JPS6173569A - Prime mover drive power transmission - Google Patents

Prime mover drive power transmission

Info

Publication number
JPS6173569A
JPS6173569A JP19348984A JP19348984A JPS6173569A JP S6173569 A JPS6173569 A JP S6173569A JP 19348984 A JP19348984 A JP 19348984A JP 19348984 A JP19348984 A JP 19348984A JP S6173569 A JPS6173569 A JP S6173569A
Authority
JP
Japan
Prior art keywords
load
prime mover
rotor
electromagnetic coupling
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19348984A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19348984A priority Critical patent/JPS6173569A/en
Publication of JPS6173569A publication Critical patent/JPS6173569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PURPOSE:To efficiently rotate a load by using two rotors which relatively rotate, electromagnetically coupling them, driving a load by electromagnetically coupling by a prime mover, and further using a wound-rotor type induction motor. CONSTITUTION:An armature winding is provided in one 3 of two opposed rotors 2, 3 which relatively rotate, and the rotors 2, 3 are coupled by an electromagnetic joint 1. a rotor 3 is coupled by a gear unit 8 with the rotor of a rotary electric machine 7 having a stator, and also coupled with a load 11. The machine 7 drives the load 11 by power received by the joint 1. A wound-rotor type induction motor is used in the machine 7, and a resistor 16 is connected to the secondary circuit.

Description

【発明の詳細な説明】 原動機より負荷へ動力を伝達するに際し、歯車装置を用
いずに電磁的な機械の結合で減速しつゝ動力伝達する試
みが特許出願公告昭和53年62号などに示されている
が、負荷の回転速度が低い時、電磁継手と結合する回転
電気機械の大きさが非常に大きくなることにより不経済
な装置になるだけではなく、効率を低下せしめる結果と
なつている。これを改善するために電磁継手と回転電気
機械との間に巧みに歯車装置を結合せしめたのが特許出
願公開昭56−29500号である。それによると、相
対的に回転する二つの相対向する回転子を持つた電磁継
手の回転子の一つを、固定子を持つた回転電気機械の回
転子との間で歯車装置を経て結合すると共に、負荷にも
機械的に結合し、更にこの電磁継手の他方の回転子を原
動機で駆動回転せしめるように配列し、且つ上記回転電
気機械と上記電磁継手の両電機子巻線間を電気接続して
いる。
[Detailed Description of the Invention] When transmitting power from a prime mover to a load, an attempt was made to transmit power while decelerating by using an electromagnetic mechanical connection without using a gear device, as shown in Patent Application Publication No. 62 of 1971, etc. However, when the rotational speed of the load is low, the size of the rotating electrical machine connected to the electromagnetic coupling becomes very large, which not only results in an uneconomical device but also reduces efficiency. . In order to improve this problem, Japanese Patent Application Publication No. 56-29500 cleverly combined a gear device between an electromagnetic coupling and a rotating electric machine. According to this, one of the rotors of an electromagnetic coupling having two opposing rotors that rotate relative to each other is coupled to the rotor of a rotating electric machine having a stator through a gear system. It is also mechanically coupled to a load, further arranged so that the other rotor of the electromagnetic coupling is driven and rotated by a prime mover, and electrically connected between the rotating electric machine and both armature windings of the electromagnetic coupling. are doing.

今船舶の推進を例に考える。エネルギーの節約のため、
船舶推進機関の主力はデイーゼル機関となつたが、デイ
ーゼル機関には400rpm程度の4サイクル機関と1
00rpm程度の2サイクル機関が現在の大容量デイー
ゼル期間の2種類とされる。このようなデイーゼル機関
により駆動される船舶のプロペラの回転速度は上記デイ
ーゼル機関の回転速度を半減させ、400rpmに対し
200rpm程度、100rpmに対し50rpm程度
に低下せしめるのが最近の傾向である。
Let's take ship propulsion as an example. To save energy,
The main type of marine propulsion engine has become the diesel engine, but there are two types of diesel engines: a 4-stroke engine with a speed of about 400 rpm, and a 1-cycle engine with a speed of about 400 rpm.
Two-cycle engines with a speed of about 1,000 rpm are considered to be the two types of current large-capacity diesel engines. The recent trend is to reduce the rotation speed of the propeller of a ship driven by such a diesel engine by half the rotation speed of the diesel engine, to about 200 rpm from 400 rpm, and about 50 rpm from 100 rpm.

本発明はこのような原動機により負荷を駆動せしめる場
合の動力伝達装置に関するものである。
The present invention relates to a power transmission device in which a load is driven by such a prime mover.

今これを本発明の具体的電気接続図例の第1図によつて
説明する。第1図で原動機4によつて電磁継手1の一方
の回転子2をn。rpmなる回転速度で駆動すると、他
方の回転子3はn2で回転しn。−n2なる速度差n1
により電磁継手1は発電電力をスリツプリング6の外へ
出し、その電力を回転電気機械7が受ける。回転子3の
電機子巻線に電流が流れ、回転子1の界磁極との間で電
磁継手の作用が成り立ち、原動機4の回転速度n。
This will now be explained with reference to FIG. 1, which is an example of a specific electrical connection diagram of the present invention. In FIG. 1, one rotor 2 of the electromagnetic coupling 1 is driven by the prime mover 4. When driven at a rotational speed of rpm, the other rotor 3 rotates at n2. -n2 speed difference n1
As a result, the electromagnetic coupling 1 outputs the generated power to the outside of the slip ring 6, and the rotating electrical machine 7 receives the power. A current flows through the armature winding of the rotor 3, and an electromagnetic joint action is established between it and the field poles of the rotor 1, and the rotational speed n of the prime mover 4 increases.

の中のn2分だけ直接負荷11の方へ軸14を通し、電
磁継手1の負荷側回転子3からトルクが伝達され、n1
分が電磁継手1より回転電気機械7へ電力供給される。
Torque is transmitted from the load side rotor 3 of the electromagnetic coupling 1 through the shaft 14 directly toward the load 11 by n2 of the
Electric power is supplied from the electromagnetic coupling 1 to the rotating electric machine 7.

今回転電気機械7を同期電動機とすれば次のような関係
が成立つ。
If the rotating electrical machine 7 is now a synchronous motor, the following relationship holds true.

n1=n0−n2         (1)120f=
p1n1        (2)n2×r=n3   
       (3)n3p2=120f      
  (4)たゞし、fは電気接続線15における交流電
力の周波数、p1とp2はそれぞれ電磁継手1及び回転
電気機械1の極数、n3は回転電気機械7の回転速度、
rは歯車装置8の減速比である。(3)式を(4)式に
代入して(2)式と比較すると、n1=n2×r×p2
/p1    (5)(1)式と(5)式より n0=n2(r×p2/p1+1) (6)電気接続線
15で電磁継手1と回転電気機械7の両電機子巻線間を
逆相順に接続すると、原動機4の回転方向と負荷11の
回転方向が互いに逆方向となり、(1)式はn0+n2
=n1となつて、(6)式はn0=n2(r×p2/p
1−1)となる。たゞし、このような状況を得るには後
述するように、ある条件が必要である。
n1=n0-n2 (1) 120f=
p1n1 (2) n2×r=n3
(3) n3p2=120f
(4) Where, f is the frequency of the AC power in the electrical connection line 15, p1 and p2 are the numbers of poles of the electromagnetic coupling 1 and the rotating electrical machine 1, respectively, and n3 is the rotational speed of the rotating electrical machine 7.
r is the reduction ratio of the gear device 8. Substituting equation (3) into equation (4) and comparing it with equation (2), n1=n2×r×p2
/p1 (5) From equations (1) and (5), n0=n2 (r×p2/p1+1) (6) Reverse the connection between the electromagnetic coupling 1 and the armature windings of the rotating electrical machine 7 using the electrical connection wire 15. When connected in phase order, the rotation direction of the prime mover 4 and the rotation direction of the load 11 are opposite to each other, and equation (1) becomes n0+n2.
= n1, and equation (6) is n0 = n2 (r×p2/p
1-1). However, in order to obtain such a situation, certain conditions are required, as will be described later.

原動機4の回転速度を100rpm、負荷11の回転速
度を50rpmとすると、上記(6)式において、r=
8、p1=32、p2=4とすれば成り立つ。すなわち
、低速原動機4から低速負荷11へ動力伝達する場合、
電磁継手1だけが多極機であり、回転電気機械7を少極
機として造りやすく、安価高効率機となしうる。
When the rotational speed of the prime mover 4 is 100 rpm and the rotational speed of the load 11 is 50 rpm, in the above equation (6), r=
8, p1=32, p2=4. That is, when transmitting power from the low-speed prime mover 4 to the low-speed load 11,
Only the electromagnetic coupling 1 is a multi-pole machine, and the rotating electric machine 7 can be easily manufactured as a small-pole machine, making it a low-cost, high-efficiency machine.

このように特許出願公開昭56−29500の方式は原
則的に良好な動力伝達装置を造りうるのであるが、以上
の説明のように原動機4の回転速度n0と負荷11の回
転速度n2との回転速度比が2対1近傍の場合、(6)
式よりr×p2/p1の値を1近くにしなければならな
い。つまり、電磁継手1の負荷側回転子から出るトルク
と、回転電気機械7の出力軸から歯車装置8を経て負荷
11へ出てゆくトルクとがほゞ等しい状態である。この
ような状況は負荷11の回転方向が原動機4の回転方向
と同一の場合には好ましいけれども、負荷11の回転方
向を逆転させるときには好ましくない。逆転時には前に
述べた式n0=n2(r×p2/p1−1)から判るよ
うにr×p2/p1の値が3以上になることが好ましい
。つまりn0/n2の値が2より大きくならなければ、
船のプロペラのような場合、その出力が機関の走格出力
を超えることになる。然しながら、前進時r×p2/p
1の値を1とし、逆転時r×p2/p1の値を3以上と
することは電磁継手1の方か又は回転電気機械7を極数
変換し、而もその極数変換は電機子巻線を二重に設けな
ければならないような複雑な極数変換を必要とすること
にもなる。特に電磁継手1を極数変換させることは回転
子3のスリツプリング6だけではなく、回転子2のスリ
ツプリング5も倍増させる必要が生じ好ましくない。原
動機4の回転方向を変えることなく、負荷11の回転方
向を変えるのに出来る限り簡単な装置で実現させること
は極めて好ましいことである。而も原動機4の回転方向
と負荷11の回転方向が同一方向の場合には出来る限り
効率が高いことが好ましい。
In this way, the method disclosed in Patent Application Publication No. 56-29500 can in principle produce a good power transmission device, but as explained above, the rotational speed n0 of the prime mover 4 and the rotational speed n2 of the load 11 are When the speed ratio is around 2:1, (6)
According to the formula, the value of r×p2/p1 must be close to 1. In other words, the torque output from the load-side rotor of the electromagnetic coupling 1 and the torque output from the output shaft of the rotating electric machine 7 via the gear device 8 to the load 11 are approximately equal. Although such a situation is preferable when the rotational direction of the load 11 is the same as the rotational direction of the prime mover 4, it is not preferable when the rotational direction of the load 11 is reversed. At the time of reversal, it is preferable that the value of rxp2/p1 be 3 or more, as seen from the equation n0=n2 (rxp2/p1-1) described above. In other words, unless the value of n0/n2 becomes greater than 2,
In the case of a ship's propeller, its output exceeds the engine's running output. However, when moving forward, r×p2/p
If the value of 1 is 1, and the value of r×p2/p1 at the time of reverse rotation is 3 or more, the number of poles of the electromagnetic coupling 1 or the rotating electrical machine 7 is changed, and the number of poles is changed by the armature winding. This also requires complicated pole number conversion, which requires the provision of double wires. In particular, changing the number of poles of the electromagnetic coupling 1 is not preferable because it requires doubling not only the slip ring 6 of the rotor 3 but also the slip ring 5 of the rotor 2. It is extremely preferable to change the rotational direction of the load 11 without changing the rotational direction of the prime mover 4 using a device as simple as possible. Moreover, it is preferable that the efficiency is as high as possible when the rotation direction of the prime mover 4 and the rotation direction of the load 11 are the same direction.

本発明の目的は原動機4より負荷11を駆動するような
動力伝達装置を造るに際し、原動機4の回転方向と負荷
11の回転方向が同一方向に駆動回転せしめられる時に
は効率よく回転せしめられ而も原動機4の回転方向と負
荷11の回転方向を互いに逆転可能とならしめるように
する配列を出来る限り簡単な装置により実施することを
目的とする。
An object of the present invention is to produce a power transmission device that drives a load 11 from a prime mover 4, and to efficiently rotate the prime mover when the rotation direction of the prime mover 4 and the rotation direction of the load 11 are driven in the same direction. It is an object of the present invention to implement an arrangement in which the direction of rotation of the load 11 and the direction of rotation of the load 11 can be reversed with the simplest possible device.

このような目的を達成せしめるため、本発明ではその具
体的な電気接続図例の第1図に示すように、相対的に回
転する二つの相対向する回転子2と3を有し、少なくと
もその一方の回転子2と3何れかの回転子(図では3)
に電機子巻線を設け、一方の回転子に対し他方の回転子
を相対的に駆動回転せしめた電磁継手1の回転子の一つ
3を、固定子を持つた回転電気機械7の回転子との間で
歯車装置8を経て結合すると共に、負荷11にも機械的
に結合し、更にこの電磁継手1の他方の回転子2を原動
機4で駆動回転せしめるように配列し、これによつて上
記原動機4から上記電磁継手1を経て負荷11を駆動せ
しめるようにし、而も上記回転電気機械と上記電磁継手
の両電機子巻線間を電気接続し上記回転電気機械7が電
磁継手1より受けた電力により負荷を駆動するようにし
た配列において、上記回転電気機械7を巻線形誘導電動
機とし、その二次回路に抵抗16を接続するように配列
する。
In order to achieve such an object, the present invention has two rotors 2 and 3 facing each other, which rotate relative to each other, as shown in FIG. Either rotor 2 or 3 (3 in the diagram)
One of the rotors 3 of the electromagnetic coupling 1 is provided with an armature winding, and one rotor is driven to rotate relative to the other rotor. and is mechanically coupled to the load 11 through the gear device 8, and is further arranged so that the other rotor 2 of the electromagnetic coupling 1 is driven and rotated by the prime mover 4, thereby A load 11 is driven from the prime mover 4 through the electromagnetic coupling 1, and an electrical connection is made between both armature windings of the rotating electrical machine and the electromagnetic coupling, so that the rotating electrical machine 7 is driven by the electromagnetic coupling 1. In the arrangement in which the load is driven by the electric power generated, the rotary electric machine 7 is a wound induction motor, and the arrangement is such that the resistor 16 is connected to the secondary circuit thereof.

今このような配列とする場合、どのような効果があるか
を考える。例えば原動機4の回転速度が400rpmと
し負荷11の回転速度が200rpmとする時、負荷1
1の回転方向が原動機4の回転方向と同一方向であると
、(6)式からr×p2/p1=1であり、電磁継手1
の負荷側回転子3の出力とその電気的出力すなわち電動
機7の出力とはほゞ等しい。すなわち負荷11への出力
軸14への出力トルクは電磁継手1の回転子3の出力軸
17から與えられるトルクと回転電気機械7から歯車装
置8を経て與えられるトルクはほゞ等しい。歯車装置8
はそれを構成する大歯車9とピニオン10により減速比
rを得る。電磁継手1の一方の回転子2のスリツプリン
グ5を通して外部からその界磁巻線へ励磁電流が供給さ
れる。このようにして負荷11の正転時には回転電気機
械7の出力は全体の原動機4の出力の1/2を受けもつ
のであるが、これを巻線形誘導電動機とした場合、その
歯車装置8を経て負荷11に與えられるトルクは第2図
でt1のようになる。この場合、(4)式がn3p2=
120f(1−S)となる。たゞしSはすべりである。
Now, let's think about what kind of effect it would have if we had an array like this. For example, when the rotation speed of the prime mover 4 is 400 rpm and the rotation speed of the load 11 is 200 rpm, the load 1
If the rotation direction of the motor 1 is the same as the rotation direction of the prime mover 4, then r×p2/p1=1 from equation (6), and the electromagnetic coupling 1
The output of the load-side rotor 3 and its electrical output, that is, the output of the motor 7, are approximately equal. That is, the output torque to the output shaft 14 to the load 11 is that the torque given from the output shaft 17 of the rotor 3 of the electromagnetic coupling 1 and the torque given from the rotating electric machine 7 via the gear device 8 are approximately equal. Gear device 8
obtains a reduction ratio r by the large gear 9 and pinion 10 that constitute it. Excitation current is supplied from the outside to the field winding through the slip ring 5 of one rotor 2 of the electromagnetic coupling 1. In this way, when the load 11 rotates in the normal direction, the output of the rotating electric machine 7 takes on 1/2 of the output of the entire prime mover 4, but if this is a wound induction motor, the output is The torque applied to the load 11 is shown as t1 in FIG. In this case, equation (4) is n3p2=
120f(1-S). However, S is slip.

第2図において横軸にすべり、縦軸にトルクTをとる。In Fig. 2, the horizontal axis represents slip, and the vertical axis represents torque T.

第2図のt1はトルク曲線であり、その中のT0がその
作動点である。これに対して原動機4の回転方向を一定
のまゝ変えずに負荷11の回転方向を逆にするには巻線
形誘導電動機7を極数変換する。その極数変換は第3図
にその一次側巻線で示される。前の例でr=8、p1=
32、p2=4と云う例を正転時に示したが、このp2
を8とする。そのように4極を8極とするような極数比
が1対2の場合は巻線接続が簡単であり、第3図で示す
と次のようになる。すなわち、極数が小さい4極の場合
、第3図の三相巻線でT1、T2、T3を端子とし、T
4、T5、T6をそのまゝ開放したデルター接続とし、
極数が大きい8極の場合、T4、T5、T6を端子とし
、T1、T2、T3を短絡して二重星形接続とする。こ
のようにすると、巻線形誘導電動機7は極数が小さい時
第2図でt1なる特性を持つに対して、極数が大きい時
第2図でt2なるトルク特性を持つことになる。負荷1
1の回転方向が原動機4の回転方向と同一の場合、前述
のように電磁継手1の回転子3の出力軸17から出るト
ルクは巻線形誘導電動機7の歯車装置8を通して出すト
ルクT0とほゞ等しいと考えられるから、そのような状
況において電気接続線15に設けられた逆相接続のため
の開閉装置は図では示されていないが、それを通して逆
相接続し、上記のような極数変換をして電磁継手1と巻
線形誘導電動機7を接続すれば、巻線形誘導電動機7の
出しうるトルクは第2図でt2、t3、t4、t5とな
るため、これらのトルクは明らかに電磁継手1の回転子
3の出力軸17から出るトルクすなわちT0よりも大き
くなり、巻線形誘導電動機7のトルクによつて電磁継手
1の負荷側回転子3の回転方向を逆回転させることにな
る。第2図のトルク曲線t2〜t5は巻線形誘導電動機
7のスリツプリング12から出る回路に設けられた制御
装置13により、この二次回路に接続される抵抗16の
値を制御して調整しうるもので、正逆転換の最初の時点
では挿入する抵抗16の値を調整してS>1の点で最高
のトルク値が来るt5〜t4の曲線上に乗せると、負荷
11の逆転が容易となる。
t1 in FIG. 2 is a torque curve, and T0 in the torque curve is its operating point. On the other hand, in order to reverse the rotational direction of the load 11 without changing the rotational direction of the prime mover 4, the number of poles of the wound induction motor 7 is changed. The pole conversion is shown in FIG. 3 with its primary winding. In the previous example, r=8, p1=
32, an example of p2=4 was shown during normal rotation, but this p2
is 8. When the pole number ratio is 1:2, such as 4 poles to 8 poles, the winding connection is simple, and as shown in FIG. 3, it is as follows. In other words, in the case of a four-pole structure with a small number of poles, T1, T2, and T3 are the terminals in the three-phase winding shown in Figure 3, and T
4. Make a delta connection with T5 and T6 open as they are,
In the case of eight poles, which have a large number of poles, T4, T5, and T6 are used as terminals, and T1, T2, and T3 are shorted to form a double star connection. In this way, the wound induction motor 7 has a torque characteristic of t1 in FIG. 2 when the number of poles is small, whereas it has a torque characteristic of t2 in FIG. 2 when the number of poles is large. load 1
1 is the same as the rotation direction of the prime mover 4, the torque output from the output shaft 17 of the rotor 3 of the electromagnetic coupling 1 is approximately equal to the torque T0 output through the gear device 8 of the wound induction motor 7, as described above. Since it is considered that they are equal, in such a situation, the switchgear for reverse phase connection provided in the electrical connection line 15 is not shown in the figure, but through it the reverse phase connection can be made and the number of poles can be changed as described above. If the electromagnetic coupling 1 and the wound induction motor 7 are connected using The torque from the output shaft 17 of the rotor 3 of No. 1, that is, T0, is larger than that, and the torque of the wound induction motor 7 causes the load-side rotor 3 of the electromagnetic coupling 1 to rotate in the opposite direction. The torque curves t2 to t5 in FIG. 2 can be adjusted by controlling the value of the resistor 16 connected to this secondary circuit by a control device 13 provided in the circuit exiting from the slip ring 12 of the wound induction motor 7. Therefore, at the beginning of forward/reverse conversion, if the value of the resistor 16 to be inserted is adjusted to place it on the curve from t5 to t4 where the highest torque value is reached at the point S>1, the load 11 can be easily reversed. Become.

このようにして巻線形誘導電動機7の正逆転換は簡単に
最も簡略の1:2極数比の極数変換と二次回路抵抗挿入
によりおこないうるが、これは極めて過渡的な状態にあ
つて若干の損失は問題でない。然し、負荷11の回転方
向が原動機4の回転方向と同一である定常時にはその運
転効率が問題である。そこで巻線形誘導電動機7の二次
回路は第1図に示されるように直流電源15より直流励
磁電流を供給することが好ましい。第1図では巻線形誘
導電動機7の二次三相巻線の中、二相の巻線端子間を短
絡し、それと他の一相巻線との間に直流電圧を加え、直
流励磁電流を供給する。このようにすれば定常時、巻線
形誘導電動機7は直流励磁された界磁極を持つた同期電
動機として効率高く運転されうる。定常時に界磁極を直
流励磁される同期電動機の場合、固定子と回転子間が若
干大きい空隙距離を持つたとしても比較的効率良く運転
されうる。そのため巻線形誘導電動機7の容量が例えば
500KW、1000KW、と云うように大きくなつて
も造りやすいものとなるのである。
In this way, the forward/reverse conversion of the wound induction motor 7 can be easily performed by changing the number of poles to the simplest 1:2 pole number ratio and inserting a secondary circuit resistor, but this is in an extremely transient state. A little loss is not a problem. However, during steady state when the rotational direction of the load 11 is the same as the rotational direction of the prime mover 4, the operating efficiency is a problem. Therefore, it is preferable that the secondary circuit of the wound induction motor 7 is supplied with a DC excitation current from a DC power supply 15 as shown in FIG. In Fig. 1, in the secondary three-phase winding of the wound induction motor 7, the two-phase winding terminals are short-circuited, a DC voltage is applied between this and the other single-phase winding, and a DC excitation current is generated. supply In this way, during steady state, the wound induction motor 7 can be efficiently operated as a synchronous motor having field poles excited by direct current. In the case of a synchronous motor whose field poles are DC-excited in steady state, it can be operated relatively efficiently even if the gap distance between the stator and rotor is somewhat large. Therefore, even if the capacity of the wound induction motor 7 becomes large, for example, 500 KW or 1000 KW, it can be easily manufactured.

以上本発明の作用効果をまとめると、次のようになる。The effects of the present invention can be summarized as follows.

(1)第1図に示すような原動機4より負荷11を駆動
し、その間に例えば負荷11の正転時に原動機回転速度
の1/2程度になるような負荷回転速度を持つ場合、負
荷の回転方向を原動機4の回転方向と同一にしながら駆
動する定常時に運動効率を高めながら、而も負荷11の
回転方向を原動機4の回転方向と逆の方向へ向ける過渡
状態において円滑に負荷の回転方向を反転せしめうる。
(1) When the load 11 is driven by the prime mover 4 as shown in FIG. The rotational direction of the load 11 can be changed smoothly in a transient state in which the rotational direction of the load 11 is opposite to the rotational direction of the prime mover 4 while increasing the motion efficiency in a steady state where the driving direction is the same as the rotational direction of the prime mover 4. It can be reversed.

(2)上に述べた作動を簡単な装置で実現せしめ、安価
な装置とする。
(2) The above-mentioned operation can be realized with a simple device and the device can be inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な電気接続図例であり第2図は
本発明の装置中に用いられる誘導電動機の特性図例、第
3図は本発明の装置中に用いられる巻線形誘導電動機の
電機子巻線接続の切り替えを説明するための図、である
。 また図中、主要な部分をあらわす符号は次のようである
。 1:電磁継手、 2、3:電磁継手回転子、4:原動機
、 5:スリツプリング、 6:スリツプリング、 7
:巻線形誘導電動機、 8:歯車装置、 9:歯車装置
8を構成する大歯車、10:歯車装置8を構成するピニ
オン、 11:負荷、 12:巻線形誘導電動機7のス
リツプリング、 13:巻線形誘導電動機7の制御装置
、14:出力軸、 15:電気接続線、 16:抵抗、
 17:電磁継手1の負荷側回転子出力軸、 T1、T
2、T3、T4、T5、T6:端子、 T0:トルク曲
線上の作動点、 t1、t2、t3、t4、t5:トル
ク曲線
Fig. 1 is an example of a specific electrical connection diagram of the present invention, Fig. 2 is an example of a characteristic diagram of an induction motor used in the device of the present invention, and Fig. 3 is a wound wire induction motor used in the device of the present invention. FIG. 3 is a diagram for explaining switching of armature winding connections of a motor. In addition, the symbols representing the main parts in the figure are as follows. 1: Electromagnetic coupling, 2, 3: Electromagnetic coupling rotor, 4: Prime mover, 5: Slip ring, 6: Slip ring, 7
: Wound induction motor, 8: Gear device, 9: Large gear forming gear device 8, 10: Pinion forming gear device 8, 11: Load, 12: Slip ring of wound induction motor 7, 13: Winding Control device for linear induction motor 7, 14: Output shaft, 15: Electrical connection line, 16: Resistor,
17: Load side rotor output shaft of electromagnetic coupling 1, T1, T
2, T3, T4, T5, T6: terminal, T0: operating point on torque curve, t1, t2, t3, t4, t5: torque curve

Claims (1)

【特許請求の範囲】[Claims] 相対的に回転する二つの相対向する回転子を有し、少な
くともその一方の回転子に電機子巻線を設け、一方の回
転子に対し他方の回転子を相対的に駆動回転せしめた電
磁継手の回転子の一つを、固定子を持った回転電気機械
の回転子との間で歯車装置を経て結合すると共に、負荷
にも機械的に結合し、更にこの電磁継手の他方の回転子
を原動機で駆動回転せしめるように配列し、これによっ
て上記原動機から上記電磁継手を経て負荷を駆動せしめ
るようにし、而も上記回転電気機械と上記電磁継手の両
電機子巻線間を電機接続して上記回転電機機械が電磁継
手より受けた電力により負荷を駆動するようにした配列
において、上記回転電気機械を巻線形誘導電動機とし、
その二次回路に抵抗を接続するような配列した原動機駆
動動力伝達装置
An electromagnetic joint that has two rotors that rotate relative to each other, and that has an armature winding on at least one of the rotors, and drives and rotates one rotor relative to the other rotor. One of the rotors of the electromagnetic coupling is coupled to the rotor of a rotating electric machine having a stator through a gear system, and is also mechanically coupled to the load, and the other rotor of this electromagnetic coupling is The rotary electric machine is arranged so as to be driven and rotated by a prime mover, thereby driving a load from the prime mover via the electromagnetic coupling, and the rotary electric machine and the armature windings of the electromagnetic coupling are electrically connected to each other. In an arrangement in which the rotating electric machine drives a load using electric power received from an electromagnetic coupling, the rotating electric machine is a wound induction motor,
A prime mover drive power transmission device arranged in such a way that a resistor is connected to its secondary circuit.
JP19348984A 1984-09-15 1984-09-15 Prime mover drive power transmission Pending JPS6173569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19348984A JPS6173569A (en) 1984-09-15 1984-09-15 Prime mover drive power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19348984A JPS6173569A (en) 1984-09-15 1984-09-15 Prime mover drive power transmission

Publications (1)

Publication Number Publication Date
JPS6173569A true JPS6173569A (en) 1986-04-15

Family

ID=16308884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19348984A Pending JPS6173569A (en) 1984-09-15 1984-09-15 Prime mover drive power transmission

Country Status (1)

Country Link
JP (1) JPS6173569A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414400A (en) * 1977-07-04 1979-02-02 Denki Kagaku Kogyo Kk Method and equipment for producing calcium carbide
JPS56156420A (en) * 1980-05-02 1981-12-03 Fukuo Shibata Transmission device for motive power of prime mover

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414400A (en) * 1977-07-04 1979-02-02 Denki Kagaku Kogyo Kk Method and equipment for producing calcium carbide
JPS56156420A (en) * 1980-05-02 1981-12-03 Fukuo Shibata Transmission device for motive power of prime mover

Similar Documents

Publication Publication Date Title
US3683249A (en) Electric machine arrangement combining electromagnetic coupling with electric rotating machine
EP0467517B1 (en) Dual-stator induction synchronous motor
US8232700B2 (en) Multi-rotor electric machine
GB1435314A (en) Superconducting rotating electrical machines
JP5291880B2 (en) Ship propulsion system
EP1116320A1 (en) A synchronous machine with rotating brushes
HU193143B (en) Ehlektricheskij dvigatel's reguliruemym magnitnym potokom i izmenjaemoj skorostej vrahhenija
US4755700A (en) Variable speed AC motor
US5285124A (en) Brushless induction synchronous motor with two stators
US4445081A (en) Leading power factor induction motor device
CN112072819A (en) Multi-torque motor and control and starting method
KR100231228B1 (en) Superconducting motor with multiple winding rotor
US1770871A (en) Double-speed, synchronous, dynamo-electric machine
JPS6173569A (en) Prime mover drive power transmission
US5160868A (en) Adjustable brush ac/dc servo motor
JPS61135400A (en) Prime mover drive power transmitter
SU1270863A1 (en) Two-motor electric drive
US3339131A (en) Multi-speed, self-excited ac motor system
SU1436207A1 (en) Single-phase induction motor
GB191513481A (en) Improvements in Electric Motors.
JP2000236698A (en) Wind power generating device
GB191512444A (en) Improvements in and relating to Systems of Electric Ship Propulsion.
JPH0121720B2 (en)
JPS6169393A (en) Prime mover drive power transmission
SU765943A1 (en) Electric drive of coaxial mechanisms of counter rotation