JPS6172625A - Production of alpha type hemihydrate - Google Patents

Production of alpha type hemihydrate

Info

Publication number
JPS6172625A
JPS6172625A JP59194468A JP19446884A JPS6172625A JP S6172625 A JPS6172625 A JP S6172625A JP 59194468 A JP59194468 A JP 59194468A JP 19446884 A JP19446884 A JP 19446884A JP S6172625 A JPS6172625 A JP S6172625A
Authority
JP
Japan
Prior art keywords
gypsum
slurry
concentration
hemihydrate
dihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59194468A
Other languages
Japanese (ja)
Other versions
JPH0140769B2 (en
Inventor
Yoshihiko Kudo
工藤 義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP59194468A priority Critical patent/JPS6172625A/en
Priority to CA000490153A priority patent/CA1258961A/en
Priority to DE19853533007 priority patent/DE3533007A1/en
Priority to FR858513763A priority patent/FR2570367B1/en
Priority to GB08522892A priority patent/GB2165829B/en
Publication of JPS6172625A publication Critical patent/JPS6172625A/en
Priority to US07/062,720 priority patent/US4842842A/en
Publication of JPH0140769B2 publication Critical patent/JPH0140769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain high-quality alpha type hemihydrate requiring a small amount of an absorbent to be blended, having improved strength and a large bulk density, by oxidizing a specific absorbent solution having scavenged a SO2 gas in an exhaust gas with air, neutralizing it to give gypsum dihydrate, concentrating and heat-treating it. CONSTITUTION:An exhaust gas containing a SO2 gas is brought into contact with an absorbent solution containing at least 10-100mmol/kg magnesium sulfossuccinate, so that the SO2 gas is scavenged, oxidized with air, neutralized with lime or slaked lime, to give gypsum dihydrate slurry having 5-25wt% concentration at 4-8pH at 40-80 deg.C. Then, the slurry is concentrated into 30-60wt%, a small amount of seed crystal of alpha-hemihydrate is added to the slurry, which is heated to 110-140 deg.C (0.5-2.7kg/cm<2>G pressure), heat-treated for 1-3 hours, converted into alpha type hemihydrate, which is subjected to solid- liquid separation, the prepared solution is circulated for scavenging the SO2 gas. On the other hand, the alpha type hemihydrate is optionally washed with hot water, and dried rapidly.

Description

【発明の詳細な説明】 庄1上匁■月豆亘 本発明は、排ガスに含まれる亜硫酸ガスを所謂石膏副生
型排煙脱硫プロセスで二水石膏とし、これを吸収液から
分離することなく、加熱することにより嵩密度の大きい
良質のα型半水石膏(以下α−石膏と略記する)を製造
する方法に関する。
[Detailed Description of the Invention] The present invention converts sulfur dioxide contained in exhaust gas into gypsum dihydrate through a so-called gypsum by-product flue gas desulfurization process, without separating it from the absorption liquid. , relates to a method for producing high-quality α-type hemihydrate gypsum (hereinafter abbreviated as α-gypsum) with a large bulk density by heating.

従来■肢血 α−石膏は、β型半水石膏に比べそれから高強度の二水
石膏成形体が得られるので建築材料その他の原料として
を用なものであるが、現実には高価であるため極く限ら
れた用途にしか使われていない。α−石膏は通常二水石
膏を百数十度で湿式加熱してつくられるが、その原料と
なる二水石膏は所謂石膏副生型排煙j脱硫プロセスによ
り大量に副生ずるものである。したがって、この排煙脱
硫プロセスにより副生じてくる二水石膏を安価にα−石
膏に転換する工業的方法の開発が要望されている。
Conventional ■ Limb blood α-gypsum is used as a building material and other raw materials because a dihydrate gypsum molded product with higher strength can be obtained from it than β-type hemihydrate gypsum, but in reality it is expensive. It is used only for very limited purposes. α-gypsum is usually produced by wet heating dihydrate gypsum at a temperature of 100-odd degrees Celsius, but the raw material, dihydrate gypsum, is produced in large quantities by the so-called gypsum by-product flue gas desulfurization process. Therefore, there is a need for the development of an industrial method for converting dihydrate gypsum produced as a by-product in this flue gas desulfurization process into α-gypsum at low cost.

このような現状から、排煙脱硫プロセスと関連させたα
−石膏の製造に関する研究が数多く行なわれている。こ
れを大別すると、(i)排ガス中の亜硫酸ガスを二水石
膏を経ることなく、α−石膏とする方法(特開昭49−
83695号、特公昭57−53292号および特公昭
57−49491号)と、 (ii)一旦、排ガス中の
亜硫酸ガスを二水石膏とした後、そのスラリーのままα
−石膏に転換する方法(特開昭53−50092号、特
開昭55−113621号、特開昭55、+     
   −162426号及び特開昭56−129611
号)とがある。
Given this current situation, α related to the flue gas desulfurization process
- Many studies have been conducted on the production of gypsum. Broadly speaking, these methods can be divided into (i) a method of converting sulfur dioxide gas in exhaust gas into α-gypsum without passing through dihydrate gypsum (Japanese Patent Application Laid-Open No. 49-1999-1);
83695, Japanese Patent Publication No. 57-53292, and Japanese Patent Publication No. 57-49491);
- Method of converting to gypsum (JP-A-53-50092, JP-A-55-113621, JP-A-55-55, +
-162426 and JP-A-56-129611
No.).

元来、排煙脱硫プロセスの吸収液に要求される液組成の
条件とα−石膏製造のためにその媒液に要求される液組
成の条件は無関係である。それにもかかわらず、α−石
膏の製造プロセスを排煙脱硫プロセスに直結させる場合
には、その半水石膏化媒液は基本的に排煙脱硫プロセス
の吸収液と同一であり、僅かに、pH調整と若干の液の
濃縮希釈が許容されるだけであり、良質なα−石膏を得
ることが困難であった。
Originally, the liquid composition conditions required for the absorption liquid in the flue gas desulfurization process are unrelated to the liquid composition conditions required for the medium for producing α-gypsum. Nevertheless, when the production process of α-gypsum is directly connected to the flue gas desulfurization process, the hemihydrate gypsum solution is basically the same as the absorption fluid of the flue gas desulfurization process, and the pH is slightly higher. Only adjustment and some concentration and dilution of the liquid were allowed, making it difficult to obtain high quality α-gypsum.

良質なα−石膏とは、混水量が少なくそれから得られる
二本石膏成型体が高強度であることを意味するが、この
ようなα−石膏は通常結晶のアスペクト比が小さく粉体
の嵩密度が大であることが知られている。このようなα
−石膏を製造するためには、媒晶剤として、コハク酸、
酒石酸、クエン酸などのジカルボン酸塩又はトリカルボ
ン酸塩を共存させることが不可欠であり、このような有
機媒晶剤を共存させない場合には、嵩密度の小さいα−
石膏しか得られていない(特開昭55−162426号
参照)。ところが、このようなカルボン酸系の有機媒晶
剤が排煙脱硫吸収液中に存在すると酸化反応時に分解消
費されたり、場合によっては酸化反応を阻害するという
不都合を生ずる。
High-quality α-gypsum means that the amount of mixed water is small and the two-piece gypsum molded product obtained from it has high strength, but such α-gypsum usually has a small aspect ratio of crystals and a low bulk density of the powder. is known to be large. α like this
- To produce gypsum, succinic acid,
It is essential to coexist with dicarboxylic acid salts or tricarboxylic acid salts such as tartaric acid and citric acid.If such organic modifiers are not coexisting, α-
Only gypsum has been obtained (see JP-A-55-162426). However, if such a carboxylic acid-based organic modifier is present in the flue gas desulfurization absorption liquid, it may be decomposed and consumed during the oxidation reaction, or in some cases, it may inhibit the oxidation reaction.

このような事情から、有機媒晶剤を含む液を排煙脱硫吸
収液としておよび半水石膏化媒液として排煙脱硫プロセ
スとα−石膏の製造プロセスに循環使用されるプロセス
は僅かに特公昭57−53292号がみられる程度であ
る。しかし、この方法では、酢酸のような揮発性有機酸
を含ませるため排煙脱硫プロセスでその揮散の新たな問
題が生じるほか、二水石膏を経ないで直接α−石膏を製
造する方法であるため、石膏化反応の全波をα−石膏化
のために加熱処理に供さなければならない不都合がある
。また、二水石膏を経ない方法は、いずれも石膏生成反
応を半水石膏化条件とするため、排煙脱硫プロセスとし
ての運転の安定性に欠け、さらにα−石膏と二水石膏の
併産が困難となる。
Due to these circumstances, there are only a few processes in which a liquid containing an organic modifier is recycled as a flue gas desulfurization absorption liquid and a hemihydrate gypsum production process in the flue gas desulfurization process and the α-gypsum production process. No. 57-53292 can be seen. However, this method involves the inclusion of volatile organic acids such as acetic acid, which creates a new problem of volatilization during the flue gas desulfurization process, and also involves directly producing α-gypsum without going through dihydrate gypsum. Therefore, there is an inconvenience that the entire wave of the gypsum reaction must be subjected to heat treatment for α-gypsum conversion. In addition, all methods that do not involve gypsum dihydrate require the gypsum production reaction to be gypsum hemihydrate, so they lack operational stability as a flue gas desulfurization process, and they also produce co-production of α-gypsum and gypsum dihydrate. becomes difficult.

一方、二水石膏を経る方法として特開昭55−1624
26号に開示された方法は、有機酸を使用しないので、
前述の不都合は存しないがカルボン酸系媒晶剤を使用し
ないためアスペクト比の小さいα−石膏にならない。こ
のように、排ガス中の亜硫酸ガスを一旦二水石膏として
固定した後α−石膏に転換する方法であって、かつカル
ボン酸系媒晶剤を含む半水化媒液をそのまま吸収液とし
て循環使用する方法は未だ知られていない。
On the other hand, as a method using dihydrate gypsum,
Since the method disclosed in No. 26 does not use organic acids,
Although the above-mentioned disadvantages do not exist, since no carboxylic acid modifier is used, α-gypsum with a small aspect ratio cannot be obtained. In this way, the sulfur dioxide gas in the exhaust gas is first fixed as dihydrate gypsum and then converted into α-gypsum, and the hemihydration medium containing the carboxylic acid modifier is recycled as it is as an absorption liquid. There is no known method yet.

II<”しよ゛と る。′1戟 上述したごとく、排ガスに含まれる亜硫酸ガスを有用な
α−石膏に転換することに関して、排煙脱硫プロセスか
ら良質のα−石膏を直接取り出すことについては未だ満
足すべき方法は知られていない。これは排煙脱硫のため
の吸収液とα−石膏製造のための媒液に要求される条件
が本来的に無関係であるために、双方に効果的に作用す
る液組成の創製が困難であったことによる。本発明は、
この液組成の問題を解決することにより、排ガス中に含
まれる亜硫酸ガスをα−石膏に有利に転換し得る方法を
提供することを目的とするものである。
As mentioned above, regarding the conversion of sulfur dioxide gas contained in flue gas into useful α-gypsum, there is no need to directly extract high-quality α-gypsum from the flue gas desulfurization process. No satisfactory method is known yet.This is because the conditions required for the absorption liquid for flue gas desulfurization and the medium for the production of α-gypsum are essentially unrelated, and therefore there is no method that is effective for both. This is because it was difficult to create a liquid composition that acts on
It is an object of the present invention to provide a method that can advantageously convert sulfur dioxide gas contained in exhaust gas into α-gypsum by solving this problem of liquid composition.

光」序目1夜 本発明の構成上の特徴は、亜硫酸ガスを含む排ガスを、
少なくともスルホコハク酸マグネシウムを含有する吸収
液と接触させて、亜硫酸ガスを捕捉し、これを空気酸化
すると共に石灰石で中和することにより、上記吸収液中
にスラリーとして生成させた二水石膏を該吸収液と共に
加熱してα型半水石膏に転化させた後固液分離し、得ら
れた分離液は亜硫酸ガスの捕捉に循環使用することにあ
る。
The structural feature of the present invention is that the exhaust gas containing sulfur dioxide is
By contacting with an absorption solution containing at least magnesium sulfosuccinate to capture sulfur dioxide gas, oxidizing it in the air and neutralizing it with limestone, dihydrate gypsum produced as a slurry in the absorption solution is absorbed into the absorption solution. The purpose is to heat it together with a liquid to convert it into α-type hemihydrate gypsum, then separate it into solid-liquid, and the resulting separated liquid to be recycled and used to capture sulfur dioxide gas.

、p占を ゛ るための 本発明者は、嵩密度の大きい良質のα−石膏を・1(製
造するための媒晶剤について種々探索した結果、スルホ
コハク酸が優れた媒晶能を有することを見出すとともに
、スルホコハク酸の存在下に生成される二水石膏はα−
石膏の原料として好都合な嵩密度の大きいものであるこ
とを見出した。
The inventor of the present invention discovered that sulfosuccinic acid has an excellent crystallizing ability as a result of searching various crystallizing agents for producing high-quality α-gypsum with a large bulk density. In addition, dihydrate gypsum produced in the presence of sulfosuccinic acid is α-
It has been found that it has a high bulk density, which is convenient as a raw material for gypsum.

本発明は、これら知見とともに、先に本発明者が提案し
たスルホコハク酸塩を含む吸収液を用いる排煙脱硫プロ
セス(特公昭58−25492号および特願昭58−2
34841号)にみられるように、スルホコハク酸塩が
脱硫のための優れた吸収剤であり、このものは従来のα
−石膏の製造の際の媒晶剤として知られているクエン酸
やコハク酸などに比べ排煙脱硫プロセスにおける分解量
が小さいという知見を得ていたことに基づいてなされた
ものである。
The present invention utilizes these findings as well as a flue gas desulfurization process using an absorption liquid containing a sulfosuccinate (Japanese Patent Publication No. 58-25492 and Japanese Patent Application No. 58-2
34841), sulfosuccinates are excellent absorbents for desulfurization;
- This was based on the knowledge that the amount of decomposition in the flue gas desulfurization process is smaller than that of citric acid, succinic acid, etc., which are known as crystallizing agents in the production of gypsum.

排煙脱硫プロセスと半水石膏化プロセスを直結し、かつ
、良質のα−石膏を得るためには両プロセスを循環する
液が本質的に同一であって、双方のプロセスの目的が効
果的に達成されるものでなければならない。この意味に
おいてスルホコハク酸は希有なる成分である。すなわち
、スルホコハク酸は、二水石膏をα−石膏化する際優れ
た媒晶効果を有することで知られているコハク酸などに
比べてもその115の低濃度において同等以上の効果を
有し、又、コハク酸は中性付近において優れt5媒晶効
果を有するがpl+ 4以下の酸性域では殆ど媒晶効果
を有しないのに対し、スルホコハク酸は中性領域のみで
なく  pH3〜4においても良質のα−石膏を生成さ
せる特性を有する。
In order to directly connect the flue gas desulfurization process and the hemihydrate gypsum process, and to obtain high-quality α-gypsum, the liquid circulating in both processes must be essentially the same, so that the purpose of both processes can be effectively achieved. It must be achieved. In this sense, sulfosuccinic acid is a rare ingredient. That is, sulfosuccinic acid has an effect equal to or higher than that of succinic acid, which is known to have an excellent medicinal effect when converting dihydrate gypsum to α-gypsum, at a low concentration of 115, In addition, succinic acid has an excellent t5 mode crystal effect near neutrality, but has almost no mode effect in the acidic range below pl+4, whereas sulfosuccinic acid has good quality not only in the neutral range but also at pH 3 to 4. It has the property of producing α-gypsum.

一方、スルホコハク酸を含む液はこれが亜硫酸ガス吸収
の主成分をなす場合は勿論、石灰石が亜硫酸ガス吸収の
主成分をなす場合にも少量のスルホコハク酸が存在する
ことにより脱硫効率の優れた吸収液となる。吸収液に含
まれている有機酸は空気酸化の際その分解がさけられず
、その分解量は濃度に依存するが、スルホコハク酸自体
は媒晶゛  効果のある他の有機酸、例えばクエン酸、
コハク酸に比べ分解量が少なく、しかも低濃度で排煙脱
硫、半水石膏化の双方に有効であることから分解量は著
しく少なく、経済性に極めて優れている。
On the other hand, a liquid containing sulfosuccinic acid is an absorbent liquid with excellent desulfurization efficiency due to the presence of a small amount of sulfosuccinic acid, not only when this is the main component for absorbing sulfur dioxide gas, but also when limestone is the main component for absorbing sulfur dioxide gas. becomes. The organic acids contained in the absorption liquid are inevitably decomposed during air oxidation, and the amount of decomposition depends on the concentration, but sulfosuccinic acid itself has a moderating effect.
Compared to succinic acid, it has a smaller amount of decomposition and is effective in both flue gas desulfurization and hemihydrate gypsum at low concentrations, so the amount of decomposition is extremely small and it is extremely economical.

更に排煙脱硫に使用し得る有機酸としてアジピン酸が米
国で知られているが、スルホコハク酸はどの媒晶効果は
なくα−石膏製造のためには適当ではない(後記参考側
参照)。
Furthermore, adipic acid is known in the United States as an organic acid that can be used for flue gas desulfurization, but sulfosuccinic acid has no medicinal effect and is not suitable for producing α-gypsum (see References below).

本発明でいう“少な(ともスルホコハク酸マグネシウム
を含有する吸収液”とは、スルホコハク酸マグネシウム
を略lO〜loom mol/kg含有する液を意味し
、スルホコハク酸マクネシウムが亜硫酸ガス吸収の主成
分をなす場合ばかりでなく、亜硫酸ガス吸収成分が他の
物質、例えば石灰石を主とするような液をも意味する。
In the present invention, the term "absorption liquid containing a small amount of magnesium sulfosuccinate" means a liquid containing approximately lO to room mol/kg of magnesium sulfosuccinate, and magnesium sulfosuccinate is the main component for absorbing sulfur dioxide gas. It also refers to liquids in which the sulfur dioxide gas-absorbing component is mainly composed of other substances, such as limestone.

この液には亜硫酸ガス吸収成分以外の物質が共存してい
ても差支えなく、通常次のようなものが共存してくる。
There is no problem even if substances other than the sulfur dioxide gas-absorbing component coexist in this liquid, and the following substances usually coexist.

すなわち、溶解成分としてアニオンではスルホコハク酸
の分解物である種々の有機イオン、SO;−1CI−2
11SOiが存在し、カチオンとしてはM g 2“を
主としてNa+及び少量のCa’+が存在する。また固
形分としては二水石膏、石灰石、亜硫酸カルシウムが存
在する。
That is, as dissolved components, anions include various organic ions, which are decomposition products of sulfosuccinic acid, SO; -1CI-2
11SOi is present, and as cations, M g 2'' is present, mainly Na+ and a small amount of Ca'+. Also, as solids, dihydrate, limestone, and calcium sulfite are present.

このような吸収液を用いての排ガス中の亜硫酸ガスの吸
収方法、空気酸化方法、石灰石又は消石灰による中和方
法はいかなる形式のものであってもよく、各反応がスル
ホコハク酸マグネシウムを含む液によって行われ工水石
膏のスラリーが生成されればよい。通常、このスラリー
は二水石−yf濃度5〜25M量%、pH4〜8、温度
40〜80゛Cであり、このスラリーは前述の吸収液組
成に対して、溶解成分としてはOSO; 、固形分とし
ては亜硫酸カルシウム及び石灰石を除いた組成である。
Any method of absorbing sulfur dioxide gas in exhaust gas using an absorption liquid, air oxidation method, neutralization method with limestone or slaked lime may be used, and each reaction is performed by a liquid containing magnesium sulfosuccinate. It is sufficient if a slurry of industrial water gypsum is produced. Normally, this slurry has a dihydrate-yf concentration of 5 to 25 M%, a pH of 4 to 8, and a temperature of 40 to 80°C, and with respect to the above-mentioned absorption liquid composition, dissolved components include OSO; solid content This is the composition excluding calcium sulfite and limestone.

上述の如(して得られる二本石膏スラリーをそのまま望
ましくはスラリーを濃縮し加熱処理してα−石膏とする
。得られるα−石膏の品質の良否は、基本的には液組成
、加熱温度、加熱時間によ11         り決
定されるが、温度と反応時間は相補関係にあり110〜
140’C11〜3時間の範囲内で熱エネルギー消費、
装置費等の観点から最適化して行なえばよい。液組成に
ついては排煙脱硫プロセスと直結したことによる影響に
ついても併せて以下に説明する。
The double gypsum slurry obtained as described above is desirably concentrated and heat-treated to obtain α-gypsum.The quality of the obtained α-gypsum is basically determined by the liquid composition and heating temperature. , is determined by heating time, but temperature and reaction time have a complementary relationship, and 110~
Thermal energy consumption within the range of 140'C11 to 3 hours,
This may be done by optimizing from the viewpoint of equipment costs, etc. Regarding the liquid composition, the influence of direct connection with the flue gas desulfurization process will also be explained below.

まず、アニオンとしてはスルホコハク酸10〜100m
 mol/kgを含むが、この濃度範囲は排煙脱硫プロ
セスにおいて規定される。スルホコハク酸の媒晶効果は
薄いほど弱まるが、この濃度範囲ではそれほどの差はな
く、十分に嵩密度の高いα−石膏が1与られる(後記実
施例2参照)。
First, as an anion, sulfosuccinic acid is 10 to 100m
mol/kg, this concentration range is defined in the flue gas desulfurization process. Although the mediocrystal effect of sulfosuccinic acid becomes weaker as it becomes thinner, there is no significant difference in this concentration range, and 1 α-gypsum with a sufficiently high bulk density is provided (see Example 2 below).

なお、スルホコハク酸は排煙脱硫プロセスにおいて誘発
酸化分解するのでその分解副生物である有機アニオンを
若干含むが、それ等の共存は嵩密度に対して殆んど影響
はない。
Incidentally, since sulfosuccinic acid undergoes oxidative decomposition induced in the flue gas desulfurization process, it contains some organic anions which are decomposition by-products, but the coexistence of these has almost no effect on the bulk density.

SOコ−は主として石灰石中のl’1gが溶解すること
により液中に存在する。5oH−4度の高いほど熔解C
a 2+濃度は低下し、排煙脱硫プロセスのスケーリン
グ防止に効果があるが、一方あまりに高濃度であると亜
硫酸塩の酸化速度を低下させる。
SO co- exists in the liquid mainly due to the dissolution of l'1g in limestone. 5oH - The higher the 4 degrees, the more melting C
The a2+ concentration is reduced and is effective in preventing scaling in the flue gas desulfurization process, while too high a concentration reduces the oxidation rate of sulfite.

したがって、排煙脱硫プロセス設計の考え方によってS
O,?−の濃度には大差があり、通常0,5〜8wt%
程度である。このような液をα−石膏化の媒液に用いる
と5oH−1度の高いほど半水面X化の温度は低下し熱
エネルギー上は有利であるが、あまりに高濃度であると
無水石膏を生じ易いので8〜10wt%が上限である。
Therefore, depending on the concept of flue gas desulfurization process design, S
O,? - There is a large difference in the concentration, usually 0.5 to 8 wt%
That's about it. When such a liquid is used as a medium for α-gypsum conversion, the higher the temperature (5oH-1 degree), the lower the temperature of half-water level Since it is easy to use, the upper limit is 8 to 10 wt%.

したがって、通常とられる排煙脱硫プロセスとしてのS
O4−b1度の範囲内で十分嵩密度の高いα−石膏が得
られる。
Therefore, as a commonly used flue gas desulfurization process, S
α-gypsum having a sufficiently high bulk density can be obtained within the range of O4-b1 degrees.

CI−は用水中の塩化物及び排ガス中の11(:lガス
が吸収液中に濃縮され存在する。吸収液中のCl−65
度は排煙脱硫プラントを構成する金屈祠料の腐蝕と深い
関係があり、通常1〜2wt%以下になるように制御さ
れている。
CI- is present as chloride in the water and 11(:l gas in the exhaust gas) concentrated in the absorption liquid.Cl-65 in the absorption liquid
The degree of corrosion is closely related to the corrosion of the abrasive materials that constitute the flue gas desulfurization plant, and is usually controlled to be 1 to 2 wt% or less.

α−石膏化にはこの範囲では問題はないがあまりに高濃
度となるとSOニーと同様無水石膏を生じ易くなり、上
限濃度は6〜8wt%である。したがって、排煙脱硫プ
ロセスの液組成と矛盾はしない。
There is no problem in turning into α-gypsum within this range, but if the concentration is too high, anhydrite tends to occur like SO knee, and the upper limit concentration is 6 to 8 wt%. Therefore, there is no contradiction with the liquid composition of the flue gas desulfurization process.

次に液組成としてのカチオンについて述べる。Next, we will discuss cations as a liquid composition.

排煙脱硫吸収液に用いられるカチオンは通常M g 2
“、N8+であり、他に石膏熔解相当分の少量のCa”
+を含む。排煙脱硫プロセスとしてはそれぞれのイオン
の物性の違いを利用して特色あるプロセス構成がなされ
ているが、最近の石灰石を中和剤とする排煙脱硫プロセ
スではM g 2+のみ、又はM g 2+を主として
若干のNa+を含む液を用いることが多い。一方、α−
石膏化のための媒液としてはM g 2+のみであるこ
とが最も好ましく、高密度の高いα−石膏が(Mられる
。しかしながら、排煙脱硫吸収液には用水等より少量の
Na+が混入するのがさけられない。Na+はその1度
が増加するに従い、嵩密度の低下を招くので、可及的低
濃度であることを要する(後記実施例3参照)。この理
由としては平衡上5CaSO+4Na2SO= ・31
hOの生成領域に近づくためであると思われる。
The cation used in the flue gas desulfurization absorption liquid is usually M g 2
", N8+, and a small amount of Ca equivalent to the amount of gypsum melt"
Including +. The flue gas desulfurization process has a unique process configuration that takes advantage of the physical properties of each ion, but recent flue gas desulfurization processes that use limestone as a neutralizing agent only use M g 2+ or M g 2+ A solution containing mainly Na + is often used. On the other hand, α−
It is most preferable to use only M g 2+ as the medium for gypsum conversion, and highly dense α-gypsum (M) is used. However, a small amount of Na As the concentration of Na+ increases, the bulk density decreases, so the concentration must be as low as possible (see Example 3 below).The reason for this is that in equilibrium, 5CaSO+4Na2SO=・31
This seems to be due to the proximity to the hO production region.

なお、電気集塵機又は乾式脱硝からのリークアンモニア
により吸収液中に若干のN11;が含まれることがある
がα−石膏の嵩密度に対しては殆ど影響はない。
Although some N11 may be contained in the absorbent liquid due to ammonia leaked from the electrostatic precipitator or dry denitrification, this has almost no effect on the bulk density of α-gypsum.

次に、本発明の具体的な実施態様を添付図に基づいて説
明する。
Next, specific embodiments of the present invention will be described based on the accompanying drawings.

図において、1は二水石膏を副生する排ガス脱硫本体設
備であり、少なくともスルホコハク酸マグネシウムを含
む吸収液を使用し、亜硫酸ガスを含む排ガス2を清浄な
ガス3に脱硫し、中和剤4としての石灰石又は消石灰お
よび酸化空気5を吸収液に供給して二水石膏スラリーを
生成させる。
In the figure, 1 is the exhaust gas desulfurization main equipment that produces dihydrate gypsum as a by-product, and uses an absorption liquid containing at least magnesium sulfosuccinate to desulfurize the exhaust gas 2 containing sulfur dioxide gas into clean gas 3. Limestone or slaked lime and oxidizing air 5 are supplied to the absorption liquid to produce a dihydrate slurry.

ここで生成した二水石膏スラリー6は取り出されシック
ナー7によってスラリー濃縮をi〒ない、オーバーフロ
ー液8は排煙脱硫本体lへ戻し、濃縮された二水石膏ス
ラリー9がα−石奢の製造に供、1       され
る。このスラリー濃縮は単位α−石膏当りの処理液量を
減らし、又後段の装置容量および加熱に要する熱エネル
ギーを少なくするためである。
The dihydrate gypsum slurry 6 generated here is taken out and concentrated by the thickener 7. The overflow liquid 8 is returned to the flue gas desulfurization main body 1, and the concentrated dihydrate gypsum slurry 9 is used for the production of α-stone. provided, 1. The purpose of this slurry concentration is to reduce the amount of treated liquid per unit of α-gypsum, and also to reduce the capacity of subsequent equipment and the thermal energy required for heating.

したかつて、’h?l縮スラリスラリ−9リー濃度は流
体として取り扱える範囲内で高いことが望ましく、好ま
しくは、スラリー濃度30〜50重量%とする。
Once upon a time, 'h? It is desirable that the slurry concentration is as high as possible within the range that it can be handled as a fluid, and preferably the slurry concentration is 30 to 50% by weight.

α−石膏の製造に供される二水石膏スラリー9はポンプ
10により昇圧送液され半水石膏化反応槽11へ送られ
るか、半水石膏化反応のためには110〜140℃ (
圧力0.5〜2.7kg/cnl G)に加熱する必要
があり、熱交換器12およびスチーム加熱器13により
昇温する。なお、この加熱はこれら間接熱交換器12.
13によらず、反応槽11へ直接スチームを吹込んでも
よい。半水石膏化反応槽IIは図示したような多槽フロ
一方式又はハツチ切換え方式のいずれでもよい。
The dihydrate gypsum slurry 9 used for the production of α-gypsum is pumped under increased pressure by a pump 10 and sent to the hemihydrate gypsum reaction tank 11, or at 110 to 140°C for the hemihydrate gypsum reaction.
It is necessary to heat to a pressure of 0.5 to 2.7 kg/cnl G), and the temperature is raised by a heat exchanger 12 and a steam heater 13. Note that this heating is performed by these indirect heat exchangers 12.
13, steam may be directly blown into the reaction tank 11. The hemihydrate gypsum conversion reaction tank II may be either a multi-tank flow type as shown in the figure or a hatch switching type.

反応槽11における半水石膏化反応は前述の如く、所定
の温度で1〜3時間で終了するが、このとき少量のα−
石膏の種晶14を予め添加すると半水石膏化反応を速め
ることができ効果的である。
As mentioned above, the hemihydrate gypsum conversion reaction in the reaction tank 11 is completed in 1 to 3 hours at a predetermined temperature, but at this time, a small amount of α-
It is effective to add gypsum seed crystals 14 in advance to speed up the hemihydrate gypsum conversion reaction.

半水石膏化反応により得られるα−石膏スラリ−15ば
常圧沸点以下に冷却し密圧にもどしてから分離器16に
送る。この際の冷却方法としては熱交換器12を用いて
間接冷却する方法とフラッシュ蒸発による直接冷却の方
法のいずれをも用いることができ、フラッシュ蒸発によ
って得られたスチームは前述の二水石膏スラリーの加熱
に利用できる。
The α-gypsum slurry 15 obtained by the hemihydrate gypsum reaction is cooled to below the boiling point at normal pressure and returned to the dense pressure, and then sent to the separator 16. As a cooling method at this time, either an indirect cooling method using the heat exchanger 12 or a direct cooling method using flash evaporation can be used. Can be used for heating.

分離器16で固液分離して得られるα−石貴ケークは必
要に応して熱水で洗浄する。この際、α−石膏の工水化
をさけるためスラリーおよびα−石膏ケークは84°C
以上に保ち、かつ、すみやかに乾燥機17により付着水
分の除去を行ない、α−石膏18を得る。なお、分離器
16からの濾液および洗浄液19は排ガス脱硫本体′装
置1に戻され、α−石膏の洗浄液は排煙脱硫系の補給水
を兼ねることになる。
The α-stone cake obtained by solid-liquid separation in the separator 16 is washed with hot water if necessary. At this time, the slurry and α-gypsum cake were kept at 84°C to avoid turning the α-gypsum into industrial water.
At the same time, adhering moisture is promptly removed using a dryer 17 to obtain α-gypsum 18. The filtrate and cleaning liquid 19 from the separator 16 are returned to the exhaust gas desulfurization main unit 1, and the α-gypsum cleaning liquid also serves as make-up water for the exhaust gas desulfurization system.

以下、実施例により本発明およびその効果を具体的に説
明する。
EXAMPLES Hereinafter, the present invention and its effects will be specifically explained with reference to Examples.

なお、本発明における65度の表示は固形分については
全スラリーに対して、溶解成分については固形分を除い
た水溶液に対して示したものである。
In addition, the indication of 65 degrees in the present invention is for the entire slurry regarding the solid content, and for the aqueous solution excluding the solid content regarding the dissolved components.

去盗拠土 C重/EI+燃焼排ガス(SO□a度1400ppm)
 3000ONM’/hrをスルホコハク酸マグネシウ
ム45 m mol/に、を含む吸収液で脱硫処理し、
この吸収済液を石灰石粉末による中和及び空気酸化する
ごとにより10〜15重量%の二水石膏スラリーを得、
これより二水石膏ケークを分離している排煙脱硫装置よ
り、上記二水石膏スラリーの一部を分取しα−石青の製
造に供した。
Stolen soil C weight/EI + combustion exhaust gas (SO□a degree 1400ppm)
3000ONM'/hr was desulfurized with an absorption liquid containing 45 mmol/magnesium sulfosuccinate,
This absorbed liquid was neutralized with limestone powder and oxidized in air to obtain a 10-15% by weight dihydrate gypsum slurry,
From the flue gas desulfurization equipment that separates the dihydrate gypsum cake, a portion of the dihydrate slurry was fractionated and used for the production of α-petite stone.

分取した12重量%の二水石膏スラリーを静置し、30
重量%スラリーを得、その2.5kg (工水石ffo
The separated 12% by weight dihydrate gypsum slurry was allowed to stand still for 30 minutes.
% slurry was obtained, and 2.5 kg of it (Kousui stone ffo
.

75kgを含む)を、内容積2.51のIVH↑機付オ
ートクレーブに仕込み、液温115°C±1℃で2.5
時間潰斗しながら加熱処理した。このスラリーを95°
Cで熱間濾過し、次いで95℃の熱水で洗浄した後ただ
ちに結晶を100℃で乾燥した。
(including 75 kg) into an autoclave equipped with an IVH
Heat treatment was performed for a certain amount of time. This slurry is heated at 95°
Immediately after hot filtration at C. and subsequent washing with hot water at 95.degree. C., the crystals were dried at 100.degree.

得られた結晶は結晶水6.1重量%であり、示差熱測定
及びX線回折によりα−石青であることを確認した。結
晶の形状はアスペクト比1〜3、長さ30〜110μ程
度のものであり、嵩密度1.61g/Cn!であった。
The obtained crystals contained 6.1% by weight of water of crystallization, and were confirmed to be α-stone blue by differential calorimetry and X-ray diffraction. The crystal shape has an aspect ratio of 1 to 3, a length of about 30 to 110μ, and a bulk density of 1.61g/Cn! Met.

なお、排煙脱硫装置より分取した二水石膏スラリーの液
分の組成は次のようであった。
The liquid composition of the dihydrate gypsum slurry collected from the flue gas desulfurization equipment was as follows.

スルホコハク@    45 m mo’l/Jsoy
、−4,6重量% C1,”’       0.8  重量%Mg”  
   13040   mg/kgNa”     4
050   B/kgpH5,8 尖上週1 実施例1で用いた排煙脱硫装置より得られた二11  
      水石前ケークを、水洗乾燥した後スルホコ
ハク酸塩の濃度の異なる下記組成の半水化媒液を用いて
反応温度118°C±1℃、反応時間1.5時間で実施
例1に記載したと同様の操作により表1の結果をi尋ノ
こ。
Sulho Kohaku @ 45 m mo'l/Jsoy
, -4.6 wt% C1,"' 0.8 wt% Mg"
13040 mg/kgNa” 4
050 B/kg pH 5,8 peak week 1 211 obtained from the flue gas desulfurization equipment used in Example 1
The water stone pre-cake was washed with water and dried, and then the reaction temperature was 118°C ± 1°C and the reaction time was 1.5 hours using hemihydration medium solutions having the following compositions with different sulfosuccinate concentrations as described in Example 1. The results in Table 1 were obtained using the same procedure.

半水化媒液 1.5kg 二水石膏   375 g (嵩密度1.43g/cn
l)得られた結晶は、実施例1と同様にすべてα−石膏
であった。
Hemihydrate medium 1.5 kg Gypsum dihydrate 375 g (Bulk density 1.43 g/cn
l) The obtained crystals were all α-gypsum as in Example 1.

スルホコハク酸の媒晶能力はかなり低濃度であっても十
分にあり、更にスルホコハク酸以外のアニオンとしてS
OニーやC1−をも含む液から良質のα−石膏が得られ
ることがわかる。
The modulating ability of sulfosuccinic acid is sufficient even at a fairly low concentration, and in addition, as an anion other than sulfosuccinic acid, S
It can be seen that high quality α-gypsum can be obtained from a solution containing Oney and C1-.

1監拠 実施例2と同じ装置を用い、カルボン酸の種類と濃度の
効果をみた。半水化媒液1.5kgを表2の組成とし、
二水石膏は実施例2と同しものを375gとった。反応
温度128℃±1°C1反応時間1.5時間として実施
例2と同様の操作を行ない表2に示す結果を得た。
1 Using the same equipment as in Example 2, the effects of the type and concentration of carboxylic acid were examined. 1.5 kg of hemihydrate medium has the composition shown in Table 2,
375 g of dihydrate gypsum was the same as in Example 2. The same operation as in Example 2 was carried out at a reaction temperature of 128° C.±1° C. and a reaction time of 1.5 hours, and the results shown in Table 2 were obtained.

得られた結晶はすべてα−石膏であった。この結果から
スルホコハク酸は5倍の濃度のコハク酸とほぼ同様の媒
晶能力をもっていることがわかる。
All the crystals obtained were α-gypsum. This result shows that sulfosuccinic acid has almost the same modulating ability as succinic acid at a concentration five times that of succinic acid.

又、排煙税硫プロセスに使用し得る有機カルボン酸とし
てはアジピン酸があるが媒晶能力の点ではスルホコハク
酸より劣ると言える。
Also, adipic acid is an organic carboxylic acid that can be used in the exhaust gas tax sulfur process, but it can be said that it is inferior to sulfosuccinic acid in terms of medium crystal ability.

襄施皿主 本例はカチオンの種類と濃度及びpHの関係について例
示したものである。
This example illustrates the relationship between the type of cation, its concentration, and pH.

実施例2と同様の装置を用い半水化媒液を下記の通りと
し、実施例2と同様の操作を行ない表3の結果を得た。
Using the same apparatus as in Example 2 and using the hemihydration medium as shown below, the same operations as in Example 2 were carried out to obtain the results shown in Table 3.

アニオン濃度  1.508当量/kgp)I −6,
0 得られた結晶はすべてα−石膏であった。この結果から
Na“は少ないほど嵩密度の高いα−石膏が得られるこ
とがわかる。
Anion concentration 1.508 equivalents/kgp)I-6,
0 All the crystals obtained were α-gypsum. From this result, it can be seen that the lower the amount of Na, the higher the bulk density of α-gypsum can be obtained.

又、ρ11を下げてもその悪影響は大きなものでないこ
とが理解し得る。
Moreover, it can be understood that even if ρ11 is lowered, the negative effect is not large.

比較■ 本例は実施例3に示した表3における実験番号311の
比較として、スルホコハク酸三ナトリウムを当モル濃度
のコハク酸三ナトリウムに換えて実験した結果を示した
ものである。
Comparison ■ This example shows the results of an experiment in which trisodium sulfosuccinate was replaced with trisodium succinate at an equimolar concentration as a comparison of experiment number 311 in Table 3 shown in Example 3.

得られたα−石膏は嵩密度0.111g/cwt、アス
ペクト比7〜13、長さ50〜200μ程度のものであ
った。
The obtained α-gypsum had a bulk density of 0.111 g/cwt, an aspect ratio of 7 to 13, and a length of about 50 to 200 μm.

この結果より、コハク酸の媒晶能は低いpHCはかなり
弱まることがわかる。
From this result, it can be seen that the moderating ability of succinic acid is considerably weakened at low pHC.

k嵐附土 本例は二本石膏スラリーの濃度とα−石膏化の関係を例
示したものである。
This example by Arashi Tsukido illustrates the relationship between the concentration of gypsum slurry and α-gypsum conversion.

実施例2と同様の装置を用い、半水化媒液を下記の通り
として反応温度122±I’c、反応時間を15時間と
し実施例2と同様の操作を行ない表4の結果を得た。
Using the same apparatus as in Example 2, using the hemihydration medium as shown below, the reaction temperature was 122±I'c, the reaction time was 15 hours, and the same operation as in Example 2 was performed to obtain the results shown in Table 4. .

pl+ =6.0 得られた結晶はすべてα−石膏であった。スラリー濃度
が高いほど嵩密度は低下するが、その影響はわずかであ
る。このような高濃度スラリーであっても流体として取
り扱えるのは、原料二水石膏及びα−石膏の嵩密度が共
に高いためであると言える。
pl+ = 6.0 All the crystals obtained were α-gypsum. Although the bulk density decreases as the slurry concentration increases, the effect is slight. The reason why even such a highly concentrated slurry can be handled as a fluid is that both the raw material dihydrate gypsum and α-gypsum have high bulk densities.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は、本発明の実施の態様を例示した工程図である
。図において、 1−−一排煙脱硫装置 2− ・排ガス 6−・・−二本石膏スラリー 9−・−濃縮スラリ− 11−・−・半水石膏化反応槽 15−・−−一−−α−石膏スラリ− 18・−・−α−石膏 手続補正書 昭和59年10月22日
The attached drawings are process diagrams illustrating embodiments of the present invention. In the figure, 1--1 flue gas desulfurization equipment 2--exhaust gas 6--2 gypsum slurry 9--concentrated slurry 11---hemihydrate gypsum conversion reaction tank 15---1-- α-Gypsum slurry 18・-・-α-Gypsum procedure amendment October 22, 1982

Claims (4)

【特許請求の範囲】[Claims] (1)亜硫酸ガスを含む排ガスを、少なくともスルホコ
ハク酸マグネシウムを含有する吸収液と接触させて、亜
硫酸ガスを捕捉し、これを空気酸化すると共に石灰石で
中和することにより、上記吸収液中にスラリーとして生
成させた二水石膏を該吸収液と共に加熱してα型半水石
膏に転化させた後固液分離し、得られた分離液は亜硫酸
ガスの捕捉に循環使用することを特徴とする排ガス中の
亜硫酸ガスよりα型半水石膏を製造する方法。
(1) Exhaust gas containing sulfur dioxide gas is brought into contact with an absorption liquid containing at least magnesium sulfosuccinate to capture sulfur dioxide gas, which is oxidized in the air and neutralized with limestone, thereby creating a slurry in the absorption liquid. An exhaust gas characterized in that gypsum dihydrate produced as gypsum is heated together with the absorption liquid to convert into α-type gypsum hemihydrate, followed by solid-liquid separation, and the resulting separated liquid is recycled and used for capturing sulfur dioxide gas. A method for producing α-type hemihydrate gypsum from sulfur dioxide gas.
(2)スルホコハク酸マグネシウムの濃度が10〜10
0mmol/kgである吸収液を用いる特許請求の範囲
第(1)項記載のα型半水石膏の製造方法。
(2) The concentration of magnesium sulfosuccinate is 10 to 10
The method for producing α-type hemihydrate gypsum according to claim (1), using an absorption liquid having a concentration of 0 mmol/kg.
(3)二水石膏をα型半水石膏に転化する際の二水石膏
のスラリーがスラリー濃度30〜50重量%に濃縮した
スラリーである特許請求の範囲第(1)項記載のα型半
水石膏の製造方法。
(3) The slurry of dihydrate gypsum used to convert dihydrate gypsum into α-type hemihydrate gypsum is a slurry concentrated to a slurry concentration of 30 to 50% by weight. Method of manufacturing hydrogypsum.
(4)加熱温度が110〜140℃である特許請求の範
囲第(1)項記載のα型半水石膏の製造方法。
(4) The method for producing α-type hemihydrate gypsum according to claim (1), wherein the heating temperature is 110 to 140°C.
JP59194468A 1984-09-17 1984-09-17 Production of alpha type hemihydrate Granted JPS6172625A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59194468A JPS6172625A (en) 1984-09-17 1984-09-17 Production of alpha type hemihydrate
CA000490153A CA1258961A (en) 1984-09-17 1985-09-06 PROCESS FOR PRODUCING .alpha.-FORM GYPSUM HEMIHYDRATE
DE19853533007 DE3533007A1 (en) 1984-09-17 1985-09-16 METHOD FOR PRODUCING GIPSHEMIHYDRATE OF THE ALPHAFORM
FR858513763A FR2570367B1 (en) 1984-09-17 1985-09-17 PROCESS FOR THE PRODUCTION OF GYPSUM HEMIHYDRATE IN A FORM
GB08522892A GB2165829B (en) 1984-09-17 1985-09-17 Process for producing a-form gypsum hemihydrate
US07/062,720 US4842842A (en) 1984-09-17 1987-06-15 Process for producing α-form gypsum hemihydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59194468A JPS6172625A (en) 1984-09-17 1984-09-17 Production of alpha type hemihydrate

Publications (2)

Publication Number Publication Date
JPS6172625A true JPS6172625A (en) 1986-04-14
JPH0140769B2 JPH0140769B2 (en) 1989-08-31

Family

ID=16325048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59194468A Granted JPS6172625A (en) 1984-09-17 1984-09-17 Production of alpha type hemihydrate

Country Status (1)

Country Link
JP (1) JPS6172625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443246B1 (en) * 2001-10-29 2004-08-04 한국전력공사 The Manufacturing Method of α-Calcium Sulfate Hemihydrate from FGD Gypsum by Heating under Reduced Pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350092A (en) * 1976-10-18 1978-05-08 Sumitomo Chem Co Ltd Production of alpha-type hemihydrate gypsum
JPS55113621A (en) * 1979-02-21 1980-09-02 Babcock Hitachi Kk Manufacture of alpha hemihydrate gypsum
JPS5825492A (en) * 1981-08-05 1983-02-15 Kawasaki Steel Corp Production of aluminum clad steel plate by powder method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350092A (en) * 1976-10-18 1978-05-08 Sumitomo Chem Co Ltd Production of alpha-type hemihydrate gypsum
JPS55113621A (en) * 1979-02-21 1980-09-02 Babcock Hitachi Kk Manufacture of alpha hemihydrate gypsum
JPS5825492A (en) * 1981-08-05 1983-02-15 Kawasaki Steel Corp Production of aluminum clad steel plate by powder method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443246B1 (en) * 2001-10-29 2004-08-04 한국전력공사 The Manufacturing Method of α-Calcium Sulfate Hemihydrate from FGD Gypsum by Heating under Reduced Pressure

Also Published As

Publication number Publication date
JPH0140769B2 (en) 1989-08-31

Similar Documents

Publication Publication Date Title
CA1258961A (en) PROCESS FOR PRODUCING .alpha.-FORM GYPSUM HEMIHYDRATE
JP5424562B2 (en) Method for producing cesium hydroxide solution
US4247525A (en) Method of and apparatus for removing sulfur oxides from exhaust gases formed by combustion
US4222993A (en) Removal of noxious contaminants from gas
PL175063B1 (en) Method of removing sulfur dioxide from a stream of hot gases, in particular combustion engine exhaust gas, combined with production of gypsum hemihydrate
US4503020A (en) Method of producing calcium sulfate semihydrate in conjunction with the desulfurization of flue gases
JPS58172230A (en) Method for recovering gypsum after desulfurizing exhaust gas
JPH11509586A (en) Separation of impurities from lime and lime sludge, and two-stage causticization of green liquor containing impurities such as silicon
US4490341A (en) Flue gas desulfurization process
JPS6172625A (en) Production of alpha type hemihydrate
US5324501A (en) Method for the preparation of low-chloride plaster products from calcium-containing residues of flue-gas purification plants
CN110255592A (en) A kind of technique and its application with Waste Sulfuric Acid processing desulphurizing magnesium slag production magnesium sulfate and magnesia
JPS58104022A (en) Manufacture of crystallite synthetic anhydride
JP2886180B2 (en) Wastewater treatment method for wet desulfurization equipment
JPS627625A (en) Production of alpha-type hemihydrate gypsum
JPS57122922A (en) Treatment of exhaust gas
JPS61171582A (en) Wet treatment of petroleum combusted ash
JPS62502388A (en) How to purify flue gas
SU945076A1 (en) Process for purifying phosphogypsum
JPS57145024A (en) Recovery of boronic compound in stack gas desulfurization
JPS60340B2 (en) Production method of guanidine sulfamate
JPH04141216A (en) Wet exhaust gas desulfurizing method
JPS599207B2 (en) Detoxification treatment method for liquids containing imidodisulfonic acid ions
JP2006069853A (en) Method for producing zeolite and zeolite
JP2002066548A (en) Waste water treating method