JPS6129050A - Cathode-ray tube - Google Patents

Cathode-ray tube

Info

Publication number
JPS6129050A
JPS6129050A JP14945384A JP14945384A JPS6129050A JP S6129050 A JPS6129050 A JP S6129050A JP 14945384 A JP14945384 A JP 14945384A JP 14945384 A JP14945384 A JP 14945384A JP S6129050 A JPS6129050 A JP S6129050A
Authority
JP
Japan
Prior art keywords
yoke
deflection yoke
electron gun
diameter
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14945384A
Other languages
Japanese (ja)
Inventor
Hiroshi Jitsukata
実方 寛
Kozo Sato
剛三 佐藤
Toshiharu Shimizu
清水 敏治
Noritaka Okuyama
宣隆 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14945384A priority Critical patent/JPS6129050A/en
Publication of JPS6129050A publication Critical patent/JPS6129050A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/82Mounting, supporting, spacing, or insulating electron-optical or ion-optical arrangements

Abstract

PURPOSE:To heighten resolution and reduce the distortion in deflection and the inclination of raster, by putting a deflecting yoke in a bulb net, securing the yoke to an electron gun, and mounting them at a proper angle. CONSTITUTION:The end portion of the final electrode 14 of an electron gun 10 is formed as a cylindrical electrodes 15 of small outside diameter in order to minimize the eccentricity and inclination of the axis of a deflecting yoke 17. The electrode 15 is inserted into the yoke 17 to make the discrepancy between the axes of the electron gun 10 and the yoke 17 small enough to reduce the overall deterioration in focusing, thereby heightening resolution. It is made possible that after a reflecting plate 34 provided on the yoke 17 is set in an appropriate position, such rotational position of the yoke as to maximize the output of a light receiver 36 at the time of the rotation of the yoke and the electron gun 10 together is determined. The distortion in deflection and the inclination of raster can thus be reduced with high resolution.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高解像度でかつ偏向電力の増加が少ない陰極
線管に係り、特にインデックス方式カラー陰極線管やモ
ノクロームディスプレイ用陰極線管等に用いて好適な陰
極線管装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cathode ray tube with high resolution and a small increase in deflection power, and is particularly suitable for use in index type color cathode ray tubes, cathode ray tubes for monochrome displays, etc. Related to cathode ray tube devices.

〔発明の背景〕[Background of the invention]

従来の陰極線管は第1図に示すようにパネル1の内面に
蛍光体スクリーンを形成し、パルプネック部2内に電子
ビームを発生し、それを蛍光面上に集束する静電界を発
生する電子銃3と、前記電子ビームを偏向して蛍光面上
にラスターを形成する偏向ヨーク4とからなる。
As shown in Fig. 1, a conventional cathode ray tube has a phosphor screen formed on the inner surface of a panel 1, which generates an electron beam in a pulp neck 2 and generates an electrostatic field that focuses the electron beam on the phosphor screen. It consists of a gun 3 and a deflection yoke 4 that deflects the electron beam to form a raster on the phosphor screen.

ところで、蛍光体スクリーン上に射突する電子ビーム径
を小さくし、高解像度の陰極線管とするためには、電子
銃の電子レンズ、とくに主レンズの球面収差を低減する
必要がある。そのためには主レンズを構成する電極の口
径を大き。
By the way, in order to reduce the diameter of the electron beam impinging on the phosphor screen and achieve a high-resolution cathode ray tube, it is necessary to reduce the spherical aberration of the electron lens of the electron gun, especially the main lens. To achieve this, we increased the aperture of the electrodes that make up the main lens.

くすればよいが、大口径な電子銃を収容するためにはバ
ルブネック部2の径を大きくする必要がある。しかし、
第1図のように、偏向ヨーク4がバルブネックの外周に
設けられている場合にはバルブネック部径を大きくする
と電子ビームの偏向感度が低下し、偏向電力が増大して
しまう。このため従来は十分な口径の電子銃を使用する
ことができず、集束特性が不十分であった。
However, in order to accommodate a large-diameter electron gun, it is necessary to increase the diameter of the valve neck portion 2. but,
As shown in FIG. 1, when the deflection yoke 4 is provided on the outer periphery of the bulb neck, increasing the diameter of the bulb neck reduces the electron beam deflection sensitivity and increases the deflection power. For this reason, in the past, it was not possible to use an electron gun with a sufficient diameter, resulting in insufficient focusing characteristics.

前述の欠点をなくすために第2図に示すよう。In order to eliminate the above-mentioned drawbacks, as shown in FIG.

にバルブネック部を電子銃の部分2と偏向ヨー。Connect the valve neck part of the electron gun to part 2 and deflect the yaw.

りの部分2′で、その径を変えることが提案されている
。電子銃6が入るバルブネック部2の径を大きくするこ
とによって大0径の電子銃を使用できるので、低収差な
主レンズとして集束特性を良好なものにし、一方偏向ヨ
ーク4が位置するバルブネック部2′の径を小さくする
ことによって電子ビームの偏向感度の劣化をなくそうと
するものである。しかし、第1図に示した従来の陰極線
管のように、偏向ヨーク4を陰極線管の口金5側より挿
入することができなくなるため、分割した偏向ヨークを
バルブネック部り′上で組立る必要がある。このため偏
向ヨークを単体で組立る場合に比べ十分な精度で偏向ヨ
ークを組立ることか困難となる。したがって電子ビーム
の偏向方向によって電子ビーム形状の増大が不均一とな
り、また偏向された電子ビーム径も増大してしまうため
に、たとえ無偏向時の電子ビーム径が小さくなっても、
画面全体に渡って高解像度の画像を得ることができない
欠点。
It has been proposed to change the diameter of the second section 2'. By enlarging the diameter of the bulb neck section 2 where the electron gun 6 is placed, a large zero diameter electron gun can be used, so it can be used as a main lens with low aberrations and has good focusing characteristics. By reducing the diameter of the portion 2', it is attempted to eliminate deterioration in the deflection sensitivity of the electron beam. However, unlike the conventional cathode ray tube shown in Figure 1, it is no longer possible to insert the deflection yoke 4 from the base 5 side of the cathode ray tube, so it is necessary to assemble the divided deflection yoke over the valve neck. There is. For this reason, it is difficult to assemble the deflection yoke with sufficient accuracy compared to when assembling the deflection yoke alone. Therefore, the shape of the electron beam becomes uneven depending on the direction of deflection of the electron beam, and the diameter of the deflected electron beam also increases.
The disadvantage is that it is not possible to obtain a high-resolution image across the entire screen.

がある。There is.

また大口径電子銃と静電偏向を組合せた陰極線管も考え
られるが、静電偏向は偏向ヨークを用いた電磁偏向に比
べ電子ビームの偏向感度が低いために、必要な偏向量を
得るためには、陰極線管の全長が増大してしまう欠点が
ある。
A cathode ray tube that combines a large-diameter electron gun and electrostatic deflection is also considered, but since electrostatic deflection has lower electron beam deflection sensitivity than electromagnetic deflection using a deflection yoke, it is difficult to obtain the necessary amount of deflection. has the disadvantage that the total length of the cathode ray tube increases.

第3図は大口径電子銃3とバルブネック2中に偏向ヨー
ク4を内蔵した陰極線管である。この陰極線管は偏向ヨ
ーク4を電子ビームの近傍に設置できるので、電子ビー
ムの偏向感度を向上することができかつ、球面収差の少
ない大口径電子銃を使用できる。したがって偏向電力を
減少させかつ高解像度の画質を得ることができると予想
される。しかし大口径電子銃3は、複数の舌状スプリン
グ片6を介してバルブネック2中に支持された状態で、
電子銃の口径部分5   ′のガラスとバルブネック2
のガラスが溶着されて封止されるので、電子銃3の中心
軸とバルブネック部2の中心軸の偏心や傾きを生じやす
い。
FIG. 3 shows a cathode ray tube having a large diameter electron gun 3 and a deflection yoke 4 built into the valve neck 2. In this cathode ray tube, since the deflection yoke 4 can be installed near the electron beam, the deflection sensitivity of the electron beam can be improved and a large diameter electron gun with little spherical aberration can be used. Therefore, it is expected that deflection power can be reduced and high resolution image quality can be obtained. However, the large-caliber electron gun 3 is supported in the valve neck 2 via a plurality of tongue-shaped spring pieces 6.
Electron gun caliber part 5' glass and bulb neck 2
Since the glass is welded and sealed, the central axis of the electron gun 3 and the central axis of the valve neck portion 2 tend to be eccentric or tilted.

このため偏向ヨーク4の中心軸とバルブネック。Therefore, the center axis of the deflection yoke 4 and the valve neck.

2の中心軸の偏心を少なくなるように偏向ヨー。Deflection yaw to reduce the eccentricity of the center axis of 2.

り4を設置したとしても、前述した如く電子銃。Even if RI4 is installed, it will still be an electron gun as mentioned above.

3の中心軸とバルブネック2の中心軸の偏心や傾きを小
さくできないので、電子銃3と偏向ヨ。
Since it is not possible to reduce the eccentricity or inclination of the central axis of the valve neck 2 and the central axis of the electron gun 3, the deflection of the electron gun 3 and the central axis of the valve neck 2 cannot be reduced.

−ク4の偏心や傾きを小さくするには限界がある。また
第3図の場合には、第1図に示したようにバルブネック
の外周に偏向ヨークを設置した場合に比べ、偏向ヨーク
4の内径を小さくして電子ビームの偏向感度を高くする
ようにして。
- There is a limit to reducing the eccentricity and inclination of the hook 4. Furthermore, in the case of Fig. 3, the inner diameter of the deflection yoke 4 is made smaller to increase the electron beam deflection sensitivity compared to the case where the deflection yoke is installed around the outer periphery of the bulb neck as shown in Fig. 1. hand.

いるので、偏向ヨーク内径に対する電子銃3の。Therefore, the electron gun 3 relative to the inner diameter of the deflection yoke.

中心軸と偏向ヨーク4の中心軸の偏心量の相対。Relative eccentricity between the central axis and the central axis of the deflection yoke 4.

比が、バルブネックの外周に偏向ヨークを設置した場合
に比べ、大きくなる。このため電子ビ、−ムを偏向した
時に生ずる偏向歪の影響を受けやすく、偏向方向によっ
て電子ビームスポット形状が不均一となりやすく、フォ
ーカス特性の全面性が劣化するという問題を生じていた
The ratio becomes larger than when a deflection yoke is installed around the outer circumference of the valve neck. For this reason, the electron beam is easily affected by deflection distortion that occurs when the electron beam is deflected, and the shape of the electron beam spot tends to be non-uniform depending on the direction of deflection, resulting in problems in that the overall focusing characteristics deteriorate.

また偏向ヨーク4を陰極線管製造時に内蔵してしまうの
で、陰極線管が完成した後に、蛍光体スクリーンに対し
ラスターが傾いた場合には、ラスターの傾きを修正する
ことが不可能である。
Furthermore, since the deflection yoke 4 is built into the cathode ray tube during manufacture, if the raster is tilted with respect to the phosphor screen after the cathode ray tube is completed, it is impossible to correct the raster tilt.

ために陰極線管の歩留りが低下してしまう。こ。As a result, the yield of cathode ray tubes decreases. child.

の問題を解決するには、偏向ヨーク4を陰極線管中に内
蔵する時の取付は精度を向上しなければならないが、管
中に偏向ヨーク4を入れた状態で取付は位置を調整する
ことは作業性が劣るために陰極線管@造の原価が高くな
ってしまう。
To solve this problem, it is necessary to improve the accuracy of the installation when the deflection yoke 4 is built into the cathode ray tube, but it is not possible to adjust the installation position with the deflection yoke 4 inside the tube. Due to poor workability, the cost of manufacturing cathode ray tubes increases.

更に調整後に偏向ヨーク4を固定しなければならないが
、ガラス管の摩擦係数が小さいために、確実に固定する
ことが困難であるとともに、陰極線管を運搬する際の振
動等のために偏向ヨーク4の取付は位置が変動しやすく
、調整後もラスターの傾きを生じやすいという問題があ
る。
Furthermore, the deflection yoke 4 must be fixed after adjustment, but it is difficult to securely fix it because the coefficient of friction of the glass tube is small, and the deflection yoke 4 is also fixed due to vibrations when transporting the cathode ray tube. There is a problem in that the mounting position tends to fluctuate and the raster tends to tilt even after adjustment.

第3図に示したような偏向ヨークを管中に内蔵する陰極
線管は、ラスターの傾きを生じやすく、陰極線管の完成
後にはラスターの傾きを補正できないという欠点があっ
た。
A cathode ray tube having a built-in deflection yoke as shown in FIG. 3 has the disadvantage that the raster inclination is likely to occur, and that the raster inclination cannot be corrected after the cathode ray tube is completed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述の欠点を除去して高解像。 The purpose of the present invention is to eliminate the above-mentioned drawbacks and achieve high resolution.

度で、偏向電力が増加することなく、偏向歪が。degree, the deflection distortion without increasing the deflection power.

少なく、かつラスターの傾きを少なくした陰極線管を提
供することにある。
To provide a cathode ray tube with reduced raster inclination.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明では偏向ヨークをバ
ルブネック中に内蔵することによつ。
In order to achieve the above object, the present invention incorporates a deflection yoke into the valve neck.

て、大口径電子銃を用いた場合の偏向電力の増。Therefore, the deflection power increases when using a large-caliber electron gun.

加をなくし、かつ電子銃の最終電極の外径を小。The outer diameter of the final electrode of the electron gun is reduced.

さな円筒状とし、偏向ヨーク内に挿入し絶縁材のホルダ
ーを介して偏向ヨークを電子銃に固定する。そして一体
化した電子銃と偏向ヨークを管中で回転できるようにし
、更に偏向ヨークの回転角度を検出するようにして、正
しい角度で偏向ヨークを取付けるようにした。
It has a small cylindrical shape, is inserted into the deflection yoke, and the deflection yoke is fixed to the electron gun via an insulating holder. The integrated electron gun and deflection yoke can be rotated within the tube, and the rotation angle of the deflection yoke can be detected to ensure that the deflection yoke is attached at the correct angle.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図により説明する。電子
ビームを放出する陰極10は円筒状の第1格子電極11
の内部に組込まれており、ヒータ(図示せず)によって
加熱される。第1格子電極11に対向して円筒状の第2
格子電極12が配。
An embodiment of the present invention will be described below with reference to FIG. A cathode 10 that emits an electron beam is a cylindrical first grid electrode 11.
It is built into the inside of the device and is heated by a heater (not shown). A cylindrical second electrode facing the first grid electrode 11
A grid electrode 12 is arranged.

置される。フォーカス電極13は第2格子電極12゜に
対向して配■tされる。陽極電圧を印加する最。
be placed. The focus electrode 13 is arranged opposite to the second grid electrode 12°. Best to apply anode voltage.

終電極14はフォーカス電極13に対向して配置さ。The final electrode 14 is arranged opposite to the focus electrode 13.

れ、フォーカス電極13と最終電極14間のギャップ部
に電子ビームを集束する電子レンズを形成する。各電極
は絶縁支持棒16によって支持され、バルブネック19
部内に収要する。電子銃の最終。
An electron lens is formed in the gap between the focus electrode 13 and the final electrode 14 to focus the electron beam. Each electrode is supported by an insulated support rod 16 and a valve neck 19
Acquired within the department. The final electron gun.

電極14の端部(電子レンズを形成しない電極側ンは外
径が小さい円筒状の径小電極15とする。径小電極15
を偏向ヨーク17内に挿入し、絶縁材のホルダー18を
介して、偏向ヨーク17を径小電極15に固定バンド2
8で固定することによって電子銃Wの中心軸と偏向ヨー
ク17の中心軸の偏心を、少なくすることができる。最
終電極の径小電極15の先端には導電性舌状片24がと
りつけられており、バルブのアノードボタン22より導
入した陽極電圧をバルブ内部に被着形成した導電膜23
を通じて最終電極14に給電する。なお導電性舌状片2
4の先端には陰極線管の真空度を保持する・  7 ・ ためにゲータ容器25がとりつけてあり、バルブ。
The end of the electrode 14 (the side of the electrode that does not form an electron lens is a cylindrical small-diameter electrode 15 with a small outer diameter. Small-diameter electrode 15
is inserted into the deflection yoke 17, and the fixing band 2 is attached to the small diameter electrode 15 via the insulating material holder 18.
By fixing at 8, the eccentricity between the central axis of the electron gun W and the central axis of the deflection yoke 17 can be reduced. A conductive tongue piece 24 is attached to the tip of the small-diameter electrode 15 as the final electrode, and a conductive film 24 is applied to the anode voltage introduced from the anode button 22 of the bulb by depositing it inside the bulb.
Power is supplied to the final electrode 14 through. In addition, the conductive tongue piece 2
A gator container 25 is attached to the tip of the cathode ray tube to maintain the vacuum level of the cathode ray tube.

を排気、封止後にゲッター物質をR敗させる(。After evacuating and sealing, the getter material is evacuated.

所謂ゲッターフラッシュを行なう)。Perform a so-called getter flush).

陰極10から発せられた電子ビームは第1格子。The electron beam emitted from the cathode 10 is the first lattice.

電極11と第2格子電極12によって形成される電界に
よって集束されクロスオーバーをつくる。。
The electric field formed by the electrode 11 and the second grid electrode 12 is focused to create a crossover. .

そしてフォーカス電極13と最終電極14によって形成
される主レンズで集束されパネル20の内面の蛍光体ス
クリーン21に投影される。前記主レンズを構成するフ
ォーカス電極13と最終電極14の内径りは、大きけれ
ば大きい程、球面収差が少なくなり、蛍光面上の電子ビ
ーム径を小さくすることができ、高解像度の画質とする
ことができる。本実施例では偏向ヨーク17をバルブネ
ック外周 述べた如くバルブネック外周に偏向ヨークを設置した陰
極線管のように偏向電力が増大するという問題を生ずる
ことなくバルブネック径を大きくすることが可能である
ため、低収差な大口径電子銃を使用できる。
The light is then focused by the main lens formed by the focus electrode 13 and the final electrode 14 and projected onto the phosphor screen 21 on the inner surface of the panel 20. The larger the inner radius of the focus electrode 13 and the final electrode 14 constituting the main lens, the smaller the spherical aberration, the smaller the diameter of the electron beam on the phosphor screen, and the higher the resolution of the image. I can do it. In this embodiment, the deflection yoke 17 is placed around the outer circumference of the valve neck.As described above, it is possible to increase the diameter of the valve neck without causing the problem of an increase in deflection power as in a cathode ray tube in which a deflection yoke is installed around the outer circumference of the valve neck. Therefore, a large-diameter electron gun with low aberration can be used.

8・ 第5図は電子銃の球面収差を説明するための。8・ FIG. 5 is for explaining the spherical aberration of the electron gun.

図である。同図において横軸は主レンズ中の電。It is a diagram. In the same figure, the horizontal axis is the electric current in the main lens.

子ビーム径rを電子レンズを構成する電極内径。The child beam diameter r is the inner diameter of the electrode that constitutes the electron lens.

Dで正規化した値を示している。縦軸は蛍光面上におけ
る電子ビーム径の値を示している。球面収差のない理想
的な主レンズでは鎖線イで示した如く主レンズ中の電子
ビーム径が大きくなっても蛍光面−Fの電子ビーム径が
増大することはない。しかし、球面収差のない主レンズ
は実際には存在せず、曲線口で示す如く主レンズ中にお
ける電子ビーム径が大きくなるに従って蛍光面上の電子
ビーム径は増大する(−搬に蛍光面上の電子ビーム径d
と主レンズ中の電子ビーム径rとの関係はdωr3であ
ることが知られている)。
The value normalized by D is shown. The vertical axis indicates the value of the electron beam diameter on the fluorescent screen. In an ideal main lens without spherical aberration, the electron beam diameter at the phosphor screen -F does not increase even if the electron beam diameter in the main lens increases, as shown by the chain line A. However, a main lens without spherical aberration does not actually exist, and as the electron beam diameter in the main lens increases, as shown by the curved aperture, the electron beam diameter on the phosphor screen increases. electron beam diameter d
It is known that the relationship between the electron beam diameter r in the main lens and the electron beam diameter r is dωr3).

前述のように蛍光面上の球面収差による電子ビーム径を
小さくするには、主レンズ中の電子ビーム径を小さくす
ることが効果的である。このためには、主レンズに入射
する電子ビームを細くするか、又は主レンズを構成する
電極内径Dを大きくするかの2つの方法がある。前者の
方法では球面収差の影響を少なくできるが、電子自身が
持つ電荷による相互反ばつ等の影響によって蛍光面上の
電子ビーム径は拡がってしまう。したがって後者の主レ
ンズを構成する電極内径りを大きくした方が望ましい。
As mentioned above, in order to reduce the electron beam diameter due to spherical aberration on the phosphor screen, it is effective to reduce the electron beam diameter in the main lens. There are two methods for this purpose: making the electron beam incident on the main lens narrower, or increasing the inner diameter D of the electrodes constituting the main lens. Although the former method can reduce the influence of spherical aberration, the diameter of the electron beam on the phosphor screen expands due to the influence of mutual repulsion due to the charges of the electrons themselves. Therefore, it is desirable to increase the inner diameter of the electrode constituting the latter main lens.

しかし、偏向ヨークが外付の場合は従来例で説明したよ
うに偏向電力が増大してしまうので、電極口径りを大き
くできない。そこで本発明の実施例では上記間頭を解決
するために偏向ヨークを管中に内蔵して後者の方法をと
った。電極内径りと電子ビーム径rとの比は約r / 
D < 0.2位に設定すると実用上球面収差を無視す
ることができる。
However, when the deflection yoke is externally attached, the deflection power increases as explained in the conventional example, so the diameter of the electrode cannot be increased. Therefore, in the embodiment of the present invention, in order to solve the above-mentioned problem, a deflection yoke is built into the tube and the latter method is adopted. The ratio of the electrode inner diameter to the electron beam diameter r is approximately r/
By setting D < 0.2, spherical aberration can be practically ignored.

大口径主レンズで集束された電子ビーム26は蛍光面ス
クリーン21上に小さな電子ビーム径となり投影される
。一方偏向ヨーク17によって偏向された電子ビーム2
7も蛍光面スクリーン21上に投影される。
The electron beam 26 focused by the large-diameter main lens is projected onto the phosphor screen 21 with a small electron beam diameter. On the other hand, the electron beam 2 deflected by the deflection yoke 17
7 is also projected onto the fluorescent screen 21.

本実施例では、従来例で述べたように、陰極線管製造時
に生ずる大口径電子銃隻の中心軸とバルブネック19に
内蔵した偏向ヨーク17の中心。
In this embodiment, as described in the conventional example, the central axis of a large-diameter electron gun produced during the manufacture of a cathode ray tube and the center of the deflection yoke 17 built into the valve neck 19.

軸の偏心や傾きを極力少なくするために、電子銃Wの最
終電極14の端部を外径が小さな円筒状の径小電極15
とする。そして、前記径小電極15を偏向ヨーク17に
挿入し、絶縁材のホルダー18を介して偏向ヨーク17
を固定バンド28を用いて径小電極15に固定すること
によって電子銃Wの。
In order to minimize the eccentricity and inclination of the axis, the end of the final electrode 14 of the electron gun W is connected to a cylindrical small-diameter electrode 15 with a small outer diameter.
shall be. Then, the small diameter electrode 15 is inserted into the deflection yoke 17, and the deflection yoke 17 is inserted through the holder 18 made of insulating material.
of the electron gun W by fixing it to the small diameter electrode 15 using the fixing band 28.

中心軸と偏向ヨーク17の中心軸の偏心を少なくするよ
うにしている。
Eccentricity between the central axis and the central axis of the deflection yoke 17 is reduced.

前述のように、電子銃Wの先端を偏向ヨーク17に挿入
し偏向ヨーク17を固定しているので、電子銃すの中心
軸と偏向ヨーク17の中心軸の偏、心のために生ずる電
子ビームスポット径の全面不均一性、すなわち電子ビー
ムの偏向方向によっテ電子ビームスポット形状が不均一
になることを少なくでき、フォーカスの全面性劣化を少
なくできる。
As mentioned above, since the tip of the electron gun W is inserted into the deflection yoke 17 and the deflection yoke 17 is fixed, the electron beam generated due to the eccentricity and centering of the center axis of the electron gun and the center axis of the deflection yoke 17 is It is possible to reduce the non-uniformity of the spot diameter over the whole surface, that is, the non-uniformity of the electron beam spot shape depending on the deflection direction of the electron beam, and to reduce the deterioration of the focus over the whole surface.

したがって球面収差の少ない大口径電子銃による小さな
電子ビーム径を画面全体に渡って得ることができ、高解
像度の画質とすることがで611 。
Therefore, it is possible to obtain a small electron beam diameter over the entire screen using a large-diameter electron gun with little spherical aberration, and to achieve high resolution image quality611.

きる。Wear.

一方、偏向ヨーク17の外周には複数の舌状ス。On the other hand, the outer periphery of the deflection yoke 17 is provided with a plurality of tongue-like grooves.

ブリング片29を設け、電子読切に固定された偏。A bling piece 29 is provided and the bias is fixed to the electronic readout.

向ヨーク17はバルブネック19内において、電子銃1
0と一体となって回転させることができるよ−うにして
おく。第6図は陰極線管製造の際、電子M1oをバルブ
ネック部19に封止する時に、前記一体化した電子銃隻
と偏向ヨーク17を回転機構を有する回転台鋼に設置し
た状態を示したち気管36を嵌合する支持台32を設け
、この支持台32を回転できるようにしたものである。
The facing yoke 17 is located within the valve neck 19 and is connected to the electron gun 1.
Make sure that it can be rotated in unison with 0. FIG. 6 shows a state in which the integrated electron gun and deflection yoke 17 are installed on a rotary table steel having a rotating mechanism when the electron M1o is sealed in the valve neck portion 19 during the manufacture of a cathode ray tube. A support base 32 is provided to which the holder 36 is fitted, and the support base 32 is rotatable.

前記支持台32を回転することによってバルブネック1
9内に収納されている電子銃胆と偏向ヨーク17を一体
として回転させることができる。偏向ヨー1′ り17の側面に設けた反射板34はバルブ外に設置した
レーザ等の投光素子35からの光を反射する。
By rotating the support base 32, the valve neck 1
The electron gun housing 9 and the deflection yoke 17 can be rotated as one unit. A reflecting plate 34 provided on the side surface of the deflection yaw 1' reflects light from a light projecting element 35 such as a laser installed outside the bulb.

反射された光は、パルプ外に設けた受光器36で受光す
る。
The reflected light is received by a light receiver 36 provided outside the pulp.

陰極線管バルブと前記投光素子35、受光器36で構成
した光学系を前記回転台鋼に対し所定の。
An optical system composed of a cathode ray tube bulb, the light projecting element 35, and the light receiver 36 is placed in a predetermined position relative to the rotary base steel.

位置関係に配置し、前記回転台鋼に支持した電。Electrical units arranged in a positional relationship and supported by the rotating table steel.

子銃廷を支持台32を介して電子銃隻と偏向ヨー。The child gun is deflected to the electron gun via the support stand 32.

り17の中心軸を中心として回転した場合番こ、受。When rotating around the center axis of the holder 17, the counter and receiver.

光器36で受光する反射光の変化が大きくなるように、
光学系を偏光ヨーク17の中心軸に垂直な面に配置して
おくことが望ましい。
In order to increase the change in reflected light received by the light device 36,
It is desirable to arrange the optical system on a plane perpendicular to the central axis of the polarization yoke 17.

次に、第7図に示したように、偏向ヨーク1乙に設けた
反射板34への垂直線がX軸(陰極線管。
Next, as shown in FIG. 7, the vertical line to the reflection plate 34 provided on the deflection yoke 1B is the X axis (cathode ray tube).

の蛍光体スクリーン21の長径に平行な軸をX軸為短径
に平行な軸をy軸とする)となす角度をθ。
θ is the angle between the axis parallel to the major axis of the phosphor screen 21 as the X axis and the axis parallel to the minor axis as the Y axis.

(第7図において実線で示した角度を負とする)とする
と、θが負の値から支持台32を回転し、。
(Assuming that the angle shown by the solid line in FIG. 7 is negative), the support base 32 is rotated from a negative value of θ.

偏向ヨーク17を正方向(第7図で反時計方向)。Turn the deflection yoke 17 in the forward direction (counterclockwise in FIG. 7).

に回転すると、回転角度に応じて受光器36で受1光す
る量が変化し、受光器36から第8図に示す。
When the light receiver 36 rotates, the amount of light received by the light receiver 36 changes depending on the rotation angle, as shown in FIG. 8 from the light receiver 36.

ような検出出力を得ることができる。したがって、あら
かじめ偏向ヨーク17に設けた反射板34の位置を適切
な位置に設定しておき、偏向ヨー。
A detection output like this can be obtained. Therefore, the position of the reflection plate 34 provided on the deflection yoke 17 is set in advance to an appropriate position, and the deflection yaw is adjusted.

り17と電子銃Wを一体として回転させた時の回。This is the time when the 17 and the electron gun W are rotated as one unit.

転方向位置に応じて変化する受光器36の出力が。The output of the light receiver 36 changes depending on the rotation direction position.

最大となる偏向ヨーク17の回転方向位置を求め。Determine the rotational direction position of the deflection yoke 17 that is maximum.

ることかできる。こうして、偏向ヨーク17の回。I can do that. In this way, the deflection yoke 17 turns.

転角度をラスターの傾きを生じない正しい角度、に設定
した後、電子銃Wの口径37部分のガラスとバルブネッ
ク19部分のガラスを溶着する封止工程を行なう。電子
銃を封止した後は従来の陰。
After setting the rotation angle to a correct angle that does not cause raster inclination, a sealing process is performed in which the glass of the diameter 37 portion of the electron gun W and the glass of the bulb neck 19 portion are welded. After sealing the electron gun, it is the same as before.

極線管と同様な排気工程などを行なうことによ。By performing the same exhaust process as polar ray tubes.

って、ラスターの傾きが少ない陰極線管を得ることがで
きる。
Therefore, a cathode ray tube with less raster inclination can be obtained.

以上は偏向ヨークに反射板を設けて、偏向ヨークの回転
角度を検出したが、電子銃すの一部。
In the above, a reflection plate was installed on the deflection yoke to detect the rotation angle of the deflection yoke, but this is only a part of the electron gun.

の電極を円筒状から長方体状(例えば第1格子電極10
の形状は円筒状にする必要はなく、長方体状にすること
ができる)にし、前記長方体状「ノ 電極の側面を反射板として利用することによって偏向ヨ
ークの回転角度を検出することもできる。
The electrodes are arranged in a cylindrical shape to a rectangular shape (for example, the first grid electrode 10
The shape of the electrode does not need to be cylindrical and can be rectangular, and the rotation angle of the deflection yoke is detected by using the side surface of the rectangular electrode as a reflector. You can also do it.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、偏向電力の増大や、偏
向による電子ビーム形状の不均一さ。
As described above, according to the present invention, the increase in deflection power and the non-uniformity of the electron beam shape due to deflection can be avoided.

を生ずることなく、球面収差の少い大口径電子レンズを
使用することができ、陰極線管の解像度を画面全体に渡
って改良できるのでインデックス方式カラー陰極線管、
モノクロームディスプレイ用陰極線管、投写形陰極線管
に好適である。またラスターの傾きを少なくできるので
陰極線Iif製造の歩留りを高めることができ、本発明
の経済的効果は大きい。
It is possible to use a large-diameter electron lens with little spherical aberration without causing spherical aberration, and the resolution of the cathode ray tube can be improved over the entire screen.
Suitable for monochrome display cathode ray tubes and projection cathode ray tubes. Furthermore, since the raster inclination can be reduced, the yield of cathode ray Iif production can be increased, and the economic effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の陰極線管の説明図1第2図および第6図
は従来の大口径電子銃を用いた陰極線管の説明図、第4
図は本発明の一実施例の断面図、第5図は球面収差の説
明図、第6図は偏向ヨークの回転角度を検出する方法を
説明する断面図、第7図は第6図の一部を示す平面図、
第8図は偏向ヨークの回転角度と受光器出力を示す線図
である。 10・・・陰極、 11・・・第1格子電極1 、15゜ 12・・・第2格子電極、 13・・・フォーカス電極、 14・・・最終電極、 16・・・絶縁支持棒、 17・・・偏向ヨーク、 20・・パルプパネル、 21・・・蛍光体スクリーン、 28・・・固定バンド、 30・・・回転台、 31・・・基部、 32・・・支持台、 34・・・反射板、 36・・・受光器。
Figure 1 is an explanatory diagram of a conventional cathode ray tube. Figures 2 and 6 are explanatory diagrams of a cathode ray tube using a conventional large-diameter electron gun.
The figure is a sectional view of one embodiment of the present invention, FIG. 5 is an explanatory diagram of spherical aberration, FIG. A plan view showing the part,
FIG. 8 is a diagram showing the rotation angle of the deflection yoke and the output of the light receiver. DESCRIPTION OF SYMBOLS 10... Cathode, 11... First grid electrode 1, 15°12... Second grid electrode, 13... Focus electrode, 14... Final electrode, 16... Insulated support rod, 17 ... Deflection yoke, 20... Pulp panel, 21... Phosphor screen, 28... Fixing band, 30... Rotating table, 31... Base, 32... Support stand, 34...・Reflector, 36... Light receiver.

Claims (1)

【特許請求の範囲】[Claims] 1、電子ビームを発生し、かつ静電集束電界を形成する
単電子銃と、前記電子銃からの電子ビームを電磁偏向し
てラスターを形成する偏向ヨークを管中に内蔵する陰極
線管において、電子銃の最終電極の端部における電極外
径を電子レンズを形成する部分の電極外径よりも小さい
口径の円筒状電極とし、前記偏向ヨーク内に前記最終電
極の径小電極を挿入し、絶縁材のホルダーを介して偏向
ヨークを径小電極に固定し、前記偏向ヨークの外周部に
複数の舌状スプリング片を設けたことを特徴とする陰極
線管装置。
1. A cathode ray tube has a single electron gun that generates an electron beam and forms an electrostatic focusing electric field, and a deflection yoke that electromagnetically deflects the electron beam from the electron gun to form a raster. The final electrode of the gun is made into a cylindrical electrode whose outer diameter is smaller than that of the part forming the electron lens, the final electrode with a small diameter is inserted into the deflection yoke, and an insulating material is used. 1. A cathode ray tube device, characterized in that a deflection yoke is fixed to a small-diameter electrode via a holder, and a plurality of tongue-shaped spring pieces are provided on the outer periphery of the deflection yoke.
JP14945384A 1984-07-20 1984-07-20 Cathode-ray tube Pending JPS6129050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14945384A JPS6129050A (en) 1984-07-20 1984-07-20 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14945384A JPS6129050A (en) 1984-07-20 1984-07-20 Cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS6129050A true JPS6129050A (en) 1986-02-08

Family

ID=15475451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14945384A Pending JPS6129050A (en) 1984-07-20 1984-07-20 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS6129050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778406B1 (en) * 2001-11-28 2007-11-21 삼성에스디아이 주식회사 Electron gun for cathode ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778406B1 (en) * 2001-11-28 2007-11-21 삼성에스디아이 주식회사 Electron gun for cathode ray tube

Similar Documents

Publication Publication Date Title
JPS63133437A (en) Color braun tube and electronic gun used therefor
US4520292A (en) Cathode-ray tube having an asymmetric slot formed in a screen grid electrode of an inline electron gun
US5631521A (en) Electron gun for color cathode ray tube
JPH06251722A (en) Cathode-ray tube
JPH03141540A (en) Color picture tube
JPH09190773A (en) Cathode-ray tube electron gun and cathode-ray tube
JPS6129050A (en) Cathode-ray tube
GB2027268A (en) Electron guns
US4910429A (en) Cathode ray tube which is small and uses a small amount of power
EP0072588B1 (en) Cathode-ray tube
JPS5845137B2 (en) Denshijiyuusouchi
JPH0545880U (en) Focus electrode structure of electron gun for color picture tube
US4656387A (en) Cathode ray tube having a zig-zag shaped deflection electrode
JP2001500311A (en) Cathode ray tube with deflection unit
JPH09199049A (en) Electron gun
US7071606B2 (en) Color picture tube
US3783326A (en) Magnetically-focussed cathode-ray tube comprising a tilted and skewed off-axis electron gun
US6472833B2 (en) Laser cathode ray tube
KR100294500B1 (en) electronic gun for cathode ray tube
US3735178A (en) Cathode ray tube comprising at least one electron gun for producing a number of electron beams
JP2002367539A (en) Cathode-ray tube
JP2000311625A (en) Electron gun for color cathode-ray tube
US6586869B1 (en) Electrodes of electron gun
KR100342051B1 (en) Electron gun for cathode ray tube
JP2000149815A (en) Color cathode-ray tube