JPS6172607A - Production of silicon ceramic - Google Patents

Production of silicon ceramic

Info

Publication number
JPS6172607A
JPS6172607A JP59193866A JP19386684A JPS6172607A JP S6172607 A JPS6172607 A JP S6172607A JP 59193866 A JP59193866 A JP 59193866A JP 19386684 A JP19386684 A JP 19386684A JP S6172607 A JPS6172607 A JP S6172607A
Authority
JP
Japan
Prior art keywords
polysilazane
ammonia
dihalosilane
reaction
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59193866A
Other languages
Japanese (ja)
Other versions
JPH0629123B2 (en
Inventor
Makoto Matsumoto
松本 允
Koji Niwada
庭田 孝司
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Corp
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Silicone Co Ltd filed Critical Toshiba Corp
Priority to JP59193866A priority Critical patent/JPH0629123B2/en
Publication of JPS6172607A publication Critical patent/JPS6172607A/en
Publication of JPH0629123B2 publication Critical patent/JPH0629123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:A novel reaction between ammonia and a dihalosilane is effected and the resultant polysilazane is used as a starting material to effect heat treatment under vacuum or in an inert atmosphere to give silicon ceramics easily in high yield. CONSTITUTION:Ammonia is brought into contact with a dihalosilane of the formula: RHSiX2 (R is monovalent hydrocarbon group of 1-6 carbon atoms; X is halogen) to give a polysilazene. The polysilazane is heat-treated at a temperature over 1,200 deg.C in an inert atmosphere or under vacuum to give the desired silicon ceramics. The molecular weight of the polysilazane is preferably more than 10,000. After polysilazane is brought into contact with ammonia and dihalosilane, it is preferably heated at 50-500 deg.C in an inert and anhydrous atmosphere to increase the molecular weight.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はケイ素セラミックスの製造方法に関し、さらに
詳しくは、高分子量のポリシラザンを原料としてケイ素
セラミックス材料、即ち窒化ケイ素、炭化ケイ素または
窒化ケイ素と炭化ケイ素との複合体を製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing silicon ceramics, and more particularly, the present invention relates to a method for producing silicon ceramics. The present invention relates to a method for producing a complex with.

〔発明の技術的背景とその問題点] ケイ累−窒素−ケイ素結合を有するシラザンまたはポリ
シラザンを出発原料としたケイ素セラミックスの製造に
関する研究としては、以下に述べる4件が報告されてい
るのみである。
[Technical background of the invention and its problems] Only the following four studies have been reported regarding the production of silicon ceramics using silazane or polysilazane having a silicon-nitrogen-silicon bond as a starting material. .

西ドイツ特許第2,238,078号(1974)には
、ジメチルジクロロシランとアンモニアとを気相または
液相で接触させてポリシラザンオリゴマーを得、ついで
これを熱処理する方法が開示されている。
West German Patent No. 2,238,078 (1974) discloses a method of contacting dimethyldichlorosilane and ammonia in the gas or liquid phase to obtain a polysilazane oligomer, which is then heat treated.

また、ジャーナル・オブ・アプリケーション・ポリマー
9サイエンス(Journal of Applica
tionρolymer 5cience) 、 27
,3751(+982)では、メチルトリクロロシラン
とメチルアミンとを接触させてメチルトリクチルアミノ
シランを生成させ、52゜℃で熱処理してポリカルボシ
ラザンを11tた後、さらに約1.2QO℃で熱処理す
る方法が報告されている。
In addition, the Journal of Applied Polymer 9 Science
tionpolymer 5science), 27
, 3751 (+982), methyltrichlorosilane and methylamine are brought into contact to produce methyltrictylaminosilane, heat treated at 52°C to form 11t of polycarbosilazane, and then further heat treated at about 1.2QO°C. A method has been reported.

しかしながら、これらの方法ではいずれも高分子量のシ
ラザ7を得るのが困難であり、ポリシラザンの熱処理に
おいても茂発などによりケイ素セラミックスを収率よ〈
得ることが難しい。
However, it is difficult to obtain high-molecular-weight silazane 7 using any of these methods, and even in the heat treatment of polysilazane, the yield of silicon ceramics decreases due to heat treatment.
difficult to obtain.

さらに、コミュニケーションφオブーアメリカンΦセラ
ミックス吻ンサイエティ(Gosmun、 ofAme
r、 Ceram、 5ociety)、G−13(1
983)には、ジクロロシランにアンモニアを接触させ
てボリンラザンー       を得、ついでそれを1
,150 ’Oで熱処理する方法が開示されている。し
かし、この方法では、得られるボリノラザンの安定性が
乏しく、酸〕もの存在下室温で容易に分解し、その一部
がシロキチン化してしまうという問題がある。
In addition, communication φ of American φ Ceramics Society (Gosmun, ofAme
r, Ceram, 5ociety), G-13(1
983), dichlorosilane is brought into contact with ammonia to obtain borine razan, which is then mixed with 1
, 150'O is disclosed. However, this method has the problem that the resulting vorinolazan has poor stability and is easily decomposed at room temperature in the presence of acids, resulting in a portion of it becoming silochitinated.

さらには、特開昭t558−83725号公報に示され
るようにl!!J含有ジシランとアンモニアとを接触さ
せてポリシラザンを得て、熱処理によりケイ素セラミッ
クスを得る方法が開示されている。この方法によれば、
ポリシラザンの高分子化が可能であると報告されて(ハ
るが、原料となるI!!素含有ジシランは、1!!素数
が異なる況合物の状態で使用されるため、一定の性状の
ポリシラザンを得ることは難しい、また、このポリシラ
ザンを1800℃で熱処理するとβ−炭化ケイ素のみが
得られることが報告されており、したがって、この方法
では目的に応じて窒化ケイ素を製造することは不可能で
ある。   ゛ [発明の目的] 本発明は、比較的容易に分離しやすいケイ素−水素結合
を有するへロシランを出発原料として高分子量のポリシ
ラザンを得、さらにこのポリシラザンを原料としてケイ
素セラミックスを製造することを目的とする。
Furthermore, as shown in Japanese Patent Application Laid-Open No. 558-83725, l! ! A method is disclosed in which polysilazane is obtained by contacting J-containing disilane and ammonia, and silicon ceramics are obtained by heat treatment. According to this method,
It has been reported that it is possible to polymerize polysilazane (although it is reported that disilane containing I!! primes as a raw material is used in the state of different 1!! prime numbers, so it is possible to polymerize polysilazane with certain properties. It has been reported that it is difficult to obtain polysilazane, and that only β-silicon carbide is obtained when polysilazane is heat-treated at 1800°C.Therefore, it is impossible to produce silicon nitride according to the purpose with this method.゛[Objective of the Invention] The present invention is directed to obtaining a high molecular weight polysilazane using as a starting material a herosilane having a silicon-hydrogen bond that is relatively easily separated, and further producing silicon ceramics using this polysilazane as a starting material. The purpose is to

[発明の概要1 本発明者らは、上記目的を達成すべく検討を重ねた結果
、一般式R)(S + X 2で示されるジハロシラン
を用いた場合は、一般式R25iX、、で示されるジハ
ロシランにくらべて高分子量のシラザンオリゴマーが得
られ、しかも得られたシラザンオリゴマーは室温では比
較的安定であるが、加熱することにより容易にさらに高
分子化することを見出した。さらには、このポリシラザ
ンを高温下で熱処理することにより収率よくケイ素セラ
ミックスが()られることを見出し1本発明を完成する
に至った。
[Summary of the Invention 1 As a result of repeated studies to achieve the above object, the present inventors found that when using a dihalosilane represented by the general formula R) (S + We have found that a silazane oligomer with a higher molecular weight than dihalosilane can be obtained, and that although the obtained silazane oligomer is relatively stable at room temperature, it is easily further polymerized by heating. The present inventors have discovered that silicon ceramics can be produced in good yield by heat-treating them at high temperatures, leading to the completion of the present invention.

すなわち、本発明は、ポリシラザンを用いるケイ素セラ
ミックスの製造方法において。
That is, the present invention relates to a method for manufacturing silicon ceramics using polysilazane.

ポリシラザンとして、アンモニアと一般式:%式% (式中、Rは炭素数1〜6の一価の炭化水素基を表し、
又はハロゲン原子を表す) で示されるジハロシランとを接触させることにより()
られるポリシラザンを用い、該ポリシラザンを不活性雰
囲気または真空中で1200 ’O以上の温度で熱処理
することを特徴とする。
As polysilazane, ammonia and general formula: % formula % (wherein, R represents a monovalent hydrocarbon group having 1 to 6 carbon atoms,
or a halogen atom) by contacting with a dihalosilane represented by ().
The method is characterized in that the polysilazane is heat-treated at a temperature of 1200'O or more in an inert atmosphere or vacuum.

即ち、本発明の第1の特徴点は、ケイ素セラミックスの
原料として用いられるポリシラザンとして、アンモニア
と一般式: %式% (式中、RおよびXは前記と同義である)で示されるジ
ハロシランとを接触させる新規な反応により得られるポ
リシラザンを用いることである。
That is, the first feature of the present invention is that ammonia and a dihalosilane represented by the general formula: % (wherein R and X have the same meanings as above) are used as polysilazane as a raw material for silicon ceramics. It is to use polysilazane obtained by a novel reaction of contact.

上記反応で用いられるジハロシランは一般式RHS i
 X 2で示されるが、ここでRで表される炭素数1〜
6の一価の炭化水素基としては、メチル基、エチル基、
プロピル基、ブチル基、ヘキシル基のようなアルキル基
;ビニル基、アリル基のようなアルケニル基;フェニル
基などが例示される0合成のしやすさなどからはメチル
基またはフェニル基が好ましい、Xはフッ素、塩素、臭
7モ、ヨウ7打のハロゲン原子であるが、−1!λ的に
は11!素原子である。
The dihalosilane used in the above reaction has the general formula RHS i
It is represented by X 2, where the number of carbon atoms represented by R is 1 to
6 monovalent hydrocarbon groups include methyl group, ethyl group,
Examples include alkyl groups such as propyl, butyl, and hexyl groups; alkenyl groups such as vinyl and allyl groups; is a halogen atom with fluorine, chlorine, 7 odor, and 7 odor, but -1! 11 in terms of λ! It is an elementary atom.

ポリシラザンを製造するに際しては、同一のR基のみを
有するジハロシランを用いてもよく、また相異なるR基
を有するジハロシランを所定の比に混合して用いてもよ
い、なお、ジハロシランは、一般的には直接法の席生成
物、塩素含有ジシランの塩酸による分解、グリニヤール
反応などによって工業的にずりられる。
When producing polysilazane, dihalosilanes having only the same R group may be used, or dihalosilanes having different R groups may be mixed in a predetermined ratio. Note that dihalosilanes are generally It is produced industrially by direct process products, decomposition of chlorine-containing disilane with hydrochloric acid, Grignard reaction, etc.

本発明で使用されるアンモニアは、ジハロシラノの加水
分解および生成するシラザンオリゴマーの加水分解を防
ぐため、木質的に無水であることが好ましい、ここで本
質的に無水とは絶対的な無水の状態である必要はなく、
多少の水分は許容できるという意味である。
The ammonia used in the present invention is preferably ligneously anhydrous in order to prevent hydrolysis of the dihalosilano and the resulting silazane oligomer. Here, essentially anhydrous means absolutely anhydrous. It doesn't have to be,
This means that some moisture can be tolerated.

反応は、アンモニアとジハロシランが互いに接触すると
同時に進行し、アミノシラン化合物を経てポリシラザン
中間体が形成される。原料を添加、、1 、     
する順序について何ら制限はないが、アンモニアがカス
状であるため、一般的にはジハロシランにアンモニアを
導入する方υ、がとられる。この場合、シバロンラン1
モルに対し、常温で1気圧のアンモニアガスを通常的7
0〜+001供給する0反応が進行するに伴い 371
化アンモニウムの生成量が増え、反応混合物の粘度を著
しく高める。そのため、ジハロシランを沸点の低い溶媒
に加え1反応混合物の攪拌が均一に行われるようにする
のが望ましい、このような低沸点溶媒としては、ペンタ
ン、ヘプタン、ヘキサン、ベンゼン、トルエンなどがあ
げられる。これらの溶媒は先述した理由から本質的に無
水であることが好ましく、一般的に乾燥したのちに使用
する。かかる溶媒を用いる場合は、通常、ジハロシラン
100重量部に対し100〜1,000重量部の溶媒が
加えられる。
The reaction proceeds simultaneously when ammonia and dihalosilane come into contact with each other, and a polysilazane intermediate is formed via an aminosilane compound. Add raw materials, 1,
Although there are no restrictions on the order in which they are added, since ammonia is in the form of dregs, generally the method of introducing ammonia into dihalosilane is υ. In this case, Shibaronran 1
Normally, 7 moles of ammonia gas is 1 atm at room temperature.
As the 0 reaction that supplies 0 to +001 progresses, 371
The amount of ammonium oxide formed increases and the viscosity of the reaction mixture increases significantly. Therefore, it is desirable to add dihalosilane to a solvent with a low boiling point so that stirring of the reaction mixture is uniformly performed. Examples of such a low boiling point solvent include pentane, heptane, hexane, benzene, and toluene. These solvents are preferably essentially anhydrous for the reasons mentioned above and are generally used after drying. When such a solvent is used, it is usually added in an amount of 100 to 1,000 parts by weight per 100 parts by weight of dihalosilane.

反応は、アンモニアとジハロシランが互いに接触すると
同時に通行することから、室温で反応を行うこともでき
る。また1反応を促進させるため、反応系を加熱しても
よい、一般には1反応を常圧下で行う場合、低沸点溶媒
が還流する温度まで加熱する。さらには、反応を促進す
る目的で、電封下で行ってもよい0反応時回は通常、0
.5〜5時間である。
The reaction can also be carried out at room temperature since ammonia and dihalosilane come into contact with each other and pass through at the same time. In order to promote one reaction, the reaction system may be heated. Generally, when one reaction is carried out under normal pressure, the reaction system is heated to a temperature at which the low boiling point solvent refluxes. Furthermore, for the purpose of promoting the reaction, the 0 reaction time, which may be carried out under electrical sealing, is usually 0.
.. 5 to 5 hours.

以上の反応によりポリシラザンが生成するが。Polysilazane is produced by the above reaction.

次の熱処理工程において望ましいセラミックスを得るた
めには1分子量が10,000以上のポリシラザンを用
いることが好ましい、ポリシラザンの分子r仕を高める
ためには、上記反応により得られたポリシラザンを不活
性かつ木質的に無水の雰囲気内で熱処理することが好ま
しい、この熱処理は、ポリシラザンを含む反応混合物を
そのまま該処理に付してもよいし、あるいは反応混合物
からポリシラザンを常法に従い単離して該処理に付すこ
とにより行ってもよい0反応混合物からのポリシラザン
の単離は、例えば、副生じたアンモニウム塩をろ過し、
ろ液を加熱または減圧処理して低沸点溶媒および揮発性
の生成物を除去することにより行われる。なお、ポリシ
ラザンを高分子化するための」1記反応において、ポリ
シラザンの重合度は加熱温度および時間によりJジ定で
き1重合度が数十から数万以上のポリシラザンが任意に
得られる。
In order to obtain desirable ceramics in the next heat treatment step, it is preferable to use a polysilazane with a molecular weight of 10,000 or more. In this heat treatment, the reaction mixture containing the polysilazane may be directly subjected to the treatment, or the polysilazane may be isolated from the reaction mixture according to a conventional method and then subjected to the treatment. Isolation of the polysilazane from the reaction mixture may be carried out, for example, by filtration of the by-product ammonium salt,
This is carried out by subjecting the filtrate to heat or vacuum treatment to remove low-boiling solvents and volatile products. In the reaction described in item 1 for polymerizing polysilazane, the degree of polymerization of polysilazane can be determined by heating temperature and time, and a polysilazane having a degree of polymerization of several tens to tens of thousands or more can be arbitrarily obtained.

該反応は通常50〜500℃、好ましくは150〜35
0℃の温度範囲内で行われるが、50℃未満ではt合反
応が起りに<<、また500℃を越えると重合度の調箇
が困難になりやすい9反応時間は通常、0.2〜10時
間である。
The reaction is usually carried out at a temperature of 50 to 500°C, preferably 150 to 35°C.
It is carried out within a temperature range of 0°C, but if it is less than 50°C, a t-polymerization reaction will occur, and if it exceeds 500°C, it will be difficult to control the degree of polymerization.9 The reaction time is usually 0.2~ It is 10 hours.

本発明の第2の特徴点は、前記反応により得られたジハ
ロシランがケイ素セラミックスを製造するための原料と
して使用し得るという、新たな用途を見出したことにあ
る。即ち、本発明では最後に、アンモニアとジハロシラ
ンとの接触反応により得られたポリシラザン、あるいは
それを更に高分子化させるための反応に付して得られた
ポリシラザンをそのまま、または精製した後、 1,2
00℃以上の温度で熱処理するのである。この熱処理は
、ポリシラザンの醸化反応を防ぐため、窒素ガス、アル
ゴンガスなどの不活性雰囲気下または真空中で行われる
。加熱温度は1.200℃以上、好ましくは1,300
〜1,800℃の温度範囲である。
The second feature of the present invention lies in the discovery of a new use in which the dihalosilane obtained by the above reaction can be used as a raw material for producing silicon ceramics. That is, in the present invention, finally, the polysilazane obtained by the contact reaction of ammonia and dihalosilane, or the polysilazane obtained by subjecting it to a reaction to further polymerize it, either as it is or after being purified, 1. 2
The heat treatment is performed at a temperature of 00°C or higher. This heat treatment is performed under an inert atmosphere such as nitrogen gas or argon gas or in vacuum in order to prevent the polysilazane from brewing. Heating temperature is 1.200℃ or higher, preferably 1,300℃
The temperature range is ~1,800°C.

1.200℃未満では1M晶買のケイ素セラミックスを
得ることかでさず、また経済性および生成したセラミフ
クスの昇―防11という観点からはあまり高温にするこ
とは好ましくない、加熱時間は通常0.1〜30時間で
ある。なお、ポリシラザンの熱処理時に副生するガスに
よる加熱炉の損傷を防止するという理由から、 1.2
00℃以上で処理する前に、予めポリシラザンを500
〜1,000℃の温度範囲内で0.1〜10時間熱処理
し、副生成物を除去しておくことが好ましい。
1. If it is below 200°C, it will be difficult to obtain silicon ceramics of 1M crystal, and from the viewpoint of economical efficiency and the elevation and prevention of the produced ceramic fuchs, it is not preferable to raise the temperature too high, and the heating time is usually 0. .1 to 30 hours. Furthermore, in order to prevent damage to the heating furnace due to gas produced by-product during heat treatment of polysilazane, 1.2.
Before processing at 00°C or above, apply 500% polysilazane in advance.
It is preferable to perform heat treatment within the temperature range of ~1,000°C for 0.1 to 10 hours to remove by-products.

L記反応においては、一種または二種以上のポリシロキ
サンを任意に用いることができる。有機基として炭素数
の少ない炭化水素基を有するポリシロキサン(例えば、
Rが低級アルキル基のジハロシランをアンモニアと反応
させることにより得られる)を原料として用いた場合は
、主に窒化ケイ素が得られ、一方、有機基としてフェニ
ル基を有するポリシロキサン(Rがフェニル基のジハロ
シランをアンモニアと反応させることにより得られる)
を原料として用いた場合は、主に炭化ケイ、1    
   素が得られる。また、両ポリシロキサンを適宜の
割合で配合することにより、窒化ケイ素と炭化ケイ素と
が所tiIの割合で混在したケイ、+;セラミックス複
合体を得ることができる。
In the reaction L, one or more polysiloxanes can be optionally used. Polysiloxanes having hydrocarbon groups with a small number of carbon atoms as organic groups (e.g.
When a dihalosilane in which R is a lower alkyl group is used as a raw material by reacting with ammonia, silicon nitride is mainly obtained; obtained by reacting dihalosilane with ammonia)
When using as a raw material, mainly silicon carbide, 1
The raw material is obtained. Further, by blending both polysiloxanes in an appropriate ratio, a silicon, +; ceramic composite in which silicon nitride and silicon carbide are mixed in a ratio of tiI can be obtained.

[発明の効果] 本発明によれば、ケイ素セラミックスを容易にかつ高収
率で得ることができる。さらには、出発原料のジハロシ
ランまたは直接の原料のポリシラザンのケイ素原子に結
合する有機基を適宜に1!!択することにより、窒化ケ
イ素または炭化ケイ素からなるケイ素セラミックス、あ
るいは窒化ケイ素と炭化ケイ素とが混在したケイ素セラ
ミックス複合体が得られる。また、有機基が異なる二種
以上の原料を適宜に用いることにより、ケイ素セラミッ
クス複合体中の窒化ケイ素と炭化ケイ素との混在比を自
由に調節することができる。したがって1本発明は、ケ
イ素セラミックスの製造方法として工業的にきわめて有
用なものである。
[Effects of the Invention] According to the present invention, silicon ceramics can be easily obtained with high yield. Furthermore, the organic group bonded to the silicon atom of the dihalosilane as the starting material or the polysilazane as the direct raw material is appropriately added to 1! ! Depending on the selection, a silicon ceramic made of silicon nitride or silicon carbide, or a silicon ceramic composite containing a mixture of silicon nitride and silicon carbide can be obtained. Furthermore, by appropriately using two or more types of raw materials having different organic groups, the mixing ratio of silicon nitride and silicon carbide in the silicon ceramic composite can be freely adjusted. Therefore, the present invention is industrially extremely useful as a method for producing silicon ceramics.

[発明の実施例] 実施例1 ポリシラザン  ′ 攪拌器の付いた耐圧反応容器に、メチルジクロロシラン
cHH9+CfL2too重呈部および低沸点溶奴とし
てn−へキサン4ioti量部を仕込んだ、その後、耐
圧反応容器に付いたガス導入口より乾燥アンモニアを吹
込んだ、アンモニアを吹込むと同時に圧力が上昇し、反
応温度も上昇した0反応温度を80℃以下にy4!1す
るように、徐々にアンモニアガスを導入しつづけ、30
分後には反応による発熱およびアンモニアガスの圧力低
下が見られなくなった。アンモニアガスの供給量は50
重量部であった。ついでアンモニアガスの導入を中止し
[Embodiments of the Invention] Example 1 Polysilazane' A pressure-resistant reaction vessel equipped with a stirrer was charged with a weighted part of methyldichlorosilane cHH9+CfL2too and 4 parts of n-hexane as a low-boiling melt, and then the pressure-resistant reaction vessel was charged. Dry ammonia was blown in through the gas inlet attached to the gas inlet. At the same time as ammonia was blown in, the pressure rose and the reaction temperature also rose. 0The ammonia gas was gradually introduced so that the reaction temperature decreased to below 80°C. Continue to introduce, 30
After a few minutes, no heat generation due to the reaction and no decrease in the pressure of ammonia gas were observed. Ammonia gas supply amount is 50
Parts by weight. Then, the introduction of ammonia gas was stopped.

さらに30分間攪拌を続けた後5反応物を耐圧反応容器
から取り出した。しかる後、アンモニウム塩をろ過し、
得られたか液を減圧下で蒸留して低沸点生成物およびn
−へキサンを除去し、比較的粘稠なポリシラザンオリゴ
q−35,8ff!−%部を得た。
After continuing stirring for an additional 30 minutes, the 5 reactants were taken out from the pressure-resistant reaction vessel. After that, filter the ammonium salt,
The resulting liquid was distilled under reduced pressure to remove low boiling products and n
- Hexane removed, relatively viscous polysilazane oligo q-35,8ff! −% parts were obtained.

次に、このポリシラザンオリゴマ−3offia部を再
び耐圧反応容器に入れ、窒素ガス置換を行った後1種々
の加熱条件下で熱処理を行った。熱処理終了後、室温に
まで冷却したところ、分解ガスが発生しており、残留圧
力が観察された1分解ガスを放出し、分解物を除去した
ところ、白色ないし透明のポリシラザン樹脂が得られた
。その結果を第1表に示す。
Next, this polysilazane oligomer 3offia portion was placed in the pressure-resistant reaction vessel again, and after nitrogen gas substitution, heat treatment was performed under various heating conditions. After the heat treatment was completed, when it was cooled to room temperature, decomposed gas was generated, and a residual pressure was observed.1 When the decomposed gas was released and the decomposed products were removed, a white to transparent polysilazane resin was obtained. The results are shown in Table 1.

イーセラミ・クス 第1表No、1〜4のポリシラザンを窒化ケイ素製ルツ
ボに入れ、窒素ガス先導入しながら750℃で1時間加
熱し、黒色の固形物を得た。
The polysilazane Nos. 1 to 4 of E-ceramix Table 1 were placed in a silicon nitride crucible and heated at 750° C. for 1 hour while introducing nitrogen gas first to obtain a black solid.

ついで、この固形物を1,800℃で1時間加熱し、外
観が灰色の固体を得た。得られた固体は、分子量が小さ
いポリシラザンから生成したものほど硬い性状である。
This solid was then heated at 1,800° C. for 1 hour to obtain a solid with a gray appearance. The obtained solid is harder as it is produced from polysilazane with a smaller molecular weight.

この固体についてX線回折分解を行い、さらに既知試料
の検量線より1重量法にてケイ素セラミックス中の各種
成分の生成比を算出した。得られた結果を第2表に示し
た。
This solid was subjected to X-ray diffraction decomposition, and the production ratios of various components in the silicon ceramics were calculated using the 1 weight method from the calibration curve of known samples. The results obtained are shown in Table 2.

実施fP42 黒色の固形物の加熱温度を1,700 ”0にしたこと
以外は実施例1と同様の方法にて、灰色のケイ素セラミ
ックス固体を得た。各種成分の生成比と収率を第3表に
示した。
Implementation fP42 A gray silicon ceramic solid was obtained in the same manner as in Example 1, except that the heating temperature of the black solid was 1,700"0. The production ratios and yields of various components were determined in the third example. Shown in the table.

実施例3 ポリシラザンの ゛ シバロンランとしてフェニルジクロロシランC6H3H
9iC文、、 100重量部を用いたこと以外は実施例
jと同様の方法でアンモニアガスと反応させた0反応温
度が最高81”Oまで上昇したが、 40分後には温度
低下がみられ、アンモニアガスの圧力低下も少なくなっ
た。アンモニアガスを供給量は40重量部であった。つ
いで反応開始1時間後にアンモニアガスの導入を中止し
、さらに30分間攪拌を続けた1反応終了後、アンモニ
ウム塩をろ別し、さらにn−へキサンを減圧下で取り除
いたところ、粘稠なポリシラザンオリゴマー38重量部
が得られた。
Example 3 Phenyldichlorosilane C6H3H as polysilazane
The reaction temperature was increased to a maximum of 81"O, but after 40 minutes, a temperature drop was observed. The pressure drop of ammonia gas was also reduced.The amount of ammonia gas supplied was 40 parts by weight.Then, 1 hour after the start of the reaction, the introduction of ammonia gas was stopped, and stirring was continued for an additional 30 minutes. When the salt was filtered off and n-hexane was removed under reduced pressure, 38 parts by weight of a viscous polysilazane oligomer was obtained.

次に、このポリシラザンオリゴマー38重量部を実施例
1と同様に、300℃の温度で2時間熱処理を行ったと
ころ、少量の液体の他に、固体状のポリシラザン樹脂3
4重量部が得られた。
Next, 38 parts by weight of this polysilazane oligomer was heat treated at a temperature of 300°C for 2 hours in the same manner as in Example 1. In addition to a small amount of liquid, solid polysilazane resin 3
4 parts by weight were obtained.

ケイ セラミ−ス 上記反応により得られたポリシラザンを実施例1と同様
の方法にて加熱することにより、ケイ素セラミックスを
得た。得られたセラミックスはβ−5i3N4がきわめ
てWi量しか存在しないβ−3iCからなり、その収率
は23%であった。
Silicon ceramics The polysilazane obtained by the above reaction was heated in the same manner as in Example 1 to obtain silicon ceramics. The obtained ceramic was composed of β-3iC in which β-5i3N4 was present in a very small Wi amount, and the yield was 23%.

実施例4 第1表No、4のポリシラザン樹脂と実施例3にて得ら
れたポリシラザン樹脂を各々粉砕して粉末状にし、種々
の割合で混合した後、実施例1と同様の方法にて加熱す
ることにより、第4表に示したケイ素セラミックスを得
た。
Example 4 The polysilazane resins No. 4 in Table 1 and the polysilazane resin obtained in Example 3 were each ground into powder, mixed in various proportions, and then heated in the same manner as in Example 1. By doing so, silicon ceramics shown in Table 4 were obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)ポリシラザンを用いるケイ素セラミックスの製造
方法において、 ポリシラザンとして、アンモニアと一般式:RHSiX
_2 (式中、Rは炭素数1〜6の一価の炭化水素基を表し、
Xはハロゲン原子を表す) で示されるジハロシランとを接触させることにより得ら
れるポリシラザンを用い、該ポリシラザンを不活性雰囲
気または真空中で1200℃以上の温度で熱処理するこ
とを特徴とするケイ素セラミックスの製造方法。
(1) In a method for producing silicon ceramics using polysilazane, as polysilazane, ammonia and general formula: RHSiX
_2 (wherein, R represents a monovalent hydrocarbon group having 1 to 6 carbon atoms,
Production of silicon ceramics using a polysilazane obtained by contacting a dihalosilane represented by Method.
(2)ポリシラザンの分子量が10,000以上である
特許請求の範囲第1項記載のケイ素セラミックスの製造
方法。
(2) The method for producing silicon ceramics according to claim 1, wherein the polysilazane has a molecular weight of 10,000 or more.
(3)ポリシラザンが、アンモニアとジハロシランとを
接触させた後、不活性かつ無水の雰囲気下で50〜50
0℃で加熱することにより高分子化させたものである特
許請求の範囲第1項記載のケイ素セラミックスの製造方
法。
(3) After the polysilazane is brought into contact with ammonia and dihalosilane, 50 to 50
The method for producing silicon ceramics according to claim 1, wherein the silicon ceramics are polymerized by heating at 0°C.
(4)ポリシラザンの加熱処理温度が1,300〜1,
800℃である特許請求の範囲第1項記載のケイ素セラ
ミックスの製造方法。
(4) The heat treatment temperature of polysilazane is 1,300 to 1,
The method for producing silicon ceramics according to claim 1, wherein the temperature is 800°C.
JP59193866A 1984-09-18 1984-09-18 Method for producing silicon ceramics Expired - Lifetime JPH0629123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193866A JPH0629123B2 (en) 1984-09-18 1984-09-18 Method for producing silicon ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193866A JPH0629123B2 (en) 1984-09-18 1984-09-18 Method for producing silicon ceramics

Publications (2)

Publication Number Publication Date
JPS6172607A true JPS6172607A (en) 1986-04-14
JPH0629123B2 JPH0629123B2 (en) 1994-04-20

Family

ID=16315055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193866A Expired - Lifetime JPH0629123B2 (en) 1984-09-18 1984-09-18 Method for producing silicon ceramics

Country Status (1)

Country Link
JP (1) JPH0629123B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023470A1 (en) 2012-08-10 2014-02-13 Evonik Industries Ag Process for coupled preparation of polysilazanes and trisilylamine
DE102013209802A1 (en) 2013-05-27 2014-11-27 Evonik Industries Ag Process for the coupled preparation of trisilylamine and polysilazanes having a molecular weight of up to 500 g / mol
US11124876B2 (en) 2015-03-30 2021-09-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
US11699584B2 (en) 2015-03-30 2023-07-11 L'Air Liquide, Société Anonyme pour l'Edute ed l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969717A (en) * 1972-09-05 1974-07-05
JPS60226890A (en) * 1984-01-19 1985-11-12 マサチユ−セツツ・インステチユ−ト・オブ・テクノロジ− Preseramic organosilazane polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969717A (en) * 1972-09-05 1974-07-05
JPS60226890A (en) * 1984-01-19 1985-11-12 マサチユ−セツツ・インステチユ−ト・オブ・テクノロジ− Preseramic organosilazane polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023470A1 (en) 2012-08-10 2014-02-13 Evonik Industries Ag Process for coupled preparation of polysilazanes and trisilylamine
DE102012214290A1 (en) 2012-08-10 2014-02-13 Evonik Industries Ag Process for the coupled preparation of polysilazanes and trisilylamine
DE102013209802A1 (en) 2013-05-27 2014-11-27 Evonik Industries Ag Process for the coupled preparation of trisilylamine and polysilazanes having a molecular weight of up to 500 g / mol
WO2014191058A1 (en) 2013-05-27 2014-12-04 Evonik Industries Ag Method for the coupled production of trisilylamine and polysilazanes having a molar mass of up to 500 g/mol
US11124876B2 (en) 2015-03-30 2021-09-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
US11699584B2 (en) 2015-03-30 2023-07-11 L'Air Liquide, Société Anonyme pour l'Edute ed l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
US11820654B2 (en) 2015-03-30 2023-11-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Si-containing film forming precursors and methods of using the same

Also Published As

Publication number Publication date
JPH0629123B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
KR840001536B1 (en) Method of producing for polysilane
US4767876A (en) Method for converting organosilicon polymers containing SIH repeat units and organopolysilazane precursors to new and useful preceramic polymers and silicon nitride enriched ceramic materials
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
JPS6353293B2 (en)
CA1281477C (en) Method for converting si-h containing polysiloxanes to new and useful preceramic polymers and ceramic materials
US4550151A (en) Organoborosilicon polymer and a method for the preparation thereof
JP2511074B2 (en) Pre-ceramic polymer, ceramic material and methods for producing the same
JPH01190730A (en) Production of diorganopolysiloxane having triorganosiloxane group as terminal unit
CA1287432C (en) Preceramic polymers derived from cyclic silazanes and halogenated disilanes and a method for their preparation
JPS6172607A (en) Production of silicon ceramic
US5086126A (en) Method for producing functional silazane polymers
JPH0662774B2 (en) Method for producing polysilametylenosilane-based polymer or copolymer
JPH0662776B2 (en) Polytitanocarbosilazane polymer and method for producing ceramics using the polymer
EP0323062A1 (en) Process for manufacturing organic silazane polymers
JPS6158086B2 (en)
JPH0471411B2 (en)
JPH06279587A (en) Silicon nitride-aluminum ceramic and its precursor, their production, and their use
US5145813A (en) Process for manufacturing organic silazane polymers and ceramics therefrom
JPH064701B2 (en) Method for producing organosilicon polymer
EP0278001B1 (en) Method for using organopolysilazane precursors to form new preceramic polymers and silicon nitride-rich ceramic materials
JPS6172614A (en) Production of silicon hydride
JP2005220261A (en) Boron-containing organosilazane polymer and method for producing the same and ceramic obtained therefrom
JPH02199126A (en) Silazane oligomer and its preparation
JP2575280B2 (en) Manufacturing method of silicon oxynitride fiber
JPH04311727A (en) Alkoxy group-containing organopolysilane and its production