JPS6172060A - Electromagnetic wave-shielding plastic material - Google Patents

Electromagnetic wave-shielding plastic material

Info

Publication number
JPS6172060A
JPS6172060A JP19500084A JP19500084A JPS6172060A JP S6172060 A JPS6172060 A JP S6172060A JP 19500084 A JP19500084 A JP 19500084A JP 19500084 A JP19500084 A JP 19500084A JP S6172060 A JPS6172060 A JP S6172060A
Authority
JP
Japan
Prior art keywords
metal fibers
fiber
fibers
metal
plastic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19500084A
Other languages
Japanese (ja)
Inventor
Tadashi Hasegawa
正 長谷川
Kazuyuki Izumo
出雲 数之
Nobuyoshi Sugie
杉江 信義
Katsuyuki Enomoto
榎本 勝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aron Kasei Co Ltd
Original Assignee
Aron Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aron Kasei Co Ltd filed Critical Aron Kasei Co Ltd
Priority to JP19500084A priority Critical patent/JPS6172060A/en
Publication of JPS6172060A publication Critical patent/JPS6172060A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the mixing of metal fibers, and to obtain the titled material exhibiting high electromagnetic wave-shielding property with only a small amount of added metal fibers, and suitable for the housing of electronic apparatus, etc., by compounding a plastic material with a specific amount of metal fibers having specific diameter and length. CONSTITUTION:Metal fibers (e.g. aluminum fiber, zinc fiber, etc.) having fiber diameter of 20-50mum and length of 5-15mm, preferably 5-10mm are added to a synthetic resin emulsion (e.g. emulsion of polystyrene) or solution (e.g. solution in an organic solvent such as toluene), and the mixture is dried and granulated. The obtained granules are added to a plastic material. The content of the metal fiber in the final product is 1-5vol%.

Description

【発明の詳細な説明】 〔童業上の利用分野〕 本発明は電子機器等のハウジング等に用すられる電磁波
シールド性プラスチック材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of industrial application] The present invention relates to an electromagnetic shielding plastic material used for housings of electronic devices and the like.

〔従来の技術〕[Conventional technology]

電子機器等のハウジングは内部から発生される電磁波の
漏洩を防止したシ外部からの電磁波によって妨害される
ことを防止するために電磁波シールド性を有することが
望まれる。そこでハウジング材料であるプラスチックに
導電性の充填材を混合することが行われている。該充填
材として望ましいものは金属繊維である。金属繊維は相
互に絡み合いプラスチック材料中に連続拾遺を形成する
から少量の添加で高度な電磁波シールド性が得られる。
Housings for electronic devices and the like are desired to have electromagnetic shielding properties in order to prevent leakage of electromagnetic waves generated from inside and to prevent interference by electromagnetic waves from outside. Therefore, a conductive filler is mixed into the plastic housing material. A preferred filler is metal fiber. Since the metal fibers are intertwined with each other and form continuous particles in the plastic material, a high degree of electromagnetic shielding can be obtained with the addition of a small amount.

また上記金属繊維の絡み合いはプラスチックの構造強度
をも向上せしめる。このような金属繊維の形状としては
従来繊維径が10〜200μm、長さ1,0〜10門程
度が良好であると延れている(特開昭58−78499
号)0 〔発明が解決しようとする問題点〕 しかしながら本発明者等はプラスチックに混合する上記
金属繊維の形状として上記範囲のものが必ずしも最適の
ものとは云えないことを見出した。
The entanglement of the metal fibers also improves the structural strength of the plastic. Conventionally, the shape of such metal fibers is considered to be good when the fiber diameter is 10 to 200 μm and the length is about 1.0 to 10 mm (Japanese Patent Application Laid-Open No. 78499-1999).
No.) 0 [Problems to be Solved by the Invention] However, the present inventors have found that the shape of the metal fibers to be mixed with plastics within the above range is not necessarily optimal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記従来の問題点を解決する手段として、繊維
径が20〜50μm1長さが5〜15Mの金属繊維をプ
ラスチックに対して1〜5容積チ含有させるものである
The present invention, as a means to solve the above-mentioned conventional problems, involves incorporating metal fibers having a fiber diameter of 20 to 50 μm and a length of 5 to 15 M in an amount of 1 to 5 volumes per plastic.

〔発明の構成・作用] 本発明を以下に詳細に説明する。[Structure and operation of the invention] The invention will be explained in detail below.

本発明に用いられる金属繊維としてはアルミニウム、亜
鉛、錫、黄銅、ステンレススチール等の金属もしくは合
金、あるいはガラス繊維、セラミクス繊維3舎成繊維等
の繊維に蒸着あるいはスパッタリング等によって上記金
属もしくは合金を被覆したメタライズドファイバー等が
例示される。
The metal fibers used in the present invention include metals or alloys such as aluminum, zinc, tin, brass, and stainless steel, or fibers such as glass fibers and ceramic fibers, coated with the above metals or alloys by vapor deposition or sputtering. Examples include metallized fibers.

上記金属繊維は繊維径が20〜50μm、長さが5〜1
5朋、望ましくは長さが5〜10間とされる0プラスチ
ツクに少量の添加で良好な電磁シールド性を付与するた
めには金属繊維は出来るだけ径を小さく長さを大きくし
て絡み合いを良好にすることが必要であるが一方このよ
うに金属繊維を長細にするとまるまって電球にな9易く
取扱かいが困難となる。上記限定範囲は少量の添加で良
好な電磁シールド性が得られ、かつ電球になりにくいこ
とを目的として設定されたものである。
The metal fiber has a fiber diameter of 20 to 50 μm and a length of 5 to 1
5. In order to give good electromagnetic shielding properties with a small amount of addition to plastic, the length of which is preferably between 5 and 10, the diameter of the metal fibers should be made as small as possible and the length should be made large to improve entanglement. On the other hand, if the metal fibers are made long and thin like this, they tend to curl into a light bulb and are difficult to handle. The above-mentioned limited range was set with the aim of obtaining good electromagnetic shielding properties with a small amount of addition and making it difficult to form a light bulb.

本発明に用いられるプラスチックは主として熱可塑性の
プラスチックであり、ポリエチレン、ポリプロピレン、
ポリスチレン、ポリメタクリレート、ポリ塩化ビニル、
アクリロニトリル−ブタジェン−スチレン共重合体、ス
チレン−ブタジェンブロック共重合体、ポリ弗化ビニル
、ポリ弗化ビニリデン、ポリフェニレンオキサイド、ポ
リフェニン/オキサイド変性物等が例示される。
The plastics used in the present invention are mainly thermoplastics, such as polyethylene, polypropylene,
polystyrene, polymethacrylate, polyvinyl chloride,
Examples include acrylonitrile-butadiene-styrene copolymer, styrene-butadiene block copolymer, polyvinyl fluoride, polyvinylidene fluoride, polyphenylene oxide, polyphenylene/oxide modified product, and the like.

上記金属繊維は上記プラスチックに対して1〜5容積チ
混合される。金属繊維の含有量が上記範囲以下の場合に
は十分な電磁シールド性が得られず、上記範囲以上の場
合にはプラスチック材料の成形性が劣化する。
The metal fiber is mixed with the plastic in 1 to 5 volumes. When the metal fiber content is below the above range, sufficient electromagnetic shielding properties cannot be obtained, and when it is above the above range, the moldability of the plastic material deteriorates.

上記金属繊維を上記プラスチックに混合するにはプラス
チックを加熱軟化せしめて金属繊維を混合してからペレ
ット化するのであるが混合あるいはペレット化の際の剪
断力によって金属繊維が切れて上記範囲外となるおそれ
もある。このような金属繊維の切断を防止しつ\−プラ
スチックに混合するには合成樹脂エマルジョンもしくは
溶液にまず金属繊維を混合した混合物を乾燥して粒状化
した金属繊維含有母材を成形時にプラスチックに混合す
る方法が推賞される。この方法では合成樹脂エマルジぢ
ンもしくは溶液はプラスチック軟化物よυもはるかに低
粘度であるから混合の際に金属繊維にか\る剪断力も極
めて小さなものであり金属繊維の切断は確実に防止され
る。この方法に用いられる合成樹脂エマルジョンもしく
は溶液としては、ポリスチレン、ポリメタクリレート、
ポリ塩化ビニル、アクリロニトリル−ブタジェン−スチ
レン共重合体、スチレン−ブタジェンブロック共重合体
、ポリ弗化ビニル、ポリ弗化ビニリデン。
To mix the above metal fibers with the above plastics, the plastic is heated and softened, mixed with the metal fibers, and then pelletized, but the metal fibers break due to the shearing force during mixing or pelletizing, resulting in outside the above range. There is also a risk. To prevent such cutting of metal fibers and mix them into plastic, first mix metal fibers into a synthetic resin emulsion or solution, dry and granulate the mixture, and mix the metal fiber-containing base material into plastic during molding. The method to do so is recommended. In this method, the synthetic resin emulsion or solution has a much lower viscosity than the plastic softener, so the shearing force applied to the metal fibers during mixing is extremely small, and cutting of the metal fibers is reliably prevented. Ru. The synthetic resin emulsion or solution used in this method includes polystyrene, polymethacrylate,
Polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer, styrene-butadiene block copolymer, polyvinyl fluoride, polyvinylidene fluoride.

ポリエチレン、ポリプロピレン、ポリアクリレート、ポ
リ酢酸ビニル等の合成樹脂のエマルジョン、もしぐはト
ルエン、キシレン、酢酸エチル、酢酸n−ブチル、アセ
ト/、メチルエチルケトン、メチルイソブチルケトン、
セロソルブアセテート。
Emulsions of synthetic resins such as polyethylene, polypropylene, polyacrylate, polyvinyl acetate, toluene, xylene, ethyl acetate, n-butyl acetate, acetate, methyl ethyl ketone, methyl isobutyl ketone,
Cellosolve acetate.

エチルセロンルプ等の有機溶剤溶液が例示される。An example is an organic solvent solution such as ethylseronulp.

上記エマルジョンもしくは溶液と金属繊維との混合比は
通常5:1〜1:2重量比とされる。上記金属繊維を混
合したエマルジョンもしくは溶液は型や網上に流し出し
て加熱乾燥して合成樹脂フィルムを作成する。エマルジ
ョンの場合は被膜形成温度が常温よりも高ければ乾燥の
過程で合成樹脂フィルムは亀裂を生じ自然に粒状化が行
われる。
The mixing ratio of the emulsion or solution and the metal fibers is usually 5:1 to 1:2 by weight. The emulsion or solution in which the metal fibers are mixed is poured out onto a mold or mesh and heated and dried to create a synthetic resin film. In the case of an emulsion, if the film formation temperature is higher than room temperature, the synthetic resin film will crack during the drying process and will naturally become granular.

この場合は粒状化に際して金属繊維には剪断力が殆んど
及ぼされないから実質的に粒状化による金属繊維の切断
はないと云える。合成樹脂フィルムに亀裂を生じない時
はクラッシャー等で粉砕するのであるが合成樹脂フィル
ムの粉砕は簡単であり金属繊維には大きな剪断力は及ぼ
されないから金属繊維の切断は少ない。かくして得た母
材をプラスチックと混合する。上記母材とプラスチック
との混合は前もって混合しペレット化する必要はなく成
形時に行なわれてよい。よって母材とプラスチックとの
混合、ペレット化の際の金属繊維の切断が防止される。
In this case, since almost no shearing force is applied to the metal fibers during granulation, it can be said that there is virtually no cutting of the metal fibers due to granulation. When a synthetic resin film does not cause cracks, it is crushed using a crusher or the like, but since it is easy to crush a synthetic resin film and no large shearing force is applied to the metal fibers, the metal fibers are rarely cut. The matrix thus obtained is mixed with plastic. The base material and the plastic need not be mixed in advance and pelletized, but may be mixed during molding. This prevents the metal fibers from being cut during mixing of the base material and plastic and during pelletization.

母材とプラスチックとの混合比は勿論最終的なプラスチ
ック材料における金属繊維の含有量が1〜5容積チとな
るようにする。そして成形は主として射出成形が行われ
る。
The mixing ratio of the base material and the plastic is such that the metal fiber content in the final plastic material is from 1 to 5 volumes. The molding is mainly performed by injection molding.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成作用を有するから金属繊維は電球にな
らずプラスチックとの混合は容易であり、かつ少量の添
加で高度な電磁7−ルド性を有するプラスチック材料が
得られる。
Since the present invention has the above-mentioned structural action, the metal fiber does not become a light bulb and can be easily mixed with plastic, and a plastic material having high electromagnetic properties can be obtained by adding a small amount.

〔実施例1〕 スチレン−メチルメタクリレート共重合体のエマルジョ
ン(固形分50重量%、粘度1500cps/25°C
1被膜形成温度100″C)と繊維径20μm1長さ1
51rRのアルミニウム繊維とを1=2重枡比で混合す
る。混合は通常の攪拌機で穏やかに行う。このようにし
て得られた混合物を内側に離型剤を塗布した型内に流し
込んで厚さ2顛の層を形成する。上記型を加熱炉に入れ
て150°C30分間の乾燥にて水分を完全に除去した
後常温に冷却すれば型内に形成された混合物被膜は亀裂
を生じてペレット化する。得られたベレットは篩別して
径10〜15ff以下のものを採取し、それ以上のもの
は粉砕して径10〜15闘以下として前者に混合する。
[Example 1] Emulsion of styrene-methyl methacrylate copolymer (solid content 50% by weight, viscosity 1500 cps/25°C
1 Film formation temperature 100″C) and fiber diameter 20 μm 1 Length 1
51rR aluminum fibers are mixed at a ratio of 1=2 squares. Mixing is done gently using a conventional stirrer. The mixture thus obtained is poured into a mold whose inside is coated with a mold release agent to form a two-layer thick layer. When the mold is placed in a heating furnace and dried at 150 DEG C. for 30 minutes to completely remove moisture and then cooled to room temperature, the mixture coating formed inside the mold cracks and becomes pellets. The obtained pellets are sieved to collect those with a diameter of 10 to 15 ff or less, and those larger than that are crushed to a diameter of 10 to 15 ff or less and mixed with the former.

上記のようKして得られ次金属繊維含有母材の所定量と
スチレン−ブタジェン−スチレンブロック共重合体とを
混合して最終的にアルミニウム繊維の含有量を3容積チ
とし、該混合物を所定の形状に射出成形する。
A predetermined amount of the metal fiber-containing base material obtained in the above manner is mixed with a styrene-butadiene-styrene block copolymer to make a final aluminum fiber content of 3 vol. injection molded into the shape of.

〔実施例2〕 ポリ塩化ビニルエマルジョン(固形分50重量%、粘度
500 cpr、/ 25°C1被膜成形温度80’C
)と繊維径50μm、長さ5罰のステンレススチール繊
維とを1:3重量比で実施例1と同様に混合し、得られ
た混合物を同様にして覆内に流し込んで乾燥しその後冷
却する。得られた混合物被膜は型内で亀裂を生じてペレ
ット化しているからこれを篩別し径5m以上のものは粉
砕して径5庫以下とする。上記のようにして得られた金
属繊維含有母材の所定量とポリメチルメタクリレートと
を混合して最終的にステンレススチール繊維の含有量を
3容積チとし、該混合物を所定の形状に射出成形する。
[Example 2] Polyvinyl chloride emulsion (solid content 50% by weight, viscosity 500 cpr, / 25°C 1 film forming temperature 80'C
) and stainless steel fibers with a fiber diameter of 50 μm and a length of 5 mm are mixed in a 1:3 weight ratio in the same manner as in Example 1, and the resulting mixture is similarly poured into a cover, dried, and then cooled. The obtained mixture film cracks in the mold and becomes pellets, so it is sieved and those with a diameter of 5 m or more are crushed to a size of 5 m or less. A predetermined amount of the metal fiber-containing base material obtained as described above and polymethyl methacrylate are mixed to finally have a stainless steel fiber content of 3 volumes, and the mixture is injection molded into a predetermined shape. .

〔実施例3〕 ポリ酢酸ビニルドルオール溶液(固形分60重量%、粘
度5600cps/25℃)と繊維径35μm1長さ1
0MMの黄銅繊維とを1:3重量比で実施例1と同様に
混合し、得られた混合物を同様にして型内に流し込んで
150°020分加熱乾燥を行う。得られた被膜を型か
ら剥離して径10問以下のベレットに粉砕する。上記の
ようにして得られた金属繊維含有母材とアクリロニトリ
ル−ブタジェン−スチレン共重合体とを混合して最終的
に黄銅繊維の含有量を1容ff1%とし、該混合物を所
定の形状に射出成形する。
[Example 3] Polyvinyl acetate doluol solution (solid content 60% by weight, viscosity 5600 cps/25°C) and fiber diameter 35 μm 1 length 1
0 MM brass fibers were mixed at a weight ratio of 1:3 in the same manner as in Example 1, and the resulting mixture was similarly poured into a mold and dried by heating at 150° for 020 minutes. The resulting coating is peeled off from the mold and ground into pellets with a diameter of 10 or less. The metal fiber-containing base material obtained as above and the acrylonitrile-butadiene-styrene copolymer are mixed to finally have a brass fiber content of 1 volume ff1%, and the mixture is injected into a predetermined shape. Shape.

〔実施例4〕 実施例3において黄銅繊維の含有量を5容積チとする。[Example 4] In Example 3, the content of brass fibers is 5 volumes.

〔比較例1〕 実施例1において用いたアルミニウム繊維にかえて繊維
径20μm1長さ17Mのアルミニウム繊維を用いる。
[Comparative Example 1] Instead of the aluminum fibers used in Example 1, aluminum fibers with a fiber diameter of 20 μm and a length of 17M are used.

〔比較例2〕 実施例2において用いたステンレススチール繊維にかえ
て繊維径53μm1長さ5朋のステンレススチール繊維
を用いる。
[Comparative Example 2] Instead of the stainless steel fibers used in Example 2, stainless steel fibers with a fiber diameter of 53 μm and a length of 5 mm were used.

〔比較例3〕 実施例2において用いたステンレススチール繊維にかえ
て繊維径50μm1長さ4nのステンレススチール繊維
を用いる。
[Comparative Example 3] Instead of the stainless steel fibers used in Example 2, stainless steel fibers with a fiber diameter of 50 μm and a length of 4 nm are used.

〔比較例4〕 実施例3において黄銅繊維の含有量を0.8容積チとす
る。
[Comparative Example 4] In Example 3, the content of brass fibers was set to 0.8 volume.

〔比較例5〕 実施例4において黄銅繊維の含有量を5.2容積チとす
る。
[Comparative Example 5] In Example 4, the content of brass fibers was set to 5.2 volume.

〔試験〕〔test〕

実施例1.2.3.4で得られた成形物および比較例1
.2,3.4.5について電磁波シールド性の指針とな
る体積抵抗率きを測定した。その結果を第1表に示す。
Molded product obtained in Example 1.2.3.4 and Comparative Example 1
.. For No. 2, 3.4.5, the volume resistivity, which is a guideline for electromagnetic shielding performance, was measured. The results are shown in Table 1.

第1表 第1表にみるように金属繊維の長さが本発明の限定範囲
以上のものを用いた比較例1では金属繊維が電球を形成
して均一にプラスチックと混合されにく\実施例IK比
して体積抵抗率はかえって低下し、金属繊維径が本発明
の限定範囲以上のものを用いた比較例2では実施例2に
比して体積抵抗率が著るしく低下し、金属繊維長が本発
明の限定範囲以下のものを用いた比較例3も同様に実施
例2に比して体積抵抗率が著るしく低下し、金属含有量
が本発明の限定範囲以下である比較例4は実施例3に比
して体積抵抗率が著るしく低下し、金属含有量が本発明
の限定範囲以下である比較例5は射出成形時の流動性が
懇く金型への成形材料のつきまわり性も愚く均一な厚み
の成形物が得られず、しかも体積抵抗率は実施例4と殆
んど変らないか厚みの不均一性のために若干低下する。
Table 1 As shown in Table 1, in Comparative Example 1 in which the length of the metal fiber was longer than the limited range of the present invention, the metal fiber formed the light bulb and was difficult to mix uniformly with the plastic\Example Compared to IK, the volume resistivity actually decreases, and in Comparative Example 2, in which the metal fiber diameter exceeds the limited range of the present invention, the volume resistivity decreases significantly compared to Example 2, and the metal fiber Similarly, Comparative Example 3 using a material whose length is below the limited range of the present invention has a significantly lower volume resistivity compared to Example 2, and a comparative example whose metal content is below the limited range of the present invention. In Comparative Example 4, the volume resistivity is significantly lower than in Example 3, and the metal content is below the limited range of the present invention. Comparative Example 5 is a molding material for molding with good fluidity during injection molding. The throwing power was also poor and a molded product with a uniform thickness could not be obtained, and the volume resistivity was almost the same as in Example 4 or slightly decreased due to the non-uniformity of the thickness.

Claims (1)

【特許請求の範囲】[Claims] 繊維径が20〜50μm、長さが5〜15mmの金属繊
維をプラスチックに対して1〜5容積%含有したことを
特徴とする電磁波シールド性プラスチック材料
An electromagnetic shielding plastic material containing 1 to 5% by volume of metal fibers with a fiber diameter of 20 to 50 μm and a length of 5 to 15 mm based on the plastic.
JP19500084A 1984-09-17 1984-09-17 Electromagnetic wave-shielding plastic material Pending JPS6172060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19500084A JPS6172060A (en) 1984-09-17 1984-09-17 Electromagnetic wave-shielding plastic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19500084A JPS6172060A (en) 1984-09-17 1984-09-17 Electromagnetic wave-shielding plastic material

Publications (1)

Publication Number Publication Date
JPS6172060A true JPS6172060A (en) 1986-04-14

Family

ID=16333862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19500084A Pending JPS6172060A (en) 1984-09-17 1984-09-17 Electromagnetic wave-shielding plastic material

Country Status (1)

Country Link
JP (1) JPS6172060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394502A (en) * 1986-10-09 1988-04-25 新技術開発事業団 Conducting filler and manufacture thereof
JPS63241067A (en) * 1987-03-28 1988-10-06 Idemitsu Petrochem Co Ltd Molded production of electrically conductive polymer
JPH0317905A (en) * 1989-06-13 1991-01-25 Toshiba Chem Corp Conductive resinous composition and molded material thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394502A (en) * 1986-10-09 1988-04-25 新技術開発事業団 Conducting filler and manufacture thereof
JPS63241067A (en) * 1987-03-28 1988-10-06 Idemitsu Petrochem Co Ltd Molded production of electrically conductive polymer
JPH0317905A (en) * 1989-06-13 1991-01-25 Toshiba Chem Corp Conductive resinous composition and molded material thereof

Similar Documents

Publication Publication Date Title
EP2017300B2 (en) Flake glass filler and resin composition containing same
US4134848A (en) Composite for improved stripline board material
US2716190A (en) Dielectric material
JPS6326783B2 (en)
SI20583A (en) Particle-shaped, expandable styrol polymers and method for the production thereof
JPS6172060A (en) Electromagnetic wave-shielding plastic material
GB1588314A (en) Processes for producing material by bonding expanded plastics granules
JPH10204305A (en) Electromagnetic-wave-shielding resin composition and molding made therefrom
JPS6337142A (en) Production of electrically conductive resin composition
JPS5846508A (en) Conductive material and method of producing same
JPS6157626A (en) Production of molded article of plastic having electromagnetic wave shielding property
JPS5922710A (en) Manufacture of electroconductive molding material
WO2016090367A1 (en) Flame retardant porous plastic resins
JPS59109537A (en) Production of electromagnetic shielding material
JPH08227611A (en) Conductive powder capsule and manufacture thereof and conductive resin composition
JP2022034985A (en) Manufacturing method of rotary molded product, rotary molded product and molding material for rotary molding
JPS6222836A (en) Production of electrically conductive resin composition
JP2837857B2 (en) Manufacturing method of coating material
KR100327152B1 (en) Method for Making Conductive Polymer Composite Films
JPS60188464A (en) Electromagnetic wave-shielding composition and production thereof
JP2645390B2 (en) Heating element
US2879234A (en) Thermoplastic resin particles coated with conductive gel composition and method of making same
JP2004027097A (en) Thermoplastic resin composition
JPH0559288A (en) Alloy of polymer with metal
JPS63293019A (en) Manufacture of molded body having meshy pattern