JPS6173598A - Voltage rising system of synchronous generator - Google Patents

Voltage rising system of synchronous generator

Info

Publication number
JPS6173598A
JPS6173598A JP59195378A JP19537884A JPS6173598A JP S6173598 A JPS6173598 A JP S6173598A JP 59195378 A JP59195378 A JP 59195378A JP 19537884 A JP19537884 A JP 19537884A JP S6173598 A JPS6173598 A JP S6173598A
Authority
JP
Japan
Prior art keywords
generator
transformer
voltage
synchronous generator
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59195378A
Other languages
Japanese (ja)
Inventor
Shinichi Imaizumi
今泉 真一
Kiyoshi Kato
清 加藤
Shota Matsui
松井 章太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59195378A priority Critical patent/JPS6173598A/en
Publication of JPS6173598A publication Critical patent/JPS6173598A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To suppress the exciting rush current of a transformer by interrupting the output side of a transformer, accelerating a synchronous generator to a rated speed, and then gradually rising the output voltage of the generator. CONSTITUTION:When a bus power interruption is detected, a transformer breaker 6 and a field breaker 17 are opened, a generator breaker 8 is closed, and a synchronous generator 10 is driven by a prime mover. When a generator speed arrives at the rated value, the breaker 17 is closed to start operating an automatic voltage regulator. At this time, since a control signal output from the voltage regulator 23 is limited by a limiter 33 to the output signal of a function generator 32, the output voltage of the generator 10 gradually rises. Accordingly, the exciting current of a main transformer 7 gradually increases to avoid the generation of an exciting rush current. When the voltage of the generator arrives at the rated value, the breaker 6 is closed to start supplying power to a load.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、変圧器を励磁するさいの励磁突入電流を抑
制できる同期発電機の電圧立上げ方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a voltage startup system for a synchronous generator that can suppress excitation inrush current when exciting a transformer.

〔従来技術とその問題点〕[Prior art and its problems]

第4図は同期発を機を含む電力系統の従来例を示す単線
系統図である。この第4図に示す従来例では、交流電源
lからの交流電力は電源遮断器2を介して母線3に与え
られ、さらにこの母線3に接続されている負荷遮断器4
A、 4B、 4Cを経てそれぞれの負荷5A、 5B
、 5Cに交流電力が供給されるようになっているが、
このとき変圧器用遮断器6は開路しているものとする◇ このような状態で電力系統が運転中に、交流電源1の電
圧が低下あるいは停電などの事故を発生すると電源遮断
器2は開路するので母線3は停電し、負荷5A、5B、
5Cへの電力供給が停止される。
FIG. 4 is a single-line system diagram showing a conventional example of a power system including a synchronous generator. In the conventional example shown in this FIG.
Through A, 4B, 4C, respective loads 5A, 5B
, AC power is now supplied to 5C,
At this time, it is assumed that the transformer circuit breaker 6 is open ◇ While the power system is operating in this state, if an accident such as a drop in the voltage of the AC power supply 1 or a power outage occurs, the power supply circuit breaker 2 will open. Therefore, bus 3 has a power outage, and loads 5A, 5B,
Power supply to 5C is stopped.

この母線3の停電、が検出されると、非常用電源から母
線3に交流電力が送られて負荷5A、 5B、 5Cの
停電期間を最短にする。すなわち母線3の停電が検知さ
れると原動機(たとえばディーゼルエンジン)9Aが始
動して同期発電機10Aを駆動してこの同期発電機10
Aの出力電圧と出力周波数が定格7を介して母線3に’
を力を送り込んで負荷5A、 5B5Cを再始動させる
。同期発電機10Aからの電力のみでは不足の場合は原
動機9Bを始動して同期発電機10Bが出力する電圧と
周波数と位相とが同期発電機10Aのそれと一致すると
きに発電機用遮断器8Bを閉路すれは、2台の同期発電
機10AとIOBは並列運転して電力を供給することに
なる。
When a power outage on the bus 3 is detected, AC power is sent from the emergency power supply to the bus 3 to minimize the power outage period for the loads 5A, 5B, and 5C. That is, when a power outage of the bus 3 is detected, the prime mover (for example, a diesel engine) 9A starts and drives the synchronous generator 10A.
The output voltage and output frequency of A are connected to bus 3 through rating 7.
Send power to restart loads 5A and 5B5C. If the power from the synchronous generator 10A is insufficient, start the prime mover 9B and turn on the generator circuit breaker 8B when the voltage, frequency, and phase output by the synchronous generator 10B match those of the synchronous generator 10A. When the circuit is closed, the two synchronous generators 10A and IOB operate in parallel to supply power.

上述の運転において、交流電源1が停電後に同期発電機
10Aを始動して主変圧器7を励磁するときが問題とな
る。すなわち原動機9Aに駆動されて同期発電機10A
が定格速度になると、この同期発電機10Aに励磁が与
えられて定格周波数の定格電圧を発生させる。そこで発
電機用遮断器8Aを閉路すると、それまで無電圧であっ
た主変圧器7に定格電圧が印加されるため、その瞬間に
この主変圧器7には定格電流の数倍から10数倍の大電
流いわゆる励磁突入電流が流れるので、同期発電機10
Aとっては突発短絡に等しい程度の衝撃となる。
In the above operation, a problem arises when the AC power supply 1 starts the synchronous generator 10A and excites the main transformer 7 after a power outage. In other words, it is driven by the prime mover 9A and the synchronous generator 10A
When the synchronous generator 10A reaches its rated speed, the synchronous generator 10A is energized to generate a rated voltage at a rated frequency. Therefore, when the generator circuit breaker 8A is closed, the rated voltage is applied to the main transformer 7, which had been without voltage, so at that moment, the main transformer 7 has a current that is several times to ten times higher than the rated current. Since a large current, so-called excitation inrush current, flows, the synchronous generator 10
For A, the shock is equivalent to a sudden short circuit.

また第4図のように主変圧器7が2台の同期発電機10
AとIOBから電力を受電するような回路構成の場合に
同期発電機10Aのみでこの励磁突入電流を負担すると
き、この発電機の責務はよシ厳しいものとなる。
In addition, as shown in FIG. 4, the main transformer 7 is connected to two synchronous generators 10.
In the case of a circuit configuration in which power is received from A and IOB, when only the synchronous generator 10A bears this excitation inrush current, the responsibility of this generator becomes even more severe.

第5図は励磁突入電流の状況を示すグラフであって、第
5図[有]は主変圧器7に印加される電圧■7の変化を
示し、第5図■は主変圧器7に流れる電流エフの変化を
示すものであって、いずれも横軸が時間軸である0この
第5図において時刻Tなる瞬間に発電機用遮断器8Aが
閉路すると主変圧器7には定格電圧が印加され、そのと
きに大きな励磁突入電流が流れることを示している。
Fig. 5 is a graph showing the status of magnetizing inrush current, in which Fig. 5 [Yes] shows changes in the voltage ■7 applied to the main transformer 7, and Fig. 5 ■ shows the change in the voltage ■7 applied to the main transformer 7. 5 shows the change in current F, and the horizontal axis is the time axis. In this figure, when the generator circuit breaker 8A closes at the instant of time T, the rated voltage is applied to the main transformer 7. This indicates that a large excitation inrush current flows at that time.

同期発電機10AあるいはIOBから主変圧器7にこの
ような励磁突入電流が流れることが繰返されると、当該
発電機の寿命に悪影響を与える。さらにこの励磁突入電
流には直流分が含まれているので保護継電器が動作して
発電機用遮断器8Aをトリップさせて負荷への電力供給
を遮断し、非常用電源としての役目を果すことができな
いなどの不都合を生ずるおそれがある。またこの同期発
電機が自励式発電機の場合はこの励磁突入電流による電
圧降下のために十分な励磁電力が得られず、発電機電圧
の立上シが円滑に行なわれないなどの不都合も生ずる0
そこでこれらの不具合を解消するために、従来は非常用
負荷給電のための専用発電機を設置したシ、変圧器と発
電機の間に限流抵抗と、この限流抵抗を短絡するスイッ
チとを設置して励磁突入電流を低減させるなどの処置が
なされているが、いずれもきわめて高価なものとなって
いる。
If such a magnetizing inrush current repeatedly flows from the synchronous generator 10A or IOB to the main transformer 7, it will adversely affect the life of the generator. Furthermore, since this magnetizing inrush current includes a DC component, the protective relay operates and trips the generator circuit breaker 8A, cutting off the power supply to the load and serving as an emergency power source. This may cause inconveniences such as not being able to do so. In addition, if this synchronous generator is a self-excited generator, sufficient excitation power cannot be obtained due to the voltage drop due to this excitation inrush current, resulting in inconveniences such as the generator voltage not starting up smoothly. 0
Therefore, in order to eliminate these problems, conventionally a dedicated generator was installed for emergency load power supply, but a current limiting resistor was installed between the transformer and the generator, and a switch was installed to short-circuit this current limiting resistor. Measures have been taken to reduce the excitation inrush current by installing magnets, but all of them are extremely expensive.

〔発明の目的〕[Purpose of the invention]

この発明は同期発電機で変圧器を励磁するさいの励磁突
入電流を安価な方法で抑制できる同期発電機の電圧立上
げ方式を提供することを目的とするO 〔発明の要点〕 この発明は、変圧器に印加する電圧を低下させれば励磁
突入電流が減少するのに着目したものであって、変圧器
と負荷との接続を断ち、同期発電機を無励磁のままで定
格速度まで昇速させるのであるが、このとき同期発電機
と変圧器とを接続した状態で昇速させ、あるいは同期発
電機が定格速度に到達してから変圧器と接続し、しかる
のちに当該同期発電機の励磁電流を徐々に増加させるこ
とによシその出力電圧を除芥させるようにして励磁突入
電流の抑制を図ろうとするものである◇〔発明の実施例
〕 第1図は本発明の実施例を示す回路図であって、第1図
(4)は制御ブロック図を示し、第1図03)は制御シ
ーケンスの部分を示している。
An object of the present invention is to provide a voltage startup method for a synchronous generator that can suppress excitation inrush current in an inexpensive manner when a transformer is excited by a synchronous generator. This method focuses on the fact that the excitation inrush current decreases by lowering the voltage applied to the transformer, and the transformer is disconnected from the load and the synchronous generator is sped up to the rated speed without excitation. At this time, the speed is increased with the synchronous generator and transformer connected, or the synchronous generator is connected to the transformer after reaching the rated speed, and then the synchronous generator is excited. The purpose is to suppress the excitation inrush current by gradually increasing the current and eliminating the output voltage. ◇ [Embodiment of the Invention] Fig. 1 shows an embodiment of the present invention. FIG. 1 (4) is a circuit diagram, and FIG. 1 (4) shows a control block diagram, and FIG. 1 (03) shows a control sequence part.

7の1次側に与えられ、この主変圧器7により所望の電
圧に変圧されたのち変圧器用遮断器6を経て負荷に供給
されるようになっているが、この発電機10の界磁巻線
11に流れる励磁電流は励磁変圧器15を電源とし励磁
サイリスタ16と界磁遮断器17を経て与えられるよう
になってお夛、いわゆる自励式の同期発電機である。ま
たこの同期発電機10の出力電圧は計器用変圧器21で
検出され、この検出電圧と電圧設定器22が設定する電
圧との偏差を零にする制御信号を出力する電圧調節器2
3と、この電圧調節器23の出力信号を受けて前述の励
磁サイリスタ16を制御する信号を出力する点弧パルス
発生器24により界磁巻線11に流れる励磁電流が制御
され、当該発電機10の出力電圧を所望の値に維持する
。さらに本発明においては補助設定器31によシ設定さ
れる信号が関数発生器32とリミッタ33を経て前述の
電圧調節器23に入力されるよう1(なっている。
7 is supplied to the primary side of the generator 10, and after being transformed to a desired voltage by the main transformer 7, it is supplied to the load via the transformer circuit breaker 6. The excitation current flowing through the line 11 is supplied via an excitation transformer 15 as a power source and an excitation thyristor 16 and a field circuit breaker 17, thus forming a so-called self-excited synchronous generator. Further, the output voltage of this synchronous generator 10 is detected by an instrument transformer 21, and a voltage regulator 2 outputs a control signal that makes the deviation between this detected voltage and the voltage set by a voltage setting device 22 zero.
3, and an ignition pulse generator 24 which receives the output signal of the voltage regulator 23 and outputs a signal for controlling the excitation thyristor 16, controls the excitation current flowing through the field winding 11, and controls the generator 10. maintain the output voltage at the desired value. Further, in the present invention, the signal set by the auxiliary setting device 31 is inputted to the voltage regulator 23 mentioned above via the function generator 32 and the limiter 33.

f&線停亀が検出されると変圧器用遮断器6と界磁遮断
器17は開、発電機用遮断器8は閉の状態で図示してい
ない原動機によ)同期発を機10を駆動するのであるが
、界磁遮断器17が開路しているので仁の発電機lOは
無励磁であ夛、出力電圧は零あるいは僅かな残留電圧の
みである。この状態で発電機速度が定格値に到達すれば
界磁遮断器17を投入すると自動電圧調整装置が動作を
開始する。すなわち発電機残留電圧が計器用変圧器21
により検出されて電圧調節器23に入力され、一般に定
格電圧の80%から100%の間に設定信号がこの電圧
調節器23から出力され、この信号は点弧パルス発生器
24で励磁サイリスタ16の点弧パルス信号に変換され
るので励磁変圧器15からの交流電力はこの励磁サイリ
スタ16により所要の励磁電力となって界磁巻線1工に
流れる。
When the f& line stoppage is detected, the transformer circuit breaker 6 and the field circuit breaker 17 are opened, and the generator circuit breaker 8 is closed, and a synchronous generator (not shown) drives the generator 10. However, since the field circuit breaker 17 is open, the generator IO is not energized and the output voltage is zero or only a slight residual voltage. In this state, when the generator speed reaches the rated value, the field circuit breaker 17 is turned on and the automatic voltage regulator starts operating. In other words, the generator residual voltage
A setting signal is generally output from the voltage regulator 23 between 80% and 100% of the rated voltage, and this signal is sent to the ignition pulse generator 24 and input to the voltage regulator 23. Since it is converted into an ignition pulse signal, the AC power from the excitation transformer 15 becomes the required excitation power by the excitation thyristor 16 and flows to the field winding 1.

この励磁電力により同期発電機10の出力電圧はビルド
アップされるのであるが、励磁変圧器15から交流電力
を得るために図示していない予励装置により当該発電機
10を励磁してごく低い電圧を出力させるようにする場
合もある。
The output voltage of the synchronous generator 10 is built up by this excitation power, but in order to obtain AC power from the excitation transformer 15, the generator 10 is excited by a pre-excitation device (not shown) to a very low voltage. In some cases, it may be output.

本発明においては、補助設定器31が別途に設置されて
いてこれの設定値は電圧設定器22の設定値よシもやや
高い値に設定する。また関数発生器32#i使用開始時
の出力は零であるがその出力は一定の変化速度で上昇し
、あらかじめ定められた時間を経過したのち上述の補助
設定器31の設定値に到達するようにたとえば積分器で
構成されている0ところで電圧調節器23が出力する制
御信号はIJミッタ33の作用によ)関数発生器32の
出力信号K f!I11限されるので、同期発電機10
の出力電圧は関数発生器32が出力する信号の変化に従
って徐々に上昇するので主変圧器7に印加される電圧も
徐々に上昇することになプ、よって主変圧器7の励磁電
流も徐々に増加し、励磁突入電流の発生を回避できる0
発電機出力電圧が定格値に到達すれば変圧器用遮断器6
を閉路して負荷への給電を開始する。供給電力が不足す
れば図示されていない第20発電機を始動して当該同期
発電機10と並列運転させればよいが、主変圧器7は既
に運転中であるから、第2の発電機は通常の始動方法に
より始動して差支えないのはもちろんである。なお並列
運転のための横流補償装置などは本発明とは無関係なの
で図示は省略している。
In the present invention, an auxiliary setting device 31 is separately provided, and the setting value of this setting device is set to a value slightly higher than the setting value of the voltage setting device 22. In addition, the output of the function generator 32#i is zero at the beginning of use, but the output increases at a constant rate of change, and after a predetermined time has elapsed, it reaches the setting value of the auxiliary setting device 31 mentioned above. For example, the control signal output from the voltage regulator 23 is the output signal Kf! of the function generator 32 due to the action of the IJ transmitter 33. Since I11 is limited, synchronous generator 10
Since the output voltage of the function generator 32 gradually increases as the signal output from the function generator 32 changes, the voltage applied to the main transformer 7 also gradually increases, and therefore the excitation current of the main transformer 7 also gradually increases. 0, which can avoid the generation of excitation inrush current.
When the generator output voltage reaches the rated value, the transformer circuit breaker 6
Close the circuit and start supplying power to the load. If the supplied power is insufficient, the 20th generator (not shown) may be started and operated in parallel with the synchronous generator 10, but since the main transformer 7 is already in operation, the second generator Of course, the engine can be started using a normal starting method. Note that a cross-current compensator for parallel operation and the like are not shown because they are irrelevant to the present invention.

第1図(B)は制御シーケンスの部分を示しておシ、母
線停電が生じると母線停電リレー接点27が図示とは逆
の状態になるので、同期検定スイッチ28をオンにしな
くても発電機用遮断器投入スイッチ8SSを操作して発
電機用遮断器投入コイル8CCを励磁して投入すること
ができる。この発電機用遮断器8が投入されれば発電機
用遮断器補助接点8XXが閉路するから、所望の時間に
界磁遮断器投入スイッチ1788を操作して界磁遮断器
投入コイル17CCを励磁して同遮断器17を閉状態に
できることを示しているが、この制御シーケンスにおい
ては各種のインターロックは本発明とは無関係につき図
示を省略している。
FIG. 1(B) shows the control sequence. When a bus power outage occurs, the bus power outage relay contact 27 is in the opposite state to that shown in the figure, so the generator can be activated even if the synchronization verification switch 28 is not turned on. By operating the generator circuit breaker closing switch 8SS, the generator circuit breaker closing coil 8CC can be energized and closed. When the generator circuit breaker 8 is closed, the generator circuit breaker auxiliary contact 8XX is closed, so operate the field circuit breaker closing switch 1788 at a desired time to excite the field circuit breaker closing coil 17CC. However, in this control sequence, various interlocks are not shown because they are irrelevant to the present invention.

第2図は本発明の第2の実施例を示す制御ブロック図で
あるが、この第2の実施例は同期発電機界磁巻線の時定
数が大なる場合である。この第2図における変圧器用遮
断器6、主変圧器7、発電機用遮断器8、同期発電機1
0、励磁変圧器15、励磁サイリスタ16、界磁遮断器
17、計器用変圧器21、電圧設定器L22、電圧調節
器23、点弧パルス発生器24の符号・名称・用途・機
能は第1図(4)に記載のものと同じであるから、これ
らの説明は省略する。
FIG. 2 is a control block diagram showing a second embodiment of the present invention, and this second embodiment is a case where the time constant of the synchronous generator field winding is large. In this FIG. 2, a transformer circuit breaker 6, a main transformer 7, a generator circuit breaker 8, and a synchronous generator 1
0, the codes, names, uses, and functions of the excitation transformer 15, excitation thyristor 16, field breaker 17, instrument transformer 21, voltage setting device L22, voltage regulator 23, and ignition pulse generator 24 are as follows. Since they are the same as those shown in FIG. (4), their explanation will be omitted.

第2囚に示す第2の実施例においては、変圧器用遮断器
6と界磁遮断器17は開、発電機用遮断器8は閉の状態
で当該発電機lOを定格速度まで昇速させたのち界磁遮
断器17を投入し、次いで初期励磁スイッチ35を閉路
すれば初期励磁電源36からの直流電力が界磁巻線41
に流れる。しかし界磁巻a41の時定数が大きいのでこ
の巻線に流れる励磁電流の変化は緩やかとなり、従って
発電機10の出力電圧も緩やかに上昇することとなり、
主変圧器7に励磁突入電流が流れることはない。
In the second embodiment shown in the second example, the generator IO was increased to the rated speed with the transformer circuit breaker 6 and the field circuit breaker 17 open and the generator circuit breaker 8 closed. Afterwards, by turning on the field circuit breaker 17 and then closing the initial excitation switch 35, the DC power from the initial excitation power source 36 is applied to the field winding 41.
flows to However, since the time constant of the field winding a41 is large, the excitation current flowing through this winding changes gradually, and therefore the output voltage of the generator 10 also increases gradually.
No excitation inrush current flows through the main transformer 7.

第3図は第1図または第2図に示す実施例における主変
圧器の電圧と電流の変化を示すグラフであって第3図囚
は主変圧器7に印加される電圧v7の変化、第3図(6
)は主変圧器7に流れる電流エフの変化をあられしてお
り、横軸はいずれも時間軸である。この第3図において
同期発電機10が定格印加電圧v7は徐々に上昇し、そ
れにつれて主変圧器を流エフも徐々に増加し、時刻T2
で定格電圧になれば電流エフも一定の励磁電流となるこ
とを示してお夛、従来例のように大きな励磁突入電流は
発生しない。
FIG. 3 is a graph showing changes in the voltage and current of the main transformer in the embodiment shown in FIG. 1 or FIG. Figure 3 (6
) shows changes in the current F flowing through the main transformer 7, and both horizontal axes are time axes. In FIG. 3, the rated applied voltage v7 of the synchronous generator 10 gradually increases, and the current flowing through the main transformer also gradually increases, and at time T2
This shows that when the rated voltage is reached, the current F also becomes a constant excitation current, and a large excitation inrush current does not occur as in the conventional example.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、同期発電機で変圧器を励磁するにあ
たって、変圧器の出力側は遮断しておき、同期発電機を
無励磁のままで変圧器と結合して定格速度まで昇速させ
、あるいは無励磁のままで昇速させたのち変圧器上接続
する。その後に関数発生器を使用するなどして当該同期
発電機出力電圧を徐々に上昇させるならば、変圧器印加
電圧も徐々に上昇し、変4ヒ器〜印効14  ′   
    変圧器励磁電流はこの電圧とともに徐々に増加
するので大きな励磁突入電流を生じることはない◎それ
故同期発電機に大電流が流れて寿命が短縮されることが
なく、保護継電器の誤動作も生じないのでこれら発電機
や変圧器の保護が確実に行なえるのであるが、上述の励
磁突入電流抑制は制御シーケンスの僅かな変更と、関数
発生器やリミッタなど僅かな回路要素の追加のみで達成
できるので、これに要する費用も僅かであるにも拘らず
、上述のように大きな効果が期待できる・
According to this invention, when exciting a transformer with a synchronous generator, the output side of the transformer is cut off, and the synchronous generator is connected to the transformer without being energized and the speed is increased to the rated speed. Alternatively, connect it to the transformer after increasing the speed without excitation. If the output voltage of the synchronous generator is then gradually increased by using a function generator, the voltage applied to the transformer will also gradually increase, and the voltage applied to the transformer will increase.
The transformer excitation current gradually increases with this voltage, so no large excitation inrush current occurs. Therefore, a large current will not flow through the synchronous generator and shorten its life, and the protective relay will not malfunction. Therefore, these generators and transformers can be protected reliably, but the above-mentioned excitation inrush current suppression can be achieved by only making slight changes to the control sequence and adding a few circuit elements such as function generators and limiters. Although the cost required for this is small, it can be expected to have a large effect as mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す回路図であり、第2図は
本発明の第2の実施例を示す制御ブロック図、第3図は
第1図または第2図に示す実施例における主変圧器の電
圧と電流の変化を示すグラフである。第4図は同期発電
機を含む電力系統の従来例を示す単線系統図であ)、第
5図は励磁突入電流の状況を示すグラフである。 1・・・・・・交流電源、2・・・・・・電源遮断器、
3・・・・・・母線、4A、 4B、 4C・・・・・
・負荷遮断器、5ん5B、5C・・・・・・負荷、6・
・・・・・変圧器用遮断器、7・・・・・・主変圧器、
8゜8ん8B・・・・・・発電機用遮断器、8CC・・
・・・・発電機用遮断器投入コイル、8ss・・・1発
電機用遮断器投入スイッチ、8Xx・・・・・・発電機
用遮萌器補助接点、9A。 9B・・・・・・原動機、10. IOA、 IOB・
・・・・・同機発電機、11・・・・・・界磁巻線、1
5・・・・・・励磁変圧器、16・・・・・・励磁サイ
リスタ、17・・・・・・界磁遮断器、17CC・・・
・・・界磁遮断器投入コイル、17SS・・・・・・界
磁遮断器投入スイッチ、21・・・・・・計器用変圧器
、22・・・・・・電圧設定器、23・・・・・・電圧
調節器、24・・・・・・点弧パルス発生器、27・・
・・・・母線停電リレー接点、28・・面同期検定スイ
ッチ、31・・・・・・補助設定器、32・・・・・・
関数発生器、33・・・・・・リミッタ、35・・・・
・・初期励磁スイッチ、36・・・・・初期励磁電源、
41・・・・・・界磁巻線(時定数大)。
FIG. 1 is a circuit diagram showing an embodiment of the invention, FIG. 2 is a control block diagram showing a second embodiment of the invention, and FIG. 3 is a circuit diagram showing a second embodiment of the invention. It is a graph showing changes in voltage and current of the main transformer. FIG. 4 is a single-line system diagram showing a conventional example of a power system including a synchronous generator), and FIG. 5 is a graph showing the state of magnetizing inrush current. 1...AC power supply, 2...Power circuit breaker,
3...Bus bar, 4A, 4B, 4C...
・Load breaker, 5-5B, 5C...Load, 6-
......Transformer circuit breaker, 7...Main transformer,
8゜8n8B... Generator circuit breaker, 8CC...
..... Breaker closing coil for generator, 8ss...1 Breaker closing switch for generator, 8Xx...... Breaker auxiliary contact for generator, 9A. 9B... Prime mover, 10. IOA, IOB・
...Same generator, 11...Field winding, 1
5... Excitation transformer, 16... Excitation thyristor, 17... Field breaker, 17CC...
... Field breaker closing coil, 17SS... Field breaker closing switch, 21... Instrument transformer, 22... Voltage setting device, 23... ... Voltage regulator, 24... Ignition pulse generator, 27...
... Bus bar power failure relay contact, 28 ... Surface synchronization verification switch, 31 ... Auxiliary setting device, 32 ...
Function generator, 33...Limiter, 35...
...Initial excitation switch, 36...Initial excitation power supply,
41... Field winding (large time constant).

Claims (1)

【特許請求の範囲】[Claims] 同期発電機が出力する所定電圧の交流電力を変圧器を介
して負荷に供給する電力系統において、変圧器と負荷と
の接続を断ち、同期発電機と変圧器とを接続せる状態で
該同期発電機を無励磁のままで駆動して定格速度まで昇
速させあるいは該同期発電機を無励磁のままで駆動して
定格速度に達したならば当該同期発電機と変圧器とを接
続し、次いで当該同期発電機出力電圧が定格電圧に到達
するまでその励磁電流を徐々に増加させることを特徴と
する同期発電機の電圧立上げ方式。
In a power system that supplies alternating current power of a predetermined voltage output from a synchronous generator to a load via a transformer, the synchronous generator is operated by disconnecting the transformer from the load and connecting the synchronous generator to the transformer. When the machine is driven without excitation and the speed is increased to the rated speed, or the synchronous generator is driven without excitation and the rated speed is reached, the synchronous generator and the transformer are connected, and then A voltage start-up method for a synchronous generator, characterized in that the excitation current is gradually increased until the output voltage of the synchronous generator reaches a rated voltage.
JP59195378A 1984-09-18 1984-09-18 Voltage rising system of synchronous generator Pending JPS6173598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195378A JPS6173598A (en) 1984-09-18 1984-09-18 Voltage rising system of synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195378A JPS6173598A (en) 1984-09-18 1984-09-18 Voltage rising system of synchronous generator

Publications (1)

Publication Number Publication Date
JPS6173598A true JPS6173598A (en) 1986-04-15

Family

ID=16340169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195378A Pending JPS6173598A (en) 1984-09-18 1984-09-18 Voltage rising system of synchronous generator

Country Status (1)

Country Link
JP (1) JPS6173598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144400A (en) * 1987-11-30 1989-06-06 Meidensha Corp Start system for private power generating set
CN104297625A (en) * 2014-11-07 2015-01-21 安徽马钢自动化信息技术有限公司 PT wire breakage diagnosis system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144400A (en) * 1987-11-30 1989-06-06 Meidensha Corp Start system for private power generating set
CN104297625A (en) * 2014-11-07 2015-01-21 安徽马钢自动化信息技术有限公司 PT wire breakage diagnosis system and method

Similar Documents

Publication Publication Date Title
US4203041A (en) Battery/mains generator set for the production of interruption-free current
US7365519B2 (en) Excitation system having inner loop voltage regulator with by-pass capability
JP2008038868A (en) Engine generator
JPS6173598A (en) Voltage rising system of synchronous generator
JP4258779B2 (en) Power generator
US6396247B1 (en) Exciter system with protection for manual regulator failure and an electric generator incorporating same
US1829427A (en) Automatic hydroelectric generating station
JPS60162025A (en) Control method for engine generator
JPH0145278Y2 (en)
US1966232A (en) Regulating system
JPS59165997A (en) Starting system of power system
US2231727A (en) Control system
JPS5964000A (en) Exciter for synchronous generator
US2283662A (en) Excitation control system
JPS5812595A (en) Supplying method for exciting current
US1971808A (en) Regulating system
US1731462A (en) Starting switch for synchronous motors
US1896862A (en) Regulating system
US1739159A (en) Regulator system
US1640321A (en) Starting system for synchronous motors
US2132768A (en) Prime mover dynamo plant
US2754466A (en) Protective converter systems
US1768811A (en) Motor-starting system
JPH10164898A (en) Excitation controller
RU112531U1 (en) REACTIVE POWER COMPENSATOR OF ASYNCHRONOUS ELECTRIC MOTOR