In this case, a flammable neutron absorber (flammable neutron poison substance, hereinafter referred to as combustible substance) is used to absorb excess reactivity at the beginning of the operating cycle. As an example of a burnable poison, borosilicate glass is currently used, but it accumulates as waste after use.

そのため、ホウケイ酸ガラスに代って、別の可燃毒物で
あるガドIJ ニウムの酸化物を核燃料中に分散混合し
た燃料として原子炉に使用し、その後の使用済燃料の再
処理の際に可燃毒物も同時に処理してしまうことが現実
的な方法である。
Therefore, instead of borosilicate glass, Gad IJ nium oxide, another burnable poison, is used in nuclear reactors as a dispersed mixture of nuclear fuel, and burnable poisons are removed during the subsequent reprocessing of spent fuel. A practical method is to process both at the same time.

従来の可燃毒物を添加した核燃料として開発されたもの
の一つに、酸化ガドリニウム(G(hos )を含有す
る二酸化ウラy (U Ov )核燃料ベレットがある
。この核燃料ペレットを製造するための二酸化ウランと
酸化ガドリニウムとの混合粉末を製造する方法としては
従来広の二重性がある。
One of the conventional nuclear fuels that have been developed with the addition of burnable poisons is uranium dioxide (UOv) nuclear fuel pellets containing gadolinium oxide (G(hos)). Conventionally, there are two methods for producing a mixed powder with gadolinium oxide.

(1)粉末混合機 この方法は二酸化ウラン粉末と酸化ガドリニウム粉末と
を機械的に混合し、高温で焼結してUOtGdtOs固
溶体を作りぺv’yhとす、る方法である。
(1) Powder mixer This method is a method in which uranium dioxide powder and gadolinium oxide powder are mechanically mixed and sintered at high temperature to create a UOtGdtOs solid solution and form Pev'yh.

(2)沈殿還元法 この方法は酸化ガドリニウムと酸化ウランを溶解・沈殿
させて均一に混合し、この沈殿物を焙焼還元してUOy
 −Gdt Os粉末とし、これを加圧成形後、焼結し
てペレットとする方法である。この沈殿還元法を利用し
たものには次の如きものがある。
(2) Precipitation reduction method In this method, gadolinium oxide and uranium oxide are dissolved and precipitated, mixed uniformly, and the precipitate is roasted and reduced to yield UOy
-GdtOs powder is formed, pressure molded, and then sintered to form pellets. The following methods utilize this precipitation reduction method.

(at  Wada et al、、BNES Con
f、 (1973)63.1−63.3(bl  Fu
kushima at al、、 J、Nucl、Ma
t、105(1982)201゜ これらは、いずれにおいてもペレットを作製して、その
物理的性質の測定が行われているが、次の問題点がある
(at Wada et al, BNES Con
f, (1973) 63.1-63.3 (bl Fu
kushima at al., J., Nucl., Ma.
T, 105 (1982) 201° In all of these methods, pellets are prepared and their physical properties are measured, but there are the following problems.

6問 題 点) (イ)上記2件の論文ではペレット製造用の安定なUO
t −Gdt Os 混合粉末を製造することが目的で
ないため、(U+Gd)#度、液温についての記述がな
く、それらの値が変われば、焼結還元後のUOz −G
dt Os粉末が室温空気中で酸化する恐れがある。
6 Questions Points) (a) In the above two papers, stable UO for pellet production was used.
t -GdtOs Since the purpose is not to produce mixed powder, there is no description of (U + Gd) # degrees and liquid temperature, and if those values change, UOz -G after sinter reduction
dtOs powder may oxidize in room temperature air.

(ロ)ペレットの工業的規模での製造ができるか不明で
ある。
(b) It is unclear whether pellets can be manufactured on an industrial scale.

一方、沈殿還元法の別の利用方法が、特公昭47−36
634号公報に開示されているが、UOtと(jcbo
sの混合を均一にすることが目的であるため、次のごと
き問題点がある。
On the other hand, another method of using the precipitation reduction method was
Although it is disclosed in Publication No. 634, UOt and (jcbo
Since the purpose is to uniformly mix s, there are the following problems.

C問題 点) (イ)焙焼還元後のUOz −Gcb Os混合粉末が
室温空気中で酸化することなくベレン)ff造粉末とし
て直接利用できるか不明である。
Problem C Points) (a) It is unclear whether the UOz-GcbOs mixed powder after roasting reduction can be used directly as a berene)ff-forming powder without being oxidized in air at room temperature.

(ロ)実施例で示される量をスケールアップし、ペレッ
トを工業的規模で製造できるか不明である。
(b) It is unclear whether pellets can be produced on an industrial scale by scaling up the amounts shown in the examples.

(ハ)pH条件と焙焼温度条件とを設定しただけではペ
レット製造に使用するための、空気中で安定な混合粉末
は得られない。
(c) A mixed powder stable in air for use in pellet production cannot be obtained by simply setting the pH conditions and roasting temperature conditions.

C本発明の目的) 本発明は上記の沈殿還元法の改良により、上記の問題点
を解決し、焙・焼還元後、直接ペレット製造用粉末とし
て使中できる、空気中で酸化しない安定なUOm  G
dtOs 粉末のFiJ造を可能ならしめる方法を提供
することを目的とするものである、(本争明の構成) すなわち、本・角明によれば、ウラン及びガドリニウム
を含有する硝信水傅液において、 (fJ+Gd)4度
を6017A〜111/ぶの範囲とすると共にlイ蟻を
50℃以上とし、アンモニアを加えてp)I 8.0以
上として沈殿物を生ぜしめ、次いで該沈殿物を濾別、乾
燥漬、空気または/および9毒ガス中で550℃以上で
培・みし、さらに水素又は水素を含む貸元ガス・雰”1
丁へr:5s−o℃以上の温度で還元することをlrJ
畝とする核侶科ペレット・→】室中のニジ化つ2/・r
^化ガドリニクム晶合扮末のIl!31造方法、が叫ら
れる。
C) The present invention solves the above problems by improving the precipitation reduction method, and produces stable UOm that does not oxidize in the air and can be used directly as a powder for pellet production after roasting and reduction. G
The purpose is to provide a method that enables FiJ production of dtOs powder (structure of the present dispute), that is, according to this Kakumei, Nitshin Suifu liquid containing uranium and gadolinium. In the process, (fJ + Gd) 4 degrees is in the range of 6017A to 111/bu, the temperature is raised to 50 degrees Celsius or higher, ammonia is added to make p)I 8.0 or higher to form a precipitate, and then the precipitate is Separate by filtration, dry pickle, culture and strain at 550℃ or higher in air or/and poisonous gas, and further add hydrogen or hydrogen-containing gas/atmosphere”1.
lrJ: Reduction at a temperature of 5s-o℃ or higher
Nucleoid pellets with ridges・→】Rainbow formation in the chamber 2/・r
^ Il at the end of Gadolinicum Akira's costume! 31 construction methods are shouted.

本発明は、以上のように、上記沈殿・補元法の改良発明
であり、ウラン及びガドリニクムイヒ金物を@解、沈殿
させ、該沈殿物を堝儲、研元して得たUOm−Gcb 
Os混合粉末は均一に混合されているだけでなく、ベレ
ット〜漬工捏中でも帰化することな(安定でかつ遊−G
dt Os (n存在しないペレットの特遣を可能なら
しめるUへ−QdlOs 混合粉末のrPjJ4を方法
である。
As described above, the present invention is an improved invention of the above-mentioned precipitation/complementation method, and UOm-Gcb obtained by @decomposing and precipitating uranium and gadolinikumuihi metals, and then drilling and polishing the precipitate.
The Os mixed powder is not only uniformly mixed, but also does not naturalize during pelleting and pickling (stable and free-G).
dtOs(n) is a method for rPjJ4 of the U-QdlOs mixed powder that makes it possible to dispose of non-existent pellets.

上記焙焼還元後のUOt Gdtへ混合粉末の安定性は
沈殿生成条件に大きく左右される。そのために、安定な
UOm Gdt Os rff&合扮末を+2!!!造
するための沈殿物としては、 (1)  焙焼貸元後のUOt−GdwO□混合ω末が
酸化されないために、ウランの沈#棺子がある程度大ぎ
いことが必要である。
The stability of the UOt/Gdt mixed powder after roasting and reduction is greatly influenced by the precipitation formation conditions. For that reason, +2 for stable UOm Gdt Os rff & combination! ! ! As for the precipitate for production, (1) the uranium precipitate must be somewhat large in order to prevent the UOt-GdwO□ mixed ω powder from being oxidized after roasting.

(21)”9r定濃度の0rbOs入りUOtペレット
を製造するためには、ウランと、ガドリニウム成分を完
全に沈殿させ、かつ焙焼便元における灼熱減〜トが少な
いことが必要でありs flrcttlベレツ)fi9
i’9のためには、焼結住がよ<、空気中で酸化されな
い安定なUOv Gdt Os粉末であることもV−農
であるう(3)さらに、生産蜆模に実用化するためには
、クラ/とガドリニウムの実験取扱量を少量でなく、あ
る程度多くすることが必要である。
(21) In order to produce UOt pellets containing 0rbOs at a constant concentration of 9r, it is necessary to completely precipitate the uranium and gadolinium components and to have a small amount of sintering loss at the source of roasting. )fi9
For i'9, the sintered material is stable UOv Gdt Os powder that does not oxidize in the air (3) Furthermore, in order to put it to practical use in production. Therefore, it is necessary to increase the amount of chlorine/gadolinium used in experiments rather than a small amount.

以上の諸点に着目し、種々研究した結果、本発明を達成
するにいたったのである。
By focusing on the above points and conducting various studies, we have achieved the present invention.

次に、本発明により、UOt  Gdt Os混合粉末
を製造した結果を以下に示す。
Next, the results of manufacturing a UOt Gdt Os mixed powder according to the present invention are shown below.

(1)  ウランとガドリニウムの沈殿条件による焙焼
還元後のUOz  Gd20g混合粉末の安定性につい
て。
(1) Regarding the stability of 20 g of UOz Gd mixed powder after roast reduction under the precipitation conditions of uranium and gadolinium.

ガドリニウム入りUO!  燃料ペレット、すなわち(
U+Gd )Ot中のガドリニウム含有貫がGdt O
sとして6.00重量%になるように、U3O8とGa
tesを所定量秤を後硝酸に溶解し、次いでアンモニア
をカロえ、(NH4)を−迅0.とGd(OH)s と
よりなる沈殿物を生成した。添加するアンモニアはアン
モニヤ水でも、またアンモニヤガスでもよい。@解散の
(U+Gd)濃度と液温を変えた条件で生成した沈殿物
をP別、乾燥し、焙焼還元して得たUOtGdtOs混
合粉末の安定性を表1に示す。表1の試料魔4から/1
67及びJi9の各UO*  Gch Os混合粉末に
対し各々65〜125個のペレット製;告に供したが、
すべてペレット製造工程中酸化されることなく安定であ
った。また、得られたペレットのガドリニウムの均一性
をASTM−C968(1983)法のカラーエッチフ
グによる金相覗察によって調べたが、固溶していない遊
離Gd*Osはなく、製品ペレットとして良好であった
UO with gadolinium! Fuel pellets, i.e. (
U+Gd) Gadolinium-containing crystal in Ot is Gdt O
U3O8 and Ga so that s is 6.00% by weight.
After weighing a predetermined amount of TES, dissolve it in nitric acid, add ammonia, and add (NH4) to -0. A precipitate consisting of Gd(OH)s and Gd(OH)s was produced. The ammonia added may be ammonia water or ammonia gas. Table 1 shows the stability of the UOtGdtOs mixed powder obtained by drying, roasting and reducing the precipitates generated under different conditions of (U+Gd) concentration and liquid temperature of @dissolution, according to P. Table 1 sample magic 4 to 1
For each UO* Gch Os mixed powder of 67 and Ji9, 65 to 125 pellets were prepared;
All were stable without being oxidized during the pellet manufacturing process. In addition, the homogeneity of gadolinium in the obtained pellets was examined by observing the metal phase using a color-etched puffer using the ASTM-C968 (1983) method, but there was no free Gd*Os that was not dissolved in solid solution, and the pellets were found to be good as product pellets. there were.

以上の結果から、溶液中の(U十Gd)11度及び溶解
液温が安定な混合粉末を製造する上で重要なファクター
であることが確認された。すなわち、溶解液温が50℃
以上でかつ(U十Gd)濃度が60g/13〜11o1
1/4の範囲で作製した沈殿′物はクラ7粉末がある程
度大きく、焙焼層元後も安定なUOt  GdtOs混
合粉末であり、直接ペレット製造用粉末として使用し得
ることが判明した。さらに、(U+Gd)#度が609
7A未満では取扱量が少量すぎて、大量生産には遺さな
いため、工業上利用することができない。
From the above results, it was confirmed that (U + Gd) 11 degrees in the solution and the temperature of the solution are important factors in producing a stable mixed powder. That is, the solution temperature is 50℃
or more and (U + Gd) concentration is 60g/13~11o1
It was found that the precipitate produced in the range of 1/4 was a UOt GdtOs mixed powder that had a certain amount of Kura 7 powder and was stable even after the roasting layer, and could be used directly as a powder for pellet production. Furthermore, (U+Gd)# degree is 609
If it is less than 7A, the amount to be handled is too small to be used in mass production, so it cannot be used industrially.

(2)  ウランとガドリニウムの組成比の安定性につ
いて。
(2) Regarding the stability of the composition ratio of uranium and gadolinium.

GdtOsを硝酸に溶解し、それにNHs水を添加して
pHを6.6から9まで変化させ、水酸化ガドリニウム
として沈殿させ、/I62の定性1紙でP別したとき、
P液中に移行したガドリニウムの損失量とpHの関係を
示したのが表2である。
When GdtOs was dissolved in nitric acid, NHs water was added thereto to change the pH from 6.6 to 9, gadolinium hydroxide was precipitated, and P was separated using qualitative 1 paper of /I62.
Table 2 shows the relationship between the amount of loss of gadolinium transferred into the P solution and pH.

損失量は出発原料Gd*Oa のガドリニウム量に対す
るf液に移行したガドリニウム量を重8%で示している
The amount of loss is expressed as the amount of gadolinium transferred to the f-liquid relative to the amount of gadolinium in the starting material Gd*Oa, expressed as 8% by weight.

表2 沈殿−過によるガドリニウム損失量とpHの関係 参考 pH6,80でGd(OH)sの自沈を生じ、p
H7,02でほぼ99チのGd (OH)sが沈殿する
(損失量1チ)。
Table 2 Relationship between gadolinium loss due to precipitation and pH Reference At pH 6.80, Gd(OH)s scuttling occurs, and p
Approximately 99 g of Gd (OH)s precipitates at H7.02 (loss amount of 1 g).

表2から損失量を0.1%以下にするためにはpH8,
0以上で十分であることが判明した。
From Table 2, in order to reduce the amount of loss to 0.1% or less, pH8,
It was found that 0 or more is sufficient.

ウランとガドリニウムの組成比は出発原料の所定昂秤橿
した初期組成比の設定から溶解、化膜等以降最終のベレ
ットs造まで一貫して変化しないことが必要である。そ
のためには、@解したウランとガドリニウムを完全に沈
殿1別すること及び沈殿粉末を焙焼還元するときの萬滉
での灼熱減量を防ぐことが必〃である。焙焼還元におい
て、ウラン沈殿物(N)J4)t utoγは焙児時に
350〜550°CでUO,になり、550°C以上で
U、 O,となり、次に還元雰囲気でUOtとなる。こ
れに対し、ガドリニウムの沈殿物Gd(OH)sは焙焼
時に550℃以上ではQd20g  となり、還元によ
ってもGdt Osと変化しない。焙焼還元温度が高い
と、粉末である沈殿物の分苓時の散逸と蒸発による灼熱
減量が大きく、クランとガドリニウムの組成比が変わる
恐れがあり、また得られた粉末は高密度の粗粒となり、
焼結性が悪(なる。一方、焙焼還元@度が低いと、焼結
性のよい粉末となるが、空気中で酸化する不安定な粉末
となる。
It is necessary that the composition ratio of uranium and gadolinium does not change consistently from the setting of the initial composition ratio by weighing the starting materials to the final pellet formation through melting, film formation, etc. To this end, it is necessary to completely separate the decomposed uranium and gadolinium into precipitates, and to prevent the loss of heat loss during roasting and reduction of the precipitated powder. In roasting and reduction, the uranium precipitate (N) t utoγ becomes UO, at 350 to 550°C during roasting, becomes U, O, at 550°C or higher, and then becomes UOt in a reducing atmosphere. On the other hand, gadolinium precipitate Gd(OH)s becomes Qd20g at 550°C or higher during roasting, and does not change to GdtOs even by reduction. If the roasting reduction temperature is high, the loss on burning due to dissipation and evaporation of the powdered precipitate during fractionation will be large, and the composition ratio of clan and gadolinium may change. Then,
On the other hand, if the degree of roasting reduction is low, the powder will have good sintering properties, but it will be an unstable powder that oxidizes in the air.

以上の観点から、溶解からペレット製造まで、−貫した
実験を行い組成比の変化と焼結性との関係を調べた。表
1の試料魔5で示す溶解液に甜。
From the above viewpoint, we conducted a comprehensive experiment from melting to pellet production to investigate the relationship between changes in composition ratio and sinterability. Add sugar to the solution shown in Sample No. 5 in Table 1.

水を加え、pH8,3で沈殿させ、表1の760℃で焙
焼還元して得たUOs  Gd20s  混合粉末のウ
ランとガドリニウムの重量組成比は初期組成比15゜8
7に対し、15.87±0.4%以内で一致して問題は
なかった。また、このU(%  GdtOs混合粉末中
のN含有量の分析結果は10ppm以下であり、これま
た問題はなかった。この混合粉末を加圧成形し、175
0°c5hr、 U2 ’fスス中焼結して作製したペ
レットではウランとガドリニウムの組成比は初期組成比
の0.4%以内で一致し、かつ焼結性がよく、製品とし
て問題のない密度のペレットであった。
The weight composition ratio of uranium and gadolinium in the UOs Gd20s mixed powder obtained by adding water and precipitating at pH 8.3 and roasting and reducing at 760°C as shown in Table 1 is the initial composition ratio of 15°8.
7, there was no problem as the agreement was within 15.87±0.4%. In addition, the analysis result of the N content in this U (% GdtOs mixed powder) was 10 ppm or less, and there was no problem.
In the pellets produced by sintering in U2'f soot at 0°c5hr, the composition ratio of uranium and gadolinium matched within 0.4% of the initial composition ratio, and the sintering property was good, and the density was satisfactory as a product. pellets.

さらに、該ペレット中の製品仕様上規定されている不純
物量も、分析結果、規定量以下であり、問題はなかった
Furthermore, the analysis results showed that the amount of impurities in the pellets specified in the product specifications was below the specified amount, and there was no problem.

また、表1の試料7g64.6.7.9のUO,=G’
d2σ。
Also, UO of sample 7g64.6.7.9 in Table 1, = G'
d2σ.

混合粉末を使用してペレットを製造したが、粉末の焼結
性はよく、また各ペレット中のウランとガドリニウムの
組成比は0.3%以内で初期組成比と一致して問題はな
かった。
Pellets were manufactured using the mixed powder, and the sinterability of the powder was good, and the composition ratio of uranium and gadolinium in each pellet was within 0.3%, which matched the initial composition ratio, so there were no problems.

上記全体の結果から、焙焼還元温度はウランとガドリニ
ウムの組成比の変動をさけかつ焼結性のよいUO□−G
cbOs混合粉末を得るために、あまり高温でない80
0℃未満がよく、一方空気中及びペレット製造工程中で
も酸化しない安定なUO,−GdtOs混合粉末を得る
には、焙焼還元温度はウラン沈殿物が焙焼時にUOsか
らU、08となる550°C以上が必要である。焙焼は
酸素ガスまたは/および窒素ガスよりなる酸化性雰囲気
内で、また還元は水素ガスを主体とする逮元性雰囲気内
で行うことにより、所要のUO2GdtOs混合粉末を
得ることができる。
From the above overall results, it was found that the roasting reduction temperature should be set to avoid fluctuations in the composition ratio of uranium and gadolinium and to produce UO
In order to obtain cbOs mixed powder, the temperature is not too high at 80°C.
In order to obtain a stable UO,-GdtOs mixed powder that does not oxidize in the air or during the pellet manufacturing process, the roasting reduction temperature should be 550°, at which the uranium precipitate changes from UOs to U,08 during roasting. A grade of C or higher is required. The desired UO2GdtOs mixed powder can be obtained by performing the roasting in an oxidizing atmosphere consisting of oxygen gas and/or nitrogen gas, and the reduction in an oxidizing atmosphere mainly consisting of hydrogen gas.

(3)  ウラ/とガドリニウムの実験取扱量について
ウランとガとリニウムの実験取扱量をビーカテスト量で
なく、洛解槽7.6..e、沈殿槽25Aを設置し、U
3O8974,4,@、 GdtOs 60.Ogを使
用し、溶解、沈殿以降ペレット製造でも一貫して実験を
行った。製造されたペレットは製品ペレットとして支障
のないものであり、さらに装置を実用化のためにスケー
ルアップしても、問題はないと思われる。次に、本発明
を実施例によって具体的に説明するが、以下の実施例が
本発明の範囲を限定するものではない。
(3) Regarding the amount of uranium and gadolinium handled in the experiment, the amount of uranium, linium, and linium handled in the experiment was determined not by the beaker test amount, but by using the 7.6. .. e. Install the sedimentation tank 25A, and
3O8974,4,@, GdtOs 60. Using Og, experiments were conducted consistently from dissolution and precipitation to pellet production. The produced pellets are acceptable as product pellets, and it seems that there will be no problem even if the device is scaled up for practical use. EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the following Examples do not limit the scope of the present invention.

実施例 ガドリニウム入りUOtベレット中のガドリニウムの含
有量がGet、Q、濃度として6.00 wt%になる
ように、十分乾燥したU3へを974.4 F、Gcb
Osを60.0.9秤量し、これらを硝酸に溶解し、蒸
留水を加えて(U+Gd)6度で83g/、eとした。
Example 974.4 F, Gcb was added to sufficiently dried U3 so that the gadolinium content in the gadolinium-containing UOt pellet was 6.00 wt% as a Get, Q, concentration.
We weighed 60.0.9 Os, dissolved them in nitric acid, and added distilled water to make 83 g/e at 6 degrees (U+Gd).

この溶液を51.5℃に昇温し、攪拌しなからNHs水
を加えpH8,3で(NH4)2 UtOyとGd(O
H)aとよりなる沈殿物を作り、該沈殿物を1別し、次
いで150℃、16時間乾燥した後、窒素ガス中で76
0℃、3時間焙焼し雰囲気ガスを水素ガスに切り換え、
1.5時間還元してUOz  Gdz Os混合粉末を
得た。
The temperature of this solution was raised to 51.5°C, and while stirring, NHs water was added and the pH was adjusted to 8.3 (NH4)2 UtOy and Gd(O
H) A precipitate consisting of a is prepared, the precipitate is separated, and then dried at 150°C for 16 hours, and then heated in nitrogen gas for 76 hours.
Roast at 0℃ for 3 hours and switch the atmospheric gas to hydrogen gas.
The mixture was reduced for 1.5 hours to obtain a UOz Gdz Os mixed powder.

(本発明の効果) 本発明は以上の構成をとることによって、次の効果が得
られる。
(Effects of the present invention) By adopting the above configuration, the present invention can obtain the following effects.

(1)  得られたUOt Gch Os混合粉末を使
用し、通常のペレット製造工程と同じ方法で酸化ガドリ
ニウム入りの二酸化ウラ/ペレットを作製したが、該混
合粉末は製造工程中安定でペレット涜造にそのまま直接
使用できる粉末であった。
(1) Ura dioxide/pellets containing gadolinium oxide were produced using the obtained UOt Gch Os mixed powder in the same manner as the normal pellet manufacturing process, but the mixed powder was stable during the manufacturing process and did not easily destroy the pellets. It was a powder that could be used directly as is.

(2)作製したペレットでは製品仕様上主要なGd均一
性は遊離ガドリニア(Gdz Os )  もなく良好
でまたC、  N等その他の不純物の含有量も問題とな
らなかった。
(2) The produced pellets had good Gd uniformity, which is important in terms of product specifications, with no free gadolinia (GdzOs), and the content of other impurities such as C and N did not pose any problems.

(3)ペレット中のGdtOs濃度も製品仕様範囲に納
まる結果が得られ、ウランとガドリニウム成分の一方の
成分のみが全製造工程中損失することがなかった。
(3) The GdtOs concentration in the pellets was also within the product specification range, and only one of the uranium and gadolinium components was not lost during the entire manufacturing process.

手 ・午 ;、、1 1E   T(1式)%式% 1′!l’l’の゛どボ ++4jiL15941E/”1t14J194244
号2 礪+4の名啄 核燃料ペレット製造用の二酸化ウラン・酸化ガドリニュ
ーム混合粉末の製造方法 3、  ’lII+E?する6 1基1゛←との・°:″1茶   ]゛′l叫出で1人
午 +J   吋r g ’l’、千秋田区丈千畔−「
+16組境4炸 二菱七参族科株(會江 4j+3+   f+;1+、・lJ央!、<I−IX
b4=、(ilTIT’L16+A池L 補正の内容 (11BA細書第3頁の14行から16行にかけてr(
jlWmda at aLe BNES Con1. 
(1973)63」□33 (bl FukuhLma at al、、J、Nus
l Mat、 105(1982)201] とあるのを、 r lal和田及びその他、英国原子エネルギー委員会
主催の協議会資料(1973)63.1〜63.3(W
ada et Jll、、BNES Conf、、 (
1973)6Ll−633)+b+  福島及びその他
、核物質ジャーナル、105(1982)21+1 (Fukuhima at al、、 J、Nucl、
Mat、、 105 (1982)201)Jと訂正す
る。
Hand / Hour ;,, 1 1E T (1 formula)% formula% 1'! l'l'゛dobo++4jiL15941E/"1t14J194244
No. 2 礪 + 4 famous method for producing uranium dioxide/gadolinium oxide mixed powder for producing nuclear fuel pellets 3, 'lII+E? 6 1 group 1 ゛ ← and °: `` 1 tea ] ゛'l shouting out for one person +J 吋r g 'l', Chiakita-ku Jochibe - ``
+16 group boundaries 4 explosions Nibishi Shichizinidae strain (Aie 4j+3+ f+;1+,・lJo!, <I-IX
b4=, (ilTIT'L16+AikeL Contents of correction (r(
jlWmda at aLe BNES Con1.
(1973) 63”□33 (bl FukuhLma at al,, J, Nus
l Mat, 105 (1982) 201], r lal Wada and others, British Atomic Energy Commission (1973) 63.1-63.3 (W
ada et Jll,,BNES Conf,, (
1973) 6Ll-633)+b+ Fukushima and others, Nuclear Materials Journal, 105 (1982) 21+1 (Fukushima at al, J, Nucl,
Mat., 105 (1982) 201) J.

Claims (1)

【特許請求の範囲】[Claims] (1)ウラン及びガドリニウムを含有する硝酸水溶液に
おいて、(U+Gd)濃度を60g/l〜110g/l
の範囲とすると共に液温を50℃以上とし、アンモニア
を加えてpH8.0以上として沈殿物を生ぜしめ、次い
で該沈殿物を濾別、乾燥後、空気または/および窒素ガ
ス中で550℃以上の温度で焙焼し、さらに水素又は水
素を含む還元ガス中で550℃以上の温度で還元するこ
とを特徴とする核燃料ペレット製造用の二酸化ウラン・
酸化ガドリニウム混合粉末の製造方法。
(1) In a nitric acid aqueous solution containing uranium and gadolinium, the (U+Gd) concentration is 60 g/l to 110 g/l.
The temperature of the liquid is adjusted to 50°C or higher, and ammonia is added to raise the pH to 8.0 or higher to form a precipitate.Then, the precipitate is filtered out, dried, and heated to 550°C or higher in air or/and nitrogen gas. Uranium dioxide for producing nuclear fuel pellets, which is roasted at a temperature of 550°C or higher, and further reduced at a temperature of 550°C or higher in hydrogen or a reducing gas containing hydrogen.
A method for producing gadolinium oxide mixed powder.
JP59194244A 1984-09-17 1984-09-17 Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet Granted JPS6173803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59194244A JPS6173803A (en) 1984-09-17 1984-09-17 Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59194244A JPS6173803A (en) 1984-09-17 1984-09-17 Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet

Publications (2)

Publication Number Publication Date
JPS6173803A true JPS6173803A (en) 1986-04-16
JPH0374959B2 JPH0374959B2 (en) 1991-11-28

Family

ID=16321377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59194244A Granted JPS6173803A (en) 1984-09-17 1984-09-17 Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPS6173803A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680424A (en) * 1991-02-20 1994-03-22 Inst Of Nuclear Energ Res Chinese Atom Energ Council Taiwan Roc Method for changing uranyl compound into uo2 via adu
JP2008286529A (en) * 2007-05-15 2008-11-27 Toshiba Corp Method for controlling criticality of nuclear fuel cycle facility, method for manufacturing uranium dioxide powder, nuclear reactor's fuel rods, and fuel assembly
KR101024102B1 (en) 2009-01-15 2011-03-22 한국원자력연구원 A preparation method of RE-rich U,RE4O9 and UO3 powder mixture with the large difference of magnetic susceptibility and the seperation method of U,RE4O9 and UO3
CN103706801A (en) * 2013-12-26 2014-04-09 四川材料与工艺研究所 Preparation method of uranium zirconium alloy powder
CN105642907A (en) * 2016-01-29 2016-06-08 中国核动力研究设计院 UO2-W metal ceramic ball preparation method
CN113012835A (en) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 Preparation method of gadolinium-containing annular uranium dioxide core block

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680424A (en) * 1991-02-20 1994-03-22 Inst Of Nuclear Energ Res Chinese Atom Energ Council Taiwan Roc Method for changing uranyl compound into uo2 via adu
JPH0751444B2 (en) * 1991-02-20 1995-06-05 インスティチュート・オブ・ヌクリアー・エナージィ・リサーチ・チャイニーズ・アトミック・エナージィ・カウンシル・タイワン・アール・オー・シー Method for converting uranyl compound to UO2 via ADU
JP2008286529A (en) * 2007-05-15 2008-11-27 Toshiba Corp Method for controlling criticality of nuclear fuel cycle facility, method for manufacturing uranium dioxide powder, nuclear reactor's fuel rods, and fuel assembly
KR101024102B1 (en) 2009-01-15 2011-03-22 한국원자력연구원 A preparation method of RE-rich U,RE4O9 and UO3 powder mixture with the large difference of magnetic susceptibility and the seperation method of U,RE4O9 and UO3
CN103706801A (en) * 2013-12-26 2014-04-09 四川材料与工艺研究所 Preparation method of uranium zirconium alloy powder
CN105642907A (en) * 2016-01-29 2016-06-08 中国核动力研究设计院 UO2-W metal ceramic ball preparation method
CN113012835A (en) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 Preparation method of gadolinium-containing annular uranium dioxide core block

Also Published As

Publication number Publication date
JPH0374959B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
Ekberg et al. Nitride fuel for Gen IV nuclear power systems
US4247495A (en) Method of producing PuO2 /UO2 /-nuclear fuels
JPS62232595A (en) Nuclear fuel sintered body and manufacture thereof
US4512939A (en) Method for manufacturing oxidic sintered nuclear fuel bodies
US4231976A (en) Process for the production of ceramic plutonium-uranium nuclear fuel in the form of sintered pellets
US2868707A (en) Process of making a neutronic reactor fuel element composition
US5978431A (en) Nuclear fuel pellets
JPS6173803A (en) Production of powder mixture composed of uranium dioxide and gadolinium oxide for producing nuclear fuel pellet
JPS58176133A (en) Electrolytic dissolution of plutonium dioxide and neptunium dioxide
US4279875A (en) Method of releasing fission gases from irradiated fuel
US3715273A (en) Nuclear fuel element containing sintered uranium dioxide fuel with a fine particulate dispersion of an oxide additive therein,and method of making same
Une et al. Fission gas behavior during postirradiation annealing of large grained UO2 fuels irradiated to 23 GWd/t
US3140151A (en) Method of reprocessing uo2 reactor fuel
CN104751903B (en) A kind of TiO2Adulterate UO2‑10wt%Gd2O3Burnable poison and preparation method thereof
US3320034A (en) Conversion of uo to uc
CN104821187B (en) A kind of Al2O3Adulterate UO2‑10wt%Gd2O3Burnable poison and preparation method thereof
US3288717A (en) Method for preparation of urania sols
Konno et al. Melting temperature of simulated high-burnup mixed oxide fuels for fast reactors
Hastings et al. Air Oxidation of UO2 Fuel Fragments at 175° to 400° C
Mignanelli et al. The reaction of sodium with urania-ceria solid solutions
KR100290631B1 (en) Nuclear Fuel Manufacturing Method
Foerthmann et al. Investigations to decrease the release of solid fission products from coated fuel particles by the addition of refractory oxides to the fuel kernel
Gue et al. French experience in MOX fuel dissolution
CN112340772A (en) Preparation method of zirconium beryllium fluoride acid with low oxygen content
Ha et al. Studies on the Air-oxidation Behavior of Uranium Dioxide I. Phase transformation from (U1-yGdy) O2 to (Ul-yGdy) 3OS