JPS6171537A - Flat type cathode-ray tube - Google Patents

Flat type cathode-ray tube

Info

Publication number
JPS6171537A
JPS6171537A JP19412784A JP19412784A JPS6171537A JP S6171537 A JPS6171537 A JP S6171537A JP 19412784 A JP19412784 A JP 19412784A JP 19412784 A JP19412784 A JP 19412784A JP S6171537 A JPS6171537 A JP S6171537A
Authority
JP
Japan
Prior art keywords
axis
origin
curve
electron beam
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19412784A
Other languages
Japanese (ja)
Inventor
Katsuhiro Hinotani
日野谷 勝弘
Hiroshi Hayama
葉山 啓
Shunichi Kishimoto
俊一 岸本
Takao Miwa
三輪 孝夫
Yasuo Funatsukuri
康夫 船造
Kazuhiro Kono
和宏 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19412784A priority Critical patent/JPS6171537A/en
Priority to DE8585111741T priority patent/DE3568238D1/en
Priority to EP85111741A priority patent/EP0176860B1/en
Publication of JPS6171537A publication Critical patent/JPS6171537A/en
Priority to US07/036,177 priority patent/US4764706A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/124Flat display tubes using electron beam scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE:To make the incident angle of an electron beam in the entire area constant and to make the shape flatter by flatter by forming the shape of a fluorescent screen by means of a group of logarithmic spiral curves which are obtained by rotating a plurality of logarithmic spiral curves. CONSTITUTION:An electron gun 3 is housed into the neck portion 2 of a flat glass tube body 1, and a fluorescent screen 5 is slantingly provided against the central axis of an electron beam 7, and thus a flat type cathode-ray tube is formed. Further, using the deflection center of the beam as an origin, an x axis and a y axis are provided through the origin, a logarithmic spiral curve which passes through one point on the x axis at a distance ai from the origin and exists in a x-y plane is set to have an equation r=aie<ktheta>, and ai is assumed as a plurality of logarithmic spiral curves which have a parameter of ai+1>ai (i=0, 1,...), and a curve which is formed by rotating the logarithmic spiral curves about the y axis is set to the shape of the fluorescent screen 5. Accordingly, it is possible to obtain a picture with uniform resolution and to make the shape flatter.

Description

【発明の詳細な説明】 C) 産業上の利用分針 本発明は扁平型陰極線管に関するものである。[Detailed description of the invention] C) Industrial use minute hand The present invention relates to a flat cathode ray tube.

−従来の技術 一般にテレビジョン受像機等に使用される陰極線管は電
子銃を螢光面に対して直角な軸上に設け。
- Prior Art Generally, cathode ray tubes used in television receivers and the like have an electron gun placed on an axis perpendicular to the fluorescent surface.

電子ビームをメタルバッグ膜を介して螢光面に照射して
走査している。
An electron beam is irradiated onto the fluorescent surface through a metal bag film and scanned.

したがって、陰極線管の頭部が大きくなり、しかも奥行
が長いため、陰極線管の螢光面の面積とその奥行の積な
る容量で略決まる受像機自体も大型となり、小型薄型の
テレビジョン受像機を構成する場合の大きな問題点とな
っている。
As a result, the cathode ray tube has a larger head and a longer depth, which means that the receiver itself, which is approximately determined by the capacity of the cathode ray tube's fluorescent surface area and its depth, has become larger, making it possible to create a smaller and thinner television receiver. This is a major problem when configuring.

このため電子ビームの中心軸に対して傾斜した螢光面を
有するとともにビームの走行距離の差異によるスポット
径の差がほとんどなく、その走行距離の違いによる解像
度の変化がほとんどない扁平型をした陰極線管が考え出
されているが、このようなものにおいてはビームの螢光
面への入射角が解像度に大きく影響を及ぼすものである
For this reason, the cathode ray is a flat cathode ray that has a fluorescent surface tilted with respect to the central axis of the electron beam, and there is almost no difference in spot diameter due to differences in beam travel distance, and almost no change in resolution due to differences in travel distance. A tube has been devised, but in such a tube, the angle of incidence of the beam on the phosphor surface has a large effect on the resolution.

これを解決するための一方法を本件出願人は特願昭58
−125101号において提案しており以下゛第5図乃
至第7図を参照しつつその説明をする。
One way to solve this problem was proposed by the applicant in the patent application filed in 1983.
This is proposed in No. 125101, and will be explained below with reference to FIGS. 5 to 7.

第5図は扁平型陰極線管の概略構成を要部を断面して示
しており、(1)は扁平ガラス管体であって、該管体(
11のネック部(2)の内部には電子銃(3)が封入さ
れており、外部には偏向コイル(4)が装着されている
。この扁平型陰極線管では、螢光面(5)がビームの中
心軸(7)〔無偏向時における電子ビーム(6)の進行
方向〕に対して傾斜して第1のパネル(8)の内面に設
けられるとともに前記中心軸(7)が螢光面(5)の略
中央部と変わるように設定されている。そして、前記電
子銃(3)から発射された電子ビーム(6)は偏向コイ
ル(4)によって水平及び垂直偏向され、螢光面(5)
全刺激して発光せしめるので、その発光さnた螢光面(
5)を観察者は電子ビーム入射側から第2のパネル(9
)に設けられた観察窓を通して観察できる訳である。
FIG. 5 shows a schematic configuration of a flat cathode ray tube, with main parts cut in section, and (1) is a flat glass tube body;
An electron gun (3) is enclosed inside the neck portion (2) of 11, and a deflection coil (4) is attached to the outside. In this flat cathode ray tube, the fluorescent surface (5) is inclined with respect to the central axis (7) of the beam [the traveling direction of the electron beam (6) in the non-deflected state] and is located on the inner surface of the first panel (8). The central axis (7) is set to be different from approximately the center of the fluorescent surface (5). Then, the electron beam (6) emitted from the electron gun (3) is horizontally and vertically deflected by a deflection coil (4), and the fluorescent surface (5)
Since all the lights are stimulated to emit light, the emitted fluorescent surface (
5), the observer looks at the second panel (9) from the electron beam incident side.
) can be observed through the observation window.

ところで、前記螢光面(5)に対する電子ビーム(6)
の入射角を螢光面の全域に亘って等しくするべく螢光面
(5)は次のような方法で形成されている。
By the way, the electron beam (6) directed against the fluorescent surface (5)
The fluorescent surface (5) is formed by the following method in order to make the incident angle of light equal over the entire area of the fluorescent surface.

すなわち、第6因において、(4)は偏向中心であって
、該偏向中心(4)をこの座標の原点とし、以下橋座標
系で考える。曲線lは対数スパイクル曲線で、該曲線の
は一般Ky=a e k′l(a :定数、k=□e:
自然対数の底)で表わされる。
That is, in the sixth factor, (4) is the deflection center, and the deflection center (4) is taken as the origin of this coordinate, and the bridge coordinate system will be considered below. The curve l is a logarithmic spikele curve, and the general expression of this curve is Ky=a e k′l (a: constant, k=□e:
(base of natural logarithms).

tanデ1 (PI )(Pl)は、それぞれ前記対数スパイクル曲
線■上の点で1曲線線分PI、P2を螢光面(5)の断
面における電子ビームに対向する側(電子ビームの入射
側)の曲線扉状とし、説明の便宜上X軸を電子ビーム(
6)の中心軸(7)と一致させている。
tande 1 (PI) (Pl) is a point on the logarithmic spikele curve ■, and one curve line segment PI, P2 is the side opposite to the electron beam in the cross section of the fluorescent surface (5) (the incident side of the electron beam). ), and for convenience of explanation, the X-axis is the electron beam (
6) is aligned with the central axis (7).

(TI )(T2)はそれぞれ前記各点(Pl)(Pl
)における対数スパイクル曲線のの接線である。(T1
)(T2)(911,ψ2≦π/2〕はそれぞれAPI
(=γ1)と(T1)のなす角。
(TI) (T2) are the respective points (Pl) (Pl
) is the tangent to the logarithmic spikele curve at ). (T1
)(T2)(911, ψ2≦π/2) are API
The angle formed by (=γ1) and (T1).

7丁2(=γ2)と(T2)のなす角であり、換言すれ
ばこれら(T1)(T2)は、(PI)(Pl)におけ
る電子ビームの螢光面断面に対する入射角である。
It is the angle formed by 7-cho2 (=γ2) and (T2). In other words, these (T1) and (T2) are the incident angles of the electron beam with respect to the cross section of the fluorescent surface at (PI) and (Pl).

ところで対数スパイクル曲線[F]は、その曲線の上の
任意の一点と原点(8を結んだ直線と、その一点におけ
る接線とのなす角度が一定となるような曲線である。
By the way, the logarithmic spikele curve [F] is a curve in which the angle between the straight line connecting any point on the curve and the origin (8) and the tangent at that point is constant.

従って、曲線線分PIF2ft螢光面(7)の断面にお
ける電子ビームに対向する側の曲線形状としてやれば、
螢光面の両端に訃ける入射角が等しく(ψ1=92)と
なるばかりでなく1曲線線分PIP2への偏向中心囚か
らの電子ビームの入射角は曲線線分PIF2上のあらゆ
る点で一定となる。
Therefore, if the curved line segment PIF2ft is set as the curved shape on the side facing the electron beam in the cross section of the fluorescent surface (7),
Not only are the incident angles at both ends of the fluorescent surface equal (ψ1 = 92), but also the incident angle of the electron beam from the center of deflection onto one curved segment PIP2 is constant at every point on the curved segment PIF2. becomes.

そして、螢光面として完成させるぺ(@7図に示す如く
前記曲線線分p + p 2t−y!Il]t−中心と
して回転し、その軌跡として形成された曲面CF3)’
に螢光面としている。従って曲面(3)のあらゆる点へ
の偏向中心(4)からの入射角は完全に一定となるから
Then, the surface is completed as a fluorescent surface (as shown in Figure 7, the curved line segment p + p 2t-y!Il] rotates around the center of the curved line segment p + p 2t-y!Il) and is formed as the trajectory of the curved surface CF3)'
It has a fluorescent surface. Therefore, the angle of incidence from the center of deflection (4) to every point on the curved surface (3) is completely constant.

このような形状に形成された螢光面に対する電子ビーム
の入射角は螢光面上のあらゆる点で完全に一定になすこ
とができる。
The angle of incidence of the electron beam on the phosphor surface formed in such a shape can be made completely constant at every point on the phosphor surface.

゛ ところで、扁平型陰極線管においては螢光面が平面
に近い程薄型となり、また曲面パネルの加工を行なう場
合や螢光体等の塗布を行なう場合にも有利となる。
By the way, in a flat cathode ray tube, the closer the fluorescent surface is to a flat surface, the thinner the tube is, which is also advantageous when processing a curved panel or when coating a phosphor or the like.

しかしながら、従来の螢光面形成方法は単に一本の対数
スパイラル曲線を回転させるようにしているので1曲面
の中央部の曲線1’c)と両端部の曲線1’R) (J
L )との間に回転に起因する螢光面の厚さ方向の差が
生じており、陰極線管の扁平化を実現する際の妨げとな
っていた。尚、特公昭42−7491号公報にも同様の
方法で螢光面を形成した扁平型陰極線管が記載されてい
る。
However, the conventional method for forming a fluorescent surface simply rotates one logarithmic spiral curve, so the curve 1'c) at the center and the curve 1'R) at both ends of one curved surface (J
There is a difference in the thickness direction of the phosphor surface due to the rotation, which has been an obstacle to realizing a flat cathode ray tube. Note that Japanese Patent Publication No. 42-7491 also describes a flat cathode ray tube in which a fluorescent surface is formed by a similar method.

(ハ)発明が解決しようとする問題点 本発明は電子ビームの螢光面に対する入射角があらゆる
点で一定であり、しかも螢光面形状を可及的に平面化で
きるようにした扁平型陰極線管を提供することを目的と
する。
(c) Problems to be Solved by the Invention The present invention is a flat cathode ray in which the angle of incidence of the electron beam on the phosphor surface is constant at all points, and the shape of the phosphor surface can be made as flat as possible. The purpose is to provide pipes.

に)問題点を解決するための手段 本発明の扁平型陰極線管では電子ビームの偏向中心を原
点とし、この原点を通る電子ビームの中心軸をX軸、こ
のX軸に直交し、上記原点を通る軸をy軸として、同一
原点でこのX−7平面内に存在する入射角一定の複数の
対数スパイクル曲線を前記y軸の回りにそれぞれ所定角
度回転させることにより得られる対数スパイクル曲線群
によって螢光面形状を形成したものである。
(b) Means for solving the problem In the flat cathode ray tube of the present invention, the deflection center of the electron beam is taken as the origin, the central axis of the electron beam passing through this origin is the X axis, and the origin is perpendicular to this X axis. Fireflies are generated by a group of logarithmic spikele curves obtained by rotating a plurality of logarithmic spikele curves with a constant incident angle that exist in the X-7 plane at the same origin by a predetermined angle around the y-axis, with the passing axis being the y-axis. The shape of the light surface is formed.

(ホ)作 用 上記の如く構成すれば、螢光面形状が可及的に平面に近
くなる。
(e) Effect By configuring as described above, the shape of the fluorescent surface becomes as close to a flat surface as possible.

(へ)実施例 以下1本発明の実施例f:第1図乃至@4図を参照しつ
つ説明するが、螢光面形状を除く扁平ガラス管体の構造
は′IJIIS図のものと同じであるのでその説明は省
略する。
(F) Example 1 Embodiment f of the present invention: This will be explained with reference to Figures 1 to 4, but the structure of the flat glass tube except for the shape of the fluorescent surface is the same as that in Figure 'IJIIS. Therefore, the explanation will be omitted.

第2図において(4)は扁平型陰極線管における偏向中
心に相当する原点であり、この原点(A)t−通る電子
ビームの中心軸(無偏向時における電子ビームの進行方
向)tX軸、このX軸と直交し前記原点CAJを通る垂
直偏向方向の軸をy軸としている。
In Fig. 2, (4) is the origin corresponding to the center of deflection in a flat cathode ray tube. The axis in the vertical deflection direction that is perpendicular to the X-axis and passes through the origin CAJ is defined as the y-axis.

曲線(/?O)は前記偏向中心を原点体)とし、前記原
点囚から距離IL□隔づたX軸上における一点(X、γ
)=(ao、O)を通り、このx−y平面内に存在する
対数スパイクル曲線であり、この曲線(7o)は にθ に=: a oe 但し、r:原点(5)と曲線(lO)上の任意の一点と
を結ぶ直線の距離、に= −(ψは原点tanψ 囚と曲線(lO)上の任意の一点とを結ぶ直線と。
The curve (/?O) has the deflection center as the origin body, and a point (X, γ
) = (ao, O) and is a logarithmic spikele curve that exists in this x-y plane, and this curve (7o) is θ =: a oe where r: the origin (5) and the curve (lO ) is the distance of a straight line connecting any point on the curve (lO), to = - (ψ is the origin tanψ) and the straight line connecting any point on the curve (lO).

この曲線(lO)上の一点における接線とのなす角〕で
表わされる。
It is expressed as the angle formed by the tangent line at one point on this curve (lO).

尚、第2図においてX軸と対数スパイクル曲線との交点
を基準(θ=0)とし1図中矢印の方向にθの増減を設
定している 従来と同様に対数スパイラル曲線1’o)における任意
の点をCP+)(P2)とした場合、(T’)(’r2
)は前記各点CP?)(P2)における接線である。ま
た、(Pl)(ψ2)〔ψ1゜ψ2≦に/2〕はそれぞ
れAPIと(T1)のなす角、rT1と(T2)のなす
角であり、換首すればこれら(Pl)(ψ2)は、(P
l )(P2)における電子ビームの螢光面に対する入
射角であり、ψ1=92なる関係がある。
In addition, in Figure 2, the intersection of the X axis and the logarithmic spikele curve is the reference (θ = 0), and the increase and decrease of θ is set in the direction of the arrow in Figure 1. If an arbitrary point is CP+)(P2), then (T')('r2
) is each point CP mentioned above? )(P2). Also, (Pl) (ψ2) [ψ1゜ψ2≦/2] are the angles formed by API and (T1), and the angles formed by rT1 and (T2), respectively, and if the head is replaced, these (Pl) (ψ2) is (P
l ) is the angle of incidence of the electron beam on the fluorescent surface at (P2), and has the relationship ψ1=92.

このように対数スパイラル曲線は、その曲線□□□上の
任意の一点と原点(8を結んだ直線と、その一点におけ
る渡線とのなす角度が一定となるような曲線であり、こ
の曲線を螢光面の断面における電子ビーム入射側の曲線
形状としてやれば、螢光面に対する電子ビームの入射角
はあらゆる点で一定となる。
In this way, a logarithmic spiral curve is a curve in which the angle between the straight line connecting any point on the curve □□□ and the origin (8) and the crossing line at that point is constant; If the cross section of the fluorescent surface is curved on the electron beam incident side, the incident angle of the electron beam with respect to the fluorescent surface will be constant at all points.

ところで、入射角ψが一定(すなわちkが一定)という
条件のもとでは前記偏向中心を原点囚とし x−y平面
内に存在する対数スパイクル曲線は無数に在る。
By the way, under the condition that the incident angle ψ is constant (that is, k is constant), there are an infinite number of logarithmic spikele curves that exist in the xy plane with the deflection center as the origin.

すなわち、対数スパイクル曲線を表わす式と=a10に
θにおいて、ki一定とし距離a1’tパラメータとし
て、このaiを変化させてやると同一平面(x−y平面
)内に無数の対数スパイクル曲線が描ける訳である。第
2図においてはX軸上におけるaO,at、a2点を通
る対数スパイクにθ      kθ、及びrニ ル曲線T =!L8 e  、rr =:a 、 ea
2ekBを代表して示している。
In other words, if the formula expressing the logarithmic spikele curve is = a10 and θ, ki is constant and the distance a1't is the parameter, and this ai is varied, an infinite number of logarithmic spikele curves can be drawn in the same plane (x-y plane). This is the translation. In FIG. 2, the logarithmic spike passing through the points aO, at, and a2 on the X axis has θ kθ and r nil curve T =! L8 e, rr =: a, ea
2ekB is shown as a representative.

そして1本発明ではこのようにx−y平面内に存在する
複数の対数スパイクル曲線を利用して螢光面を形成して
おり1次にその形成方法を説明する。
In the present invention, a fluorescent surface is formed by utilizing a plurality of logarithmic spikele curves existing in the x-y plane, and the method for forming the same will be explained below.

すなわち、第2図における!−7平面内に対数スパイク
ル曲線r==a(18にθ及びこの曲線の係数I!LO
より大なる複数の対数スパイラル曲線r;にθ a 16  .7::IL2θにθ、・・・tg定する
。そして基準となる対数スパイクル曲線η″=&Oek
θを!−7平面上に固定しておき、上記のようにして碧
定さnた複数の対数スパイクル曲線をその係数a1が大
なるもの程、大きな回転角度でy 4ii+の回りに回
転させる。すなわち、係数a 2 > a +〉器0に
対し、それぞれl’421 > l+h + I > 
1・α01 (=0 )なる関係で回転させる。
That is, in Figure 2! -7 logarithmic spikele curve r = = a (18 with θ and the coefficient of this curve I!LO
A plurality of larger logarithmic spiral curves r; to θ a 16 . 7:: Set θ,...tg to IL2θ. And the standard logarithmic spikele curve η″=&Oek
θ! A plurality of logarithmic spikele curves fixed on the −7 plane and determined as described above are rotated around y4ii+ at a larger rotation angle as the coefficient a1 becomes larger. That is, for coefficients a 2 > a + > 0, l'421 > l+h + I >
Rotate with the relationship 1・α01 (=0).

第1図はこのような回転の様子を示す図であって。FIG. 1 is a diagram showing such rotation.

この回転によって配列された対数スパイクル曲線群によ
って形成される曲面形状は、従来の如く単にy軸を中心
に回転させたものに比べ、平面化されることが分かる。
It can be seen that the curved surface shape formed by the group of logarithmic spikele curves arranged by this rotation is flattened compared to the conventional one simply rotated around the y-axis.

ところで、従来例の第7図に示す如く、単にy軸の回り
に一本の対数スパイクル曲線を回転させて形成される曲
面を螢光面形状とした場合、電子ビームを走査して形成
されるラスタは第3図に示す如く扇形となり、この扇形
ラスタを矩形ラスタに補正するには垂直偏向用鋸歯状波
電流及び水平偏向、鋸歯状波電流を補正回路により補正
して偏向駆動しなければならずこのため大きな消費電力
を特徴とする特に扁平型陰極線管を小型、薄型のポケッ
タブルテレビ用として組み込んだ場合、そのテレビジョ
ン回路?駆動する電源としては電池が使用されるが、消
費電力の増大はこのような小型1g型子テレビジョン受
像の実現に際して不利であることは言うまでもない。
By the way, as shown in FIG. 7 of the conventional example, when a curved surface formed simply by rotating a single logarithmic spikele curve around the y-axis is used as a fluorescent surface shape, it is formed by scanning an electron beam. The raster is fan-shaped as shown in Figure 3, and in order to correct this fan-shaped raster to a rectangular raster, the sawtooth wave current for vertical deflection, the horizontal deflection, and the sawtooth wave current must be corrected by a correction circuit for deflection driving. If a flat cathode ray tube, which is characterized by high power consumption, is incorporated into a small, thin, pocketable television, what will happen to the television circuit? A battery is used as a driving power source, but it goes without saying that increased power consumption is disadvantageous in realizing such a small 1G type child television image reception.

そこで1本発明では1次に述べるような方法により、消
費電力の低減を可能にしている。
Therefore, in the present invention, power consumption can be reduced by a method as described below.

&aなる関係で1軸の回りに回転させて得られる対数ス
パイクル曲線群によって形成される曲面を電子ビーム入
射側の螢光面形状とする。この回転により得られる各対
数スパイクル曲線のθ=0の点はX−Z平面上VCHす
、その各対数スパイラル曲線のθ=0の点をそれぞれ結
ぶ線が直線になることから分かるように、この曲面を螢
光面とし比とき電子ビームによって形成されるラスタは
第4図に示す如く垂直偏向方向のラスタ歪が補正された
台形ラスタが得られる訳である。
A curved surface formed by a group of logarithmic spikele curves obtained by rotating around one axis with the relationship &a is defined as the shape of the fluorescent surface on the electron beam incident side. The point θ=0 of each logarithmic spikele curve obtained by this rotation is VCH on the When a curved surface is used as a fluorescent surface, a raster formed by an electron beam yields a trapezoidal raster with corrected raster distortion in the vertical deflection direction, as shown in FIG.

このように、補正回路に依らず、螢光面形状によって垂
直偏向方向のラスタ歪が補正されるので、水平偏向方向
のラスタ歪のみを補正回路によって補正すればよいから
、小型、薄型テレビジョン受像機を構成する際の消費電
力の低減及び部品点数の削減が図れる訳である。
In this way, the raster distortion in the vertical deflection direction is corrected by the shape of the phosphor surface without relying on the correction circuit, so only the raster distortion in the horizontal deflection direction needs to be corrected by the correction circuit. This means that it is possible to reduce power consumption and the number of parts when configuring the machine.

尚、第1図に示された回転ではX−7平面に対して片側
だけ螢光面が形成されるが、全螢光面を得るにはX軸を
回転角Oとしたときy軸を正負等しい角度(±α)で回
転させて得る複数の対数スパイクル曲線により螢光面を
形成すればよい。
In addition, in the rotation shown in Fig. 1, a fluorescent surface is formed only on one side of the A fluorescent surface may be formed by a plurality of logarithmic spikele curves obtained by rotating at equal angles (±α).

(ト)発明の効果 本発明に依れば、螢光面金域における電子ビームの入射
角が一定で、均一な解偉度の画像が得られるとともに、
螢光面形状をより平面に近くなるようにできるので、陰
極線管管体の扁平化が助長され、しかもその製造が容易
になるという効果があり、オ他めて有用である。
(G) Effects of the Invention According to the present invention, the angle of incidence of the electron beam on the gold region of the fluorescent surface is constant, and an image with uniform resolution can be obtained.
Since the shape of the phosphor surface can be made closer to a flat surface, flattening of the cathode ray tube body is promoted and manufacturing thereof is facilitated, which is particularly useful.

【図面の簡単な説明】[Brief explanation of drawings]

1g1図は本発明で使用される螢光面を形成する方法を
説明するための図、第2図はそれに使用される曲線を示
す図、v15図は従来方法によって形成されるラスタ形
状を示す図、@4図は本発明によって形成されるラスタ
形状を示す図、′@5図は扁平型陰極線管の断面図、巣
6図は対数スパイラル曲線を説明するための図、第7図
は従来の螢光面形成方法を説明するための図である。 (1)・・・扁平ガラス管体、(5)・・・螢光面、(
7)・・・電子ビームの中心軸、(A)・・・偏向中心
(原点)、(JO)(r+)i’2)・・・対数スパイ
クル曲線。
Figure 1g1 is a diagram for explaining the method of forming the fluorescent surface used in the present invention, Figure 2 is a diagram showing the curve used therein, and Figure v15 is a diagram showing the raster shape formed by the conventional method. , @4 is a diagram showing a raster shape formed by the present invention, '@5 is a cross-sectional view of a flat cathode ray tube, nest 6 is a diagram for explaining a logarithmic spiral curve, and FIG. 7 is a diagram showing a conventional raster shape. FIG. 3 is a diagram for explaining a method of forming a fluorescent surface. (1)... Flat glass tube body, (5)... Fluorescent surface, (
7)... Central axis of electron beam, (A)... Deflection center (origin), (JO)(r+)i'2)... Logarithmic spikele curve.

Claims (2)

【特許請求の範囲】[Claims] (1)電子ビームの中心軸に対し、螢光面を傾斜せしめ
た扁平型陰極線管であつて、前記電子ビームの偏向中心
を原点とし、この原点を通る前記中心軸をx軸、このx
軸と直交し上記原点を通る軸をy軸として、前記原点及
びこの原点から距離a1なる前記x軸上の一点を通り、
x−y平面内に存在する対数スパイラル曲線をγ=a_
is^k^θ(k=1/(tanφ)、φは入射角で一
定)としたとき、前記距離a_iをa_i+1>a_i
(i=0、1、2、・・・)なるパラメータとする複数
の対数スパイラル曲線を想定し、この各曲線を前記y軸
の回りにそれぞれ角度α_i(但し、α_i_+_1>
α_i、α_i=0)ずつ回転させることによつて形成
される曲面を電子ビーム入射側の螢光面形状としたこと
を特徴とする扁平型陰極線管。
(1) A flat cathode ray tube whose fluorescent surface is inclined with respect to the central axis of the electron beam, with the deflection center of the electron beam as the origin, and the central axis passing through the origin as the x-axis.
The y axis is an axis that is perpendicular to the axis and passes through the origin, passing through the origin and a point on the x axis that is a distance a1 from the origin,
A logarithmic spiral curve existing in the x-y plane is expressed as γ=a_
When is^k^θ (k=1/(tanφ), φ is constant at the incident angle), the distance a_i is a_i+1>a_i
Assuming a plurality of logarithmic spiral curves with parameters such as (i = 0, 1, 2, ...), each curve is rotated around the y-axis at an angle α_i (however, α_i_+_1>
1. A flat cathode ray tube characterized in that a curved surface formed by rotating the tube by α_i, α_i=0) forms a fluorescent surface on the electron beam incident side.
(2)前記複数の対数スパイラル曲線は、a_i=1/
(cosα_i)・a_0なる関係で回転させられるこ
とを特徴とする特許請求の範囲第1項記載の扁平型陰極
線管。
(2) The plurality of logarithmic spiral curves are a_i=1/
The flat cathode ray tube according to claim 1, wherein the flat cathode ray tube is rotated according to the relationship (cos α_i)·a_0.
JP19412784A 1984-09-17 1984-09-17 Flat type cathode-ray tube Pending JPS6171537A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19412784A JPS6171537A (en) 1984-09-17 1984-09-17 Flat type cathode-ray tube
DE8585111741T DE3568238D1 (en) 1984-09-17 1985-09-17 Flat cathode-ray tube and method of fabricating same
EP85111741A EP0176860B1 (en) 1984-09-17 1985-09-17 Flat cathode-ray tube and method of fabricating same
US07/036,177 US4764706A (en) 1984-09-17 1987-04-08 Flat cathode-ray tube and method of fabricating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19412784A JPS6171537A (en) 1984-09-17 1984-09-17 Flat type cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS6171537A true JPS6171537A (en) 1986-04-12

Family

ID=16319355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19412784A Pending JPS6171537A (en) 1984-09-17 1984-09-17 Flat type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS6171537A (en)

Similar Documents

Publication Publication Date Title
JP2000149829A (en) Cathode ray tube
JP2000113839A (en) Glass fannel for cathode ray tube and cathode ray tube
JPS6171537A (en) Flat type cathode-ray tube
JPH07272642A (en) Display tube
JPH05159722A (en) Display device
JPS63298945A (en) Color picture tube device
JPS6367309B2 (en)
JP2002531920A (en) Color display with deflection dependent distance between external beams
JPS59167942A (en) Deflection yoke for flat thin type cathode-ray tube
JPH0447421B2 (en)
JPS6017841A (en) Crt
JP2644221B2 (en) Cathode ray tube device
JP3718998B2 (en) Color picture tube
JPS62291844A (en) Deflection yoke
JP2003502819A (en) Color display device having four-pole concentrated coils
JPS6129050A (en) Cathode-ray tube
JPH0312421B2 (en)
JPH08195177A (en) Deflecting device for color picture tube
JPS60170145A (en) X-ray image tube
JP2002164005A (en) Cathode-ray tube
JP2002544644A (en) Deflection unit for self-focusing cathode ray tube with reduced trapezoidal difference
JPS58123640A (en) Inline type electron gun body structure
JPS5830049A (en) Saddle type vertical deflecting coil for projection type television
JPS61193340A (en) Electron gun for cathode-ray tube
KR20010089397A (en) Color display device having quadrupole convergence coils