JPS6172859A - Suction heating controller for internal-combustion engine - Google Patents

Suction heating controller for internal-combustion engine

Info

Publication number
JPS6172859A
JPS6172859A JP59193713A JP19371384A JPS6172859A JP S6172859 A JPS6172859 A JP S6172859A JP 59193713 A JP59193713 A JP 59193713A JP 19371384 A JP19371384 A JP 19371384A JP S6172859 A JPS6172859 A JP S6172859A
Authority
JP
Japan
Prior art keywords
time
ptc heater
valve
heater
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59193713A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
俊明 田中
Keiji Toyoda
豊田 慶治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59193713A priority Critical patent/JPS6172859A/en
Publication of JPS6172859A publication Critical patent/JPS6172859A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/13Combustion air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve suction charging efficiency in time of driving at high speed, by installing a separate suction passage provided with an on-off valve interposingly so as to bypass a PTC heater to be installed in another suction passage, while making this on-off valve open at a time when a heater current is more than the specified value. CONSTITUTION:In time of engine (1) running, that whether cooling water temperature Tw detected by a water temperature sensor 26 at a control unit 24 is lower than the specified value Tws or not is discriminated, and when judgment it YES, a switch 21 is closed, energizing a PTC heater with a continuous rating current, and suction preheating is carried out with this heater. Next, on the basis of an on-off signal out of a starter switch 27 after the elapse of the specified time, whether starting is completed or not is discriminated, and in time of engine starting completion, a PTC heater current Ih detected at a current detecting resistor 28 is compared with the specified value Ih1. And, in time of running at high speed to be Ih>=Ih1, feed of the continuous rating current to a solenoid valve 15 takes place, and negative pressure is led into a diaphragm device 13, making a valve element 11 open. With this constitution, suction air is inhaled in the engine without any pressure loss.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関の吸気加熱に用いられる吸気加熱制
御装置に係り、特にPTCヒータを用いた吸気加熱′@
茜の制御装置に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an intake air heating control device used for heating the intake air of an internal combustion engine, and in particular to an intake air heating control device using a PTC heater.
It concerns Akane's control device.

従来の技術 ディーゼル機関の冷間始動性の改善と冷間運転時の白煙
排出量の低減のために、一般にインテークヒータと称さ
れている吸気通路の途中に設けられた吸気加熱装置によ
って吸気を加熱することが有効であることは従来より良
く知られている。この吸気加熱に用いられる吸気加熱装
置は、従来より種々の態様にて提案されており、その一
つとして、格子構造の正特性ザーミスタ製のPTCヒー
タを用いたものが、特開昭56−148658号、実開
昭58−25652号に於て公開されている。
Conventional Technology In order to improve the cold startability of diesel engines and reduce white smoke emissions during cold operation, intake air is heated by an intake air heating device installed in the middle of the intake passage, generally called an intake heater. It is well known that heating is effective. Intake air heating devices used for this intake air heating have been proposed in various forms in the past, one of which uses a PTC heater made of a positive temperature coefficient thermistor with a lattice structure, as disclosed in Japanese Patent Laid-Open No. 56-148658. No., Utility Model Publication No. 58-25652.

PTCヒータは、金属製ヒータに比して形状の自由度が
高く、多くの場合、吸気通路を横切って配置されて通気
性と大きい熱交換表面積(発熱表面1)を得るために四
角格子或いはハニカム格子の如き格子状に、即ち通気構
造の形成されており、この板状ヒータは格子寸法が小さ
いほど大きい発熱表面積を備えるようになる。
PTC heaters have a higher degree of freedom in shape than metal heaters, and are often placed across the intake passage in a square lattice or honeycomb shape to obtain ventilation and a large heat exchange surface area (heating surface 1). The plate-shaped heater is formed in a lattice-like shape, that is, a ventilation structure, and the smaller the lattice size is, the larger the heat-generating surface area becomes.

上述の如き吸気加熱装置に於ては、PTCヒータの発熱
表面積が大きいほど吸気加熱が急速に行われ、このこと
はディーゼルvtigllの冷間始動性の改善と冷間運
転時の白煙排出量の低減には好ましいことではあるが、
しかしPTCヒータの発熱表面積の増大のためにその格
子1法が小さいほどPTCヒータは、機関運転中に於て
は吸気抵抗になり、特に高速運転時には機関吸気系の圧
損を増大し、機関出力を低下させる原因になる。
In the above-mentioned intake air heating device, the larger the heat generating surface area of the PTC heater, the more rapidly the intake air is heated. Although this is favorable for reducing
However, due to the increase in the heat generating surface area of the PTC heater, the smaller the lattice size, the more the PTC heater becomes an intake resistance during engine operation, increases the pressure drop in the engine intake system especially during high-speed operation, and reduces the engine output. This may cause a decrease in the temperature.

PTCヒータによる機関吸気系の圧損を回避するために
、吸気通路を横切って配置されたPTCヒータをバイパ
スしたバイパス吸気通路が設けられ、吸気加熱時には遮
断弁により前記バイパス吸気通路を閉じ、吸気加熱を行
わない時には前記遮断弁を開いて前記バイパス吸気通路
を吸気が流れるよう構成された吸気加熱制御装置が実開
昭57−182253号に於て示されている。
In order to avoid pressure loss in the engine intake system caused by the PTC heater, a bypass intake passage is provided that bypasses the PTC heater placed across the intake passage, and when the intake air is heated, the bypass intake passage is closed by a shutoff valve and the intake air is heated. Japanese Utility Model Application Publication No. 57-182253 discloses an intake air heating control device configured to open the shutoff valve and cause intake air to flow through the bypass intake passage when the operation is not performed.

発明が解決しようとする問題点 上述の如き吸気加熱制御装置は所期の目的を達成するが
、吸気加熱時には常にバイパス吸気通路が閉じられて良
いかと云うとそうではなく、吸気の全てが常にPTCヒ
ータを通過して流れるよう構成されていると、積極的な
吸気加熱を必要としない高速運転時にも多聞の吸気がP
TCヒータを通過するため、PTCヒータの消費電力が
著しく増大して電力が無駄に消費され、またこの時には
PTCヒータによる吸気抵抗により充填効率が著しく低
下する。
Problems to be Solved by the Invention Although the above-mentioned intake air heating control device achieves the intended purpose, this does not mean that the bypass intake passage is always closed when heating the intake air, and that all of the intake air is always kept under PTC. If configured to flow through the heater, a large amount of intake air P can be reduced even during high-speed operation when active intake air heating is not required.
Since the air passes through the TC heater, the power consumption of the PTC heater increases significantly, resulting in wasted power consumption, and at this time, the filling efficiency is significantly reduced due to the intake resistance caused by the PTC heater.

問題点を解決するための手段 上述の如き問題点に鑑み、本発明による吸気加熱制御]
装置は、途中に吸気通路を横切って段番プられた通気構
造のPTCヒータを有する第一の吸気通路と、前記第一
の吸気通路と並列に設けられ途中に吸気通路を開閉する
弁を有する第二の吸気通路とを有する内燃機関の吸気加
熱制御装置にして、前記PTCヒータを流れる電流を検
出する手段を有し、前記電流が所定値以下の時には前記
弁を閉弁駆動し、前記電流が所定値以上の時には前記弁
を開弁駆動することを特徴としている。
Means for Solving the Problems In view of the above-mentioned problems, intake air heating control according to the present invention]
The device includes a first intake passage having a PTC heater with a ventilation structure arranged in a stepped manner across the intake passage, and a valve provided in parallel with the first intake passage and opening/closing the intake passage in the middle. an intake air heating control device for an internal combustion engine having a second intake passage, the device includes means for detecting a current flowing through the PTC heater, and when the current is below a predetermined value, the valve is driven to close; is characterized in that the valve is driven to open when is equal to or greater than a predetermined value.

発明の作用及び効果 PTCヒータを流れる電流は、PTCヒータ自身の温度
−電気特性からして、PTCヒータの放熱量の増大、換
言すればPTCヒータを通過する吸気の流量の増大に応
じて増大するから、高速運転時にはPTCヒータを流れ
る電流が増大する。
Functions and Effects of the Invention Considering the temperature-electrical characteristics of the PTC heater itself, the current flowing through the PTC heater increases as the amount of heat dissipated by the PTC heater increases, or in other words, as the flow rate of intake air passing through the PTC heater increases. Therefore, the current flowing through the PTC heater increases during high-speed operation.

このため本発明による吸気加熱制御装置の如(、前記電
流に応じて前記弁の開閉が制御されることにより、前記
電流に応じてPTCヒータを流れる吸気の流量がフィー
ドバック制御式に制御され、この吸気流量が過剰に増大
することが回避されると同時にPTCヒータを流れる電
流がフィードバック制御式に制限され、PTCヒータの
消費電力が著しく増大することが回避される。また上述
の如<PTCヒータを通過(〕て流れる吸気の流量が制
御されることにより機関吸気系の圧損がPTCヒータに
よって増大することが回避される。
Therefore, as in the intake air heating control device according to the present invention (by controlling the opening and closing of the valve according to the current, the flow rate of the intake air flowing through the PTC heater according to the current is controlled in a feedback control manner, At the same time, the intake flow rate is prevented from increasing excessively, and at the same time, the current flowing through the PTC heater is limited by feedback control, thereby avoiding a significant increase in the power consumption of the PTC heater. By controlling the flow rate of the intake air flowing through the engine, pressure loss in the engine intake system is prevented from increasing due to the PTC heater.

実施例 Jメ下に添付の図を参照して本発明を実施例について詳
細に説明する。
EXAMPLE J The present invention will be described in detail with reference to the accompanying drawings below.

第1図は本発明による吸気加熱制御装置の一つの実施例
を示している。第1図に於て、1はディーゼル機関を、
2は吸気マニホールドを、3は吸気加熱装置を、4はエ
アクリーナを各々示している。
FIG. 1 shows one embodiment of the intake air heating control device according to the present invention. In Figure 1, 1 indicates a diesel engine,
Reference numeral 2 indicates an intake manifold, 3 indicates an intake air heating device, and 4 indicates an air cleaner.

吸気加熱装M3は互いに並列に設けられた第一の吸気通
路5と第二の吸気通路6とを有している。
The intake air heating device M3 has a first intake passage 5 and a second intake passage 6 that are provided in parallel with each other.

第一の吸気通路5の途中には格子構造の通気性を有する
PTCヒータ7が該吸気通路を横切って設けられている
。第二の吸気通路6の途中には該吸気通路を開閉する弁
要素11が設けられている。
In the middle of the first intake passage 5, a PTC heater 7 having a lattice structure and having ventilation is provided across the intake passage. A valve element 11 is provided in the middle of the second intake passage 6 to open and close the second intake passage.

弁要素11は弁軸10の回転により第二の吸気通路6を
閉鎖した開弁位置と第二の吸気通路6の連通を確立した
開弁位置との間に移動するようになっている。弁軸10
の一端部には駆動レバー12が取付けられており、該駆
動レバーはダイヤフラム装置13のロッド14に駆動連
結されている。
The valve element 11 is configured to move by rotation of the valve shaft 10 between a valve open position in which the second intake passage 6 is closed and a valve open position in which communication between the second intake passage 6 and the second intake passage 6 is established. Valve stem 10
A drive lever 12 is mounted at one end and is drivingly connected to a rod 14 of a diaphragm device 13.

ダイヤフラム装置13は、そのダイヤフラム室に所定値
以上の負圧を導入されていない時には弁要素11を前記
閉弁位置に駆動し、これに対しダイヤフラム室に所定値
以上の負圧を導入されている時には弁要素11を前記開
弁位置に駆動するようになっている。
The diaphragm device 13 drives the valve element 11 to the closed position when a negative pressure of a predetermined value or more is not introduced into the diaphragm chamber, whereas a negative pressure of a predetermined value or more is introduced into the diaphragm chamber. At times, the valve element 11 is driven into said open position.

ダイヤフラム装置13のダイヤフラム室は電磁弁15の
ポート4に接続されている。電磁弁15は、ポートa以
外に負圧ポンプ16に接続された負圧ポートbと大気中
に開放された大気圧ポートCとを有しており、通電時に
はポートaを負圧ポートbに接続し、これに対し非通電
時にはポートaをポートbに代えてポートCに接続する
ようになっている。従って、電磁弁15に通電が行われ
ている時にはダイヤフラム装置13のダイヤフラム室に
所定値以上の負圧が導入されて弁要素11が開弁位置に
位置し、電磁弁15に通電が行われていない時にはダイ
ヤフラム装置13のダイヤフラム室に大気圧が導入され
て弁要素11が開弁位置に位置する。
The diaphragm chamber of the diaphragm device 13 is connected to the port 4 of the solenoid valve 15 . In addition to port a, the solenoid valve 15 has a negative pressure port b connected to the negative pressure pump 16 and an atmospheric pressure port C opened to the atmosphere, and when energized, port a is connected to negative pressure port b. However, when the power is not energized, port a is connected to port C instead of port B. Therefore, when the solenoid valve 15 is energized, a negative pressure equal to or higher than a predetermined value is introduced into the diaphragm chamber of the diaphragm device 13, the valve element 11 is located in the open position, and the solenoid valve 15 is energized. When not, atmospheric pressure is introduced into the diaphragm chamber of the diaphragm device 13 and the valve element 11 is in the open position.

PTCヒータ7はバッテリ電源20より電流をヒータ用
電気スイッチ21及び電流検出用抵抗器28を経て選択
的に供給されるようになっている。
The PTC heater 7 is configured to be selectively supplied with current from a battery power source 20 via a heater electric switch 21 and a current detection resistor 28.

電磁弁15に対する通電の制御及びヒータ用電気スイッ
チ21とインジケータランプ22の電気スイッチ23の
開閉はマイクロコンピュータを含む電気式の制御装置2
4により第2図に示されている如きフローチャートに従
って行われるようになっている。
Control of energization to the solenoid valve 15 and opening/closing of the heater electric switch 21 and the electric switch 23 of the indicator lamp 22 are performed by an electric control device 2 including a microcomputer.
4, the process is carried out according to a flowchart as shown in FIG.

第2図に示されたフローチャートはエンジンキーがキー
ホールに差込まれたことによってキースイッチ25がオ
ン状態になった時に開始される。
The flowchart shown in FIG. 2 starts when the engine key is inserted into the keyhole and the key switch 25 is turned on.

最初のステップ1に於ては、水温センサ26により検出
された機関冷却水温度Twが所定wITwsetより低
いか否かの判別が行われる。TW≦Jwsetである時
、即ち冷間始動時にはステップ2へ進み、これに対しT
W≦T wsetでない時にはステップ6へ進む。
In the first step 1, it is determined whether the engine cooling water temperature Tw detected by the water temperature sensor 26 is lower than a predetermined value wITwset. When TW≦Jwset, that is, at cold start, proceed to step 2;
If W≦T wset is not satisfied, the process proceeds to step 6.

ステップ2に於ては、ヒータ用電気スイッチ21を閉じ
、またランプ用電気スイッチ23を閉じることが行われ
る。これによりPTCヒータ7に通電が行われてPTC
ヒータ7が発熱し、またインジケータランプ22が点灯
して吸気子側熱中であることを運転者に知らせることが
行われる。尚、この時には電磁弁15には通電が行われ
ていないから、弁要素11は閉弁位置に位置して第二の
吸気通路を閉じている。
In step 2, the heater electric switch 21 is closed and the lamp electric switch 23 is closed. As a result, the PTC heater 7 is energized and the PTC
The heater 7 generates heat and the indicator lamp 22 lights up to notify the driver that the intake child is heating up. Note that, at this time, since the electromagnetic valve 15 is not energized, the valve element 11 is located at the valve-closed position and closes the second intake passage.

ステップ2の次はステップ3へ進み、ステップ3に於て
は、この時の冷却水温度1”wに応じて始動前のプレヒ
ート時間1.と始動後のアフタヒート時間t2とを決定
することが行われる。プレヒート時間t1とアフタヒー
ト時間【2とはともに冷却水mWが低いほど長く設定さ
れる。
After step 2, proceed to step 3, and in step 3, the preheat time 1 before starting and the afterheat time t2 after starting are determined according to the cooling water temperature 1"w at this time. Both the preheat time t1 and the afterheat time [2] are set longer as the cooling water mW is lower.

ステップ3の次はステップ4へ進み、このステップ4に
於ては、ヒータ用電気スイッチ21が閉じられてから、
即ちPTCヒータ7に対する通電が開始されてから所定
時間tlが経過したか否かの判別が行われる。所定時間
1.が経過していない時にはこのステップ4が繰返し実
行され、所定時間【電が経過した時には次のステップ5
へ進む。
After step 3, proceed to step 4, and in step 4, after the heater electric switch 21 is closed,
That is, it is determined whether a predetermined time tl has elapsed since energization of the PTC heater 7 was started. Predetermined time 1. If the period of time has not elapsed, this step 4 is executed repeatedly, and when the predetermined period of time has elapsed, the next step 5 is executed.
Proceed to.

ステップ5に於ては、ランプ用電気スイッチ23を開く
ことが行われる。これによりインジケータランプ22が
消灯し、吸気予加熱(プレヒート)が完了したことを運
転者に知らせることが行われる。ステップ5の次はステ
ップ6へ進む。
In step 5, the lamp electric switch 23 is opened. As a result, the indicator lamp 22 turns off, and the driver is notified that the intake air preheating (preheating) has been completed. After step 5, proceed to step 6.

ステップ6に於ては、スタータスイッチ27のオン−オ
フ信号よりスタータによるディーゼル機関の始動が完了
したか否かの判別が行われる。機間始動が完了していな
い時にはこのステップ6が繰返し実行され、機関始動が
完了した時には次のステップ7へ進む。
In step 6, it is determined from the on-off signal of the starter switch 27 whether or not starting of the diesel engine by the starter has been completed. If the inter-machine start is not completed, this step 6 is repeatedly executed, and when the engine start is completed, the process proceeds to the next step 7.

ステップ7に於ては、ヒータ用電気スイッチ21が閉じ
られているか否か、即ちPTCヒータ7に通電が行われ
ているか否かの判別が行われる。
In step 7, it is determined whether the electric heater switch 21 is closed, that is, whether the PTC heater 7 is energized.

ヒータ用電気スイッチ21が閉じられている時にはステ
ップ8へ進み、これに対しヒータ用電気スイッチ21が
開いている時にはステップ14へ進む。
When the heater electric switch 21 is closed, the process proceeds to step 8, whereas when the heater electric switch 21 is open, the process proceeds to step 14.

ステップ8に於ては、電流検出用抵抗器28により検出
されたPTCヒータ7の電流Ihが所定値1hlより大
きいか否かの判別が行われる。■h≧Ih+である時に
はステップ9へ進み、これに対しIh≧Ih+でない時
にはステップ11へ進む。PTCヒータ7の電流Ihは
、PTCヒータ7の放熱量の増大、即ちPTCヒータ7
を通過する吸気の流量の増大に応じて増大するから、I
h≧l11+の時は積極的な吸気加熱を必要としない高
速運転時である。
In step 8, it is determined whether the current Ih of the PTC heater 7 detected by the current detection resistor 28 is larger than a predetermined value 1hl. (2) When h≧Ih+, the process proceeds to step 9; on the other hand, when Ih≧Ih+, the process proceeds to step 11. The current Ih of the PTC heater 7 increases the heat dissipation amount of the PTC heater 7, that is, the PTC heater 7
Since I increases with the increase in the flow rate of intake air passing through
When h≧l11+, it is during high-speed operation that does not require active intake air heating.

ステップ9に於ては、電磁弁15に対する通電が行われ
る。これにより機関始動後の吸気加熱中、即ちアフタヒ
ート中であっても高速運転時には弁要素11が開かれ、
吸気の殆んどが第二の吸気通路6を通過して流れるよう
になる。これにより機関吸気系の圧損が増大することが
防1トされ、またPTCヒータ7を多量の吸気が流れる
ことが回避され、PTCヒータ7に於ける無駄な電力消
費の増大が回避される。
In step 9, the electromagnetic valve 15 is energized. As a result, the valve element 11 is opened during high-speed operation even during intake air heating after engine startup, that is, during afterheating.
Most of the intake air flows through the second intake passage 6. This prevents the pressure drop in the engine intake system from increasing, and also prevents a large amount of intake air from flowing through the PTC heater 7, thereby avoiding an increase in wasteful power consumption in the PTC heater 7.

ステップ9の次はステップ10へ進む。ステップ10に
於ては、ディーゼル機関の始動が完了してから所定時間
t2が経過したか否かの判別が行われる。所定時間t2
が経過していない時にはステップ8へ戻り、これに対し
所定時間12が経過した時には次のステップ13へ進む
After step 9, proceed to step 10. In step 10, it is determined whether a predetermined time t2 has elapsed since the start of the diesel engine was completed. Predetermined time t2
If the predetermined time 12 has not elapsed, the process returns to step 8, whereas if the predetermined time 12 has elapsed, the process proceeds to the next step 13.

ステップ11に於ては、FT、Cヒータ7の電流【hが
所定値1112より小さいか否かの判別が行われる。尚
、所定値1112は所定値1h+より小さい値である。
In step 11, it is determined whether the current h of the FT and C heaters 7 is smaller than a predetermined value 1112. Note that the predetermined value 1112 is a value smaller than the predetermined value 1h+.

rh≦Ihgである時にはステップ12へ進み、これに
対しIh≦■]12でない時にはステップ10へ進む。
When rh≦Ihg, the process proceeds to step 12; on the other hand, when Ih≦■]12, the process proceeds to step 10.

ステップ12に於ては、電磁弁15に対する通電を停止
することが行われる。これにより高速運転時でない時に
は弁要素11が閉弁して第二の吸気通路6が再び閉鎖さ
れる。
In step 12, energization to the solenoid valve 15 is stopped. As a result, when the engine is not operating at high speed, the valve element 11 is closed and the second intake passage 6 is closed again.

ステップ13に於ては、ヒータ用電気スイッチ21を開
くことが行われる。これによりPTCヒータ7に対する
通電が停;トされ、アフタヒートが終了する。
In step 13, the heater electric switch 21 is opened. As a result, the power supply to the PTC heater 7 is stopped, and the afterheating ends.

ステップ13の次はステップ14へ進み、ステップ14
に於ては、電磁弁15に対する通電が行われる。これに
より吸気加熱終了後に於ては、弁要素11は開弁位置に
位置し、機関吸気系の圧損が増大することを防1トする
ために第二の吸気通路6が間かれる。
After step 13, proceed to step 14, and step 14
At this time, the electromagnetic valve 15 is energized. As a result, after the intake air heating is completed, the valve element 11 is located at the valve open position, and the second intake passage 6 is spaced in order to prevent the pressure drop in the engine intake system from increasing.

ステップ140次はステップ15へ進み、ステップ15
に放ては、キースイッチ25がオン状態であるか否かの
判別が行われる。キースイッチ25がオン状態である時
にはこのステップ15が繰返し実行され、これに対しキ
ースイッチ25がオン状態でないとぎ、即ち機関停止り
時にはステップ16へ進む。
Step 140 Next, proceed to step 15, step 15
When the key switch 25 is released, it is determined whether or not the key switch 25 is in the on state. When the key switch 25 is in the on state, this step 15 is repeatedly executed, whereas when the key switch 25 is not in the on state, that is, when the engine is stopped, the process proceeds to step 16.

ステップ16に於ては、電磁弁15に対する通電を停止
することが行われる。
In step 16, energization to the solenoid valve 15 is stopped.

−り述の如ぎフローチャートに従って弁要素11の開閉
が制御されることにより、吸気加熱中であって、も吸入
空気量の増大に伴いPTCヒータ7を通過する吸気の流
量が増大する高速運転時には、PTCヒータ7を通過す
る吸気の流量が制限されて吸気がPTCヒータ7をバイ
パスして流れ、PTCヒータ7に於ける無駄な電力消費
の増大が回避され、また機関吸気系の圧損が増大するこ
とが防[にされる。
- By controlling the opening and closing of the valve element 11 according to the flowchart as described above, even during intake air heating, during high-speed operation when the flow rate of intake air passing through the PTC heater 7 increases as the intake air amount increases. , the flow rate of the intake air passing through the PTC heater 7 is restricted, and the intake air flows bypassing the PTC heater 7, thereby avoiding an increase in wasteful power consumption in the PTC heater 7, and increasing the pressure drop in the engine intake system. Things are prevented.

以上に於ては、本発明を特定の実施例について詳細に説
明したが、本発明は、これに限定されるものではなく、
本発明の範囲内(こて槓々の実施例が可能であることは
当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited thereto.
It will be apparent to those skilled in the art that many other embodiments are possible within the scope of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による吸気加熱制御装置の一つの実施例
を示vIIA略構成図、第2図は本発明による吸気加熱
制御装置の作動要領を示すフローチャートである。 1・・・ディーゼル機関、2・・・吸気マニホールド。 3・・・吸気加熱装置、4・・・エアクリーナ、5・・
・第一の吸気通路、6・・・第二の吸気通路、7・・・
PTCヒータ、10・・・弁軸、11・・・弁要素、1
2・・・駆動レバー、13・・・ダイヤフラム装置、1
4・・・ロッド。 15・・・電磁弁、16・・・負圧ポンプ、20・・・
バッテリ電源、21・・・ヒータ用電気スイッチ、22
・・・インジケータランプ、23・・・ランプ用電気ス
イッチ。 24・・・制御装置、25・・・キースイッチ、26・
・・水温センサ、27・・・スタータスイッチ、28・
・・電流検出用抵抗器
FIG. 1 is a schematic block diagram showing one embodiment of the intake air heating control device according to the present invention, and FIG. 2 is a flowchart showing the operation procedure of the intake air heating control device according to the present invention. 1...Diesel engine, 2...Intake manifold. 3... Intake air heating device, 4... Air cleaner, 5...
- First intake passage, 6... Second intake passage, 7...
PTC heater, 10... Valve shaft, 11... Valve element, 1
2... Drive lever, 13... Diaphragm device, 1
4...Rod. 15...Solenoid valve, 16...Negative pressure pump, 20...
Battery power supply, 21... Electric switch for heater, 22
...Indicator lamp, 23...Lamp electric switch. 24...Control device, 25...Key switch, 26.
・・Water temperature sensor, 27・・Starter switch, 28・
・・Resistor for current detection

Claims (1)

【特許請求の範囲】[Claims]  途中に吸気通路を横切つて設けられた通気構造のPT
Cヒータを有する第一の吸気通路と、前記第一の吸気通
路と並列に設けられ途中に吸気通路を開閉する弁を有す
る第二の吸気通路とを有する内燃機関の吸気加熱制御装
置にして、前記PTCヒータを流れる電流を検出する手
段を有し、前記電流が所定値以下の時には前記弁を閉弁
駆動し、前記電流が所定値以上の時には前記弁を開弁駆
動することを特徴とする吸気加熱制御装置。
PT with ventilation structure installed across the intake passageway
An intake air heating control device for an internal combustion engine, comprising a first intake passage having a C heater, and a second intake passage provided in parallel with the first intake passage and having a valve in the middle for opening and closing the intake passage, It has a means for detecting the current flowing through the PTC heater, and when the current is below a predetermined value, the valve is driven to close, and when the current is above a predetermined value, the valve is driven to open. Intake heating control device.
JP59193713A 1984-09-14 1984-09-14 Suction heating controller for internal-combustion engine Pending JPS6172859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193713A JPS6172859A (en) 1984-09-14 1984-09-14 Suction heating controller for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193713A JPS6172859A (en) 1984-09-14 1984-09-14 Suction heating controller for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6172859A true JPS6172859A (en) 1986-04-14

Family

ID=16312550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193713A Pending JPS6172859A (en) 1984-09-14 1984-09-14 Suction heating controller for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6172859A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012408A2 (en) * 2006-07-25 2008-01-31 Valeo Systemes De Controle Moteur Valve with bypass duct incorporating a heating member and combustion engine intake circuit with preheating of the air
FR2904373A1 (en) * 2006-07-25 2008-02-01 Valeo Sys Controle Moteur Sas Heat engine feeding method for motor vehicle, involves heating intake air, and obtaining combustion mixture from flow of intake air and fuel, where fuel comprises petrol and liquid component with reduced volatility
EP3133271A1 (en) * 2015-08-17 2017-02-22 Honeywell International Inc. Temperature management for throttle loss recovery systems
US9657696B2 (en) 2015-03-04 2017-05-23 Honeywell International Inc. Excess power dissipation for throttle loss recovery systems
US9926807B2 (en) 2015-03-04 2018-03-27 Honeywell International Inc. Generator temperature management for throttle loss recovery systems
US9970312B2 (en) 2015-03-04 2018-05-15 Honeywell International Inc. Temperature management for throttle loss recovery systems
CN111102110A (en) * 2019-12-30 2020-05-05 潍柴动力股份有限公司 Diesel engine air inlet structure and diesel vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008012408A2 (en) * 2006-07-25 2008-01-31 Valeo Systemes De Controle Moteur Valve with bypass duct incorporating a heating member and combustion engine intake circuit with preheating of the air
FR2904373A1 (en) * 2006-07-25 2008-02-01 Valeo Sys Controle Moteur Sas Heat engine feeding method for motor vehicle, involves heating intake air, and obtaining combustion mixture from flow of intake air and fuel, where fuel comprises petrol and liquid component with reduced volatility
FR2904374A1 (en) * 2006-07-25 2008-02-01 Valeo Sys Controle Moteur Sas VALVE WITH DERIVED CHANNEL INCORPORATING A HEATING MEMBER AND INTAKE CIRCUIT WITH AIR PREHEATING FOR THERMAL ENGINE
WO2008012408A3 (en) * 2006-07-25 2008-04-03 Valeo Sys Controle Moteur Sas Valve with bypass duct incorporating a heating member and combustion engine intake circuit with preheating of the air
JP2009544889A (en) * 2006-07-25 2009-12-17 ヴァレオ システム ドゥ コントロール モトゥール A valve having a bypass passage including a heating element, and an intake circuit of a combustion engine having an air preheating function
US8479714B2 (en) 2006-07-25 2013-07-09 Valeo Systems De Controle Moteur Valve with bypass duct incorporating a heating member and combustion engine intake circuit with preheating of the air
US9657696B2 (en) 2015-03-04 2017-05-23 Honeywell International Inc. Excess power dissipation for throttle loss recovery systems
US9835119B2 (en) 2015-03-04 2017-12-05 Honeywell International Inc. Temperature management for throttle loss recovery systems
US9926807B2 (en) 2015-03-04 2018-03-27 Honeywell International Inc. Generator temperature management for throttle loss recovery systems
US9970312B2 (en) 2015-03-04 2018-05-15 Honeywell International Inc. Temperature management for throttle loss recovery systems
EP3133271A1 (en) * 2015-08-17 2017-02-22 Honeywell International Inc. Temperature management for throttle loss recovery systems
CN111102110A (en) * 2019-12-30 2020-05-05 潍柴动力股份有限公司 Diesel engine air inlet structure and diesel vehicle

Similar Documents

Publication Publication Date Title
US20090229543A1 (en) Cooling device for engine
JP5403171B2 (en) Engine cooling system
EP0407670A1 (en) Fuel pipeline heater
GB2097967A (en) Control of engine cooling system
JPS6172859A (en) Suction heating controller for internal-combustion engine
JPH10110654A (en) Exhaust recircultion control device for internal combustion engine with two-line cooling device
JP4062285B2 (en) Heat storage system
JPH0144779Y2 (en)
JPS5968545A (en) Accelerating device of warm-up for internal-combustion engine
JPH0575910B2 (en)
JPS59160064A (en) Heating method of suction air for internal-combustion engine
JP2002097952A (en) Exhaust manifold device for vehicle
JPS61207874A (en) Intake heating control method of internal-combustion engine
JP4239368B2 (en) Internal combustion engine having a heat storage device
JPS6316858Y2 (en)
JPH0574708B2 (en)
JPS581644Y2 (en) Engine intake air heating device
JPH0223791Y2 (en)
JP2008106707A (en) Intake air heating device for internal combustion engine
KR19980047792A (en) Cooling structure of intercooler
JP3906748B2 (en) Cooling device for internal combustion engine
JPH0540279Y2 (en)
JPH0673363U (en) Fuel vaporization promotion device for fuel injection engine
JPS61283741A (en) Warm-up promoting device for internal-combustion engine
JPS6176751A (en) Intake-air heating device in internal-combustion engine