JPS6171342A - Method for evaluating surface of wafer of crystalline material - Google Patents

Method for evaluating surface of wafer of crystalline material

Info

Publication number
JPS6171342A
JPS6171342A JP59193070A JP19307084A JPS6171342A JP S6171342 A JPS6171342 A JP S6171342A JP 59193070 A JP59193070 A JP 59193070A JP 19307084 A JP19307084 A JP 19307084A JP S6171342 A JPS6171342 A JP S6171342A
Authority
JP
Japan
Prior art keywords
wafer
electron beam
crystalline material
cleaved
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59193070A
Other languages
Japanese (ja)
Inventor
Ryoichi Urao
亮一 浦尾
Masayoshi Aoyama
正義 青山
Mitsuaki Onuki
大貫 光明
Yasuhiko Miyake
三宅 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59193070A priority Critical patent/JPS6171342A/en
Publication of JPS6171342A publication Critical patent/JPS6171342A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To evaluate the surface of a wafer accurately, based on the diffracted image of a reflected electron beam, by projecting the electron beam from the surface of the water to an arbitrary point on an edge, which is formed by a cleaved plane of the wafer of a crystalline material that is cleaved in extremely low temperature liquid and the surface of the waver of the crystalline material, at a specified angle. CONSTITUTION:A crystalline material, e.g., a GaAs ingot, is sliced, and a sliced GaAs wafer, whose surface is (100), is obtained. The wafer is cleaved in an extremely low temperature liquid such as liquid nitrogen, and a sample piece 2 of about 5X5mm<2> is obtained. An electron beam is projected from the upper part of the well surface on an edge 5, which is formed by the (100) surface and the (110) cleaved plane 4, at an angle of 0=1 deg.. Then the diffracted image is observed. Thus the dislocation of the surface and the introduction of strain are well suppressed in the extremely low temperature liquid. The change in crystalline property caused in the wafer during the machining processes can be evaluated without relation to the inside of the wafer and the crystalline property of the back surface. When the crystalline property of the surface is good, diffraction spots 7 simultaneously appear together with Kikuchi lines. A debye ring appears on the polycrystalline surface.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、結晶性物質例えば化合物半導体単結晶等のウ
ェハ表面の結晶性を反射電子線回折により評価する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for evaluating the crystallinity of a wafer surface of a crystalline material, such as a compound semiconductor single crystal, by reflection electron beam diffraction.

[従来の技術] 従来、化合物半導体単結晶等の結晶性物質ウェハ表面の
結晶性を評価する方法としては、薄膜ウェハへ電子線を
透過させて得られる回折像より結晶性を評価する透過電
子線回折法、ウェハ表面に照射した電子線がそのウェハ
表面で反射されることにより得られる回折像より結晶性
を評価する反射電子線回折法などがある。
[Prior Art] Conventionally, as a method for evaluating the crystallinity of the surface of a crystalline material wafer such as a compound semiconductor single crystal, a transmission electron beam is used to evaluate the crystallinity from a diffraction image obtained by transmitting an electron beam through a thin film wafer. Examples include a diffraction method and a reflected electron diffraction method in which crystallinity is evaluated from a diffraction image obtained when an electron beam irradiated onto the wafer surface is reflected by the wafer surface.

しかしながら、透過電子線回折法は、電子線が結晶を透
過した回折像より結晶性を評価するため、評価したい結
晶表面の転位と一緒に結晶中J5よび裏面の転位までも
回折像として現われてしまう。
However, in the transmission electron diffraction method, crystallinity is evaluated based on the diffraction image obtained when an electron beam passes through the crystal, so dislocations on the J5 and back surfaces of the crystal appear in the diffraction image along with the dislocations on the surface of the crystal that are to be evaluated. .

よって、結晶表面のみの結晶性を評価するには適当でな
く、また、結晶を極めて薄くする必要があり、簡易な評
価方法とはいえなかった。
Therefore, it is not suitable for evaluating the crystallinity of only the crystal surface, and the crystal needs to be made extremely thin, so it cannot be said to be a simple evaluation method.

一方、この透過電子線回折法に対して反射電子線回折法
は、結晶ウェハ表面に照射した電子線がその結晶ウェハ
表面で反射されることによって得られた回折像より結晶
性を評1illiiJるため、結晶表面だけの結晶性を
評価できるものである。しかし、表面が化学エツチング
等により極めて平滑な場合には回折像を得ることが困難
な場合が多い。
On the other hand, in contrast to the transmission electron beam diffraction method, the reflected electron beam diffraction method evaluates crystallinity from the diffraction image obtained when an electron beam irradiated onto the surface of a crystal wafer is reflected by the surface of the crystal wafer. , it is possible to evaluate the crystallinity of only the crystal surface. However, if the surface is extremely smooth due to chemical etching or the like, it is often difficult to obtain a diffraction image.

そこで、一般に第1図に示すようにウェハをへき開して
作製された試料片2の表面3と、へき開面4とで形成さ
れるエツジ5の任意の点5aに、表面3の上方から角度
θで電子線1を照射して、任意の点5aで反射された電
子線がフィルム6の回折斑点7として現れるようにする
ことによって回折像を得ている。なお、通常θは約1°
程度である。
Therefore, generally, as shown in FIG. 1, an arbitrary point 5a of an edge 5 formed by a surface 3 of a sample piece 2 prepared by cleaving a wafer and a cleavage surface 4 is placed at an angle θ from above the surface 3. A diffraction image is obtained by irradiating an electron beam 1 at an arbitrary point 5a so that the electron beam reflected at an arbitrary point 5a appears as a diffraction spot 7 on the film 6. Note that θ is usually about 1°
That's about it.

ところが、反射電子線回折法では装置(一般に電子顕微
鏡)の関係上試料片2を約5m四方の試料台に収まるよ
うにしなければならない。そのため室温においてウェハ
のへき開あるいは破断を行うと、新しく歪や転位がウェ
ハ2に導入されてしまい、へき開あるいは破断する前の
スライス、ラッピング又はポリッシング等のウェハ加工
工程によりウェハ表面に生ずる結晶性の変化を検出する
ことができず、信頼性の低いものであった。
However, in the backscattered electron beam diffraction method, the sample piece 2 must fit on a sample stage approximately 5 meters square due to the equipment (generally an electron microscope). Therefore, when the wafer is cleaved or broken at room temperature, new strains and dislocations are introduced into the wafer 2, and changes in crystallinity occur on the wafer surface due to wafer processing steps such as slicing, lapping, or polishing before cleaving or breaking. could not be detected and had low reliability.

[発明の目的] 本発明は、従来技術の問題点に鑑み、結晶ウェハから試
料片を作製する際試料片に転位および歪を導入させるこ
となく、結晶ウェハ表面に施されたスライス、ラッピン
グあるいはポリッシング等の加工工程によって結晶ウェ
ハ表面に生ずる結晶性の変化を検出し、結晶ウェハ表面
の結晶性を適切に評価することのできる評価方法を提供
することを目的とする。
[Object of the Invention] In view of the problems of the prior art, the present invention provides a method for slicing, lapping, or polishing that is performed on the surface of a crystal wafer without introducing dislocations or strains into the sample piece when producing the sample piece from the crystal wafer. It is an object of the present invention to provide an evaluation method capable of appropriately evaluating the crystallinity of the crystal wafer surface by detecting changes in crystallinity that occur on the surface of the crystal wafer through processing steps such as the above.

[発明の概要コ 本発明の結晶性物質ウェハ表面の評価方法は、結晶性物
質ウェハを極低温液体中でへき開I)てへき開面を設け
、該へき開面と前記結晶性物質ウェハ表面とで形成され
るエツジ上の任意の点に前記結晶性物質ウェハ表面の上
方から適宜設定された角度で電子線を照射し、前記エツ
ジ上の任意の点で反射されることにより得られた電子線
回折像より前記結晶性物質表面の結晶性を評価すること
を特徴とするものである。
[Summary of the Invention] The method for evaluating the surface of a crystalline material wafer of the present invention includes: cleaving a crystalline material wafer in a cryogenic liquid (1) to provide a cleavage plane, and forming a surface formed by the cleavage plane and the surface of the crystalline material wafer. An electron beam diffraction image obtained by irradiating an electron beam at an appropriately set angle from above the surface of the crystalline material wafer to an arbitrary point on the edge and being reflected at an arbitrary point on the edge. This method is characterized in that the crystallinity of the surface of the crystalline substance is evaluated.

なお、前記極低温液体としては、液体酸素、液体空気、
液体窒素あるいは液体ヘリウムが適当である。
Note that the cryogenic liquid includes liquid oxygen, liquid air,
Liquid nitrogen or liquid helium is suitable.

C作 用コ 次に、本発明の作用について説明する。For C work Next, the operation of the present invention will be explained.

一般に常温において半心体単結晶ウェハをへき開あるい
は破断した場合、ウェハに転位および歪が導入されてし
まうものである。ところが、液体窒素あるいは液体ヘリ
ウム等の極低温液体中でへき聞あるい破断をおこなった
場合ウェハに転位および歪がほとんど導入されず、その
後、極低温液体から取り出してもウェハに転位および歪
がほとんど導入されていることはない。
Generally, when a semi-centered single crystal wafer is cleaved or fractured at room temperature, dislocations and strains are introduced into the wafer. However, when a cleavage or fracture occurs in a cryogenic liquid such as liquid nitrogen or liquid helium, almost no dislocations or strains are introduced into the wafer, and even after the wafer is removed from the cryogenic liquid, there are almost no dislocations or strains. It has never been introduced.

従って、第1図に示した反射電子線回折を極低温液体中
で作製された試料片2に対して行うと、(qられた電子
線回折像からは、ウェハ加工工程によるウェハ表面の結
晶性の変化が検出され、ウェハ表面の結晶性を信頼性高
く評価することができる。
Therefore, when the reflected electron beam diffraction shown in FIG. This allows the crystallinity of the wafer surface to be evaluated with high reliability.

次に、反射電子線回折法の原理を説明する。第1図は、
反射電子線回折法の原理を示す説明図である。結晶ウェ
ハをへき開して作製した試料片2の表面3とへき開面4
とで形成されるエツジ5の任意の点5aに表面3の上方
から角度θで電子線1を照射する。表面3上には異なっ
た結晶面が存在し、そのため電子線がそれぞれの結晶面
に対応した方向に反射されてフィルム6に回折斑点7と
して現れ、電子線回折像を得ることができる。又、原点
8は、電子線1を試料片2に対して約1°で照射するた
めに直接フィルム6に達した場合に得られる。
Next, the principle of reflected electron beam diffraction method will be explained. Figure 1 shows
FIG. 2 is an explanatory diagram showing the principle of reflected electron beam diffraction. Surface 3 and cleavage plane 4 of sample piece 2 prepared by cleaving a crystal wafer
An arbitrary point 5a of the edge 5 formed by the electron beam 1 is irradiated with the electron beam 1 from above the surface 3 at an angle θ. Different crystal planes exist on the surface 3, so that the electron beam is reflected in directions corresponding to the respective crystal planes and appears as diffraction spots 7 on the film 6, making it possible to obtain an electron beam diffraction image. Further, the origin 8 is obtained when the electron beam 1 directly reaches the film 6 in order to irradiate the sample piece 2 at an angle of about 1°.

結晶面によって、回折斑点7が定まっているので、結晶
性が良い場合は、電子線が結晶面に対応した回折斑点7
へ集中し、同時に菊池線が現れるようになる。又、多結
晶のように表面3の結晶性が悪い場合は、回折斑点が定
まらず、デバイリングとなって現われる。このような現
象を利用Jることによりウェハ表面の結晶性を評価ツる
ことができる。
The diffraction spots 7 are determined by the crystal plane, so if the crystallinity is good, the electron beam will be directed to the diffraction spot 7 corresponding to the crystal plane.
At the same time, the Kikuchi line began to appear. Furthermore, if the crystallinity of the surface 3 is poor as in the case of polycrystalline material, diffraction spots are not defined and appear as Debye rings. By utilizing such a phenomenon, the crystallinity of the wafer surface can be evaluated.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

なお、結晶性物質として水平ブリッジマン法(H。Note that the horizontal Bridgman method (H) is used as a crystalline material.

B法)により造られたGaAs単結晶(Siドープ、E
PD≦500CI114)を用いた。
GaAs single crystal (Si-doped, E
PD≦500CI114) was used.

実施例1 GaASインゴットを内周形ダイヤモンドカッターによ
りスライスして得られた表面が<ioo>のアズスライ
スドGaへSウェハを液体窒素中(約−196℃)r(
110)、〈11o〉にへき開し、約5#×5履の試料
片を作製した。
Example 1 A GaAS ingot was sliced with an internal diamond cutter to form an as-sliced Ga S wafer with an <ioo> surface in liquid nitrogen (about -196°C).
110) and was cleaved into <11o> to produce a sample piece of approximately 5# x 5 shoes.

次に、第7図に示す反射電子線回折により、ウェハ表面
の(100)とへき同面の(110)により形成される
エツジにウェハ表面上でかつく110〉からθ#1°で
電子線を照射した。
Next, by backscattered electron beam diffraction shown in FIG. was irradiated.

反射された電子線は第2図に示す反射電子顕微鏡写真の
ような電子線回折像となって現れる。
The reflected electron beam appears as an electron beam diffraction image like the reflection electron micrograph shown in FIG.

この電子線回折像にはデバイリングが多くウェハ表面が
均一な結晶性を持たない多結晶であることを示している
This electron diffraction image has many Debye rings, indicating that the wafer surface is polycrystalline without uniform crystallinity.

実施例2 実施例1のアズスライスドGaへSウェハを(100)
表面から、HN40il−Hz OHz02系で90.
5μmエツチング除去し、その後、実施例1と同様に液
体窒素中で試料片を作製し、反射電子線回折を行なった
Example 2 S wafer (100) to as-sliced Ga of Example 1
From the surface, HN40il-Hz OHz02 system is 90.
After removing the sample by etching 5 μm, a sample piece was prepared in liquid nitrogen in the same manner as in Example 1, and reflected electron beam diffraction was performed.

第3図に示す反射電子顕微鏡写真のように得られた回折
像には、デバイリングが全く見られず、鋭いい菊地線が
明確に見られる。よって表面が多結晶であったアズスラ
イスドGaへSウェハを90.5μmエツチングするこ
とにより、多結晶層が除去され、表面に結晶性のよい単
結晶層が現れてきたことがわかる。
In the diffraction image obtained as shown in the reflection electron micrograph shown in FIG. 3, no Debye ring is seen at all, and sharp Kikuchi lines are clearly seen. Therefore, it can be seen that by etching the S wafer by 90.5 μm onto the as-sliced Ga substrate whose surface was polycrystalline, the polycrystalline layer was removed and a single-crystalline layer with good crystallinity appeared on the surface.

実施例3 実施例2のエツチング処理されたGaASウェハをラッ
ピングし、その後、実施例1と同様に液体窒素中で試料
片を作製して反射電子線回折を行なった。
Example 3 The etched GaAS wafer of Example 2 was lapped, and then, as in Example 1, a sample piece was prepared in liquid nitrogen and subjected to backscattered electron diffraction.

得られた回折像は、第1図に示した反射電子顕微鏡写真
と同じようにデバイリングが多数みられ、表面が多結晶
になっていることがわかった。
The obtained diffraction image showed many Debye rings as in the reflection electron micrograph shown in FIG. 1, and it was found that the surface was polycrystalline.

実施例4 実施例3のラッピングされたGaASウェハにアルカリ
性薬品でケミカルポリッシング仕上げを行い、実施例1
と同様に試料片を作製し反射電子線回折を行なった。
Example 4 The lapped GaAS wafer of Example 3 was subjected to chemical polishing with an alkaline chemical, and the wrapped GaAS wafer of Example 1 was
A sample piece was prepared in the same manner as above and reflected electron beam diffraction was performed.

第4図に示す反射電子顕微鏡写真から解かるように、得
られた回折像には回折斑点が規則的にはっきりと現れ、
かつ、菊地線も現れており結晶性の良い単結晶のウェハ
表面であることが解かる。
As can be seen from the reflection electron micrograph shown in Figure 4, diffraction spots appear regularly and clearly in the obtained diffraction image.
Moreover, the Kikuchi line also appears, indicating that the wafer surface is a single crystal with good crystallinity.

以上のように、本発明の実施例によれば、液体窒素中で
作製した試料片に対して反射電子線回折を行っているた
め、スライス、ラッピングおよびポリッシング等の各ウ
ェハ加工工程によるウェハ表面の結晶性の変化だけを検
出して、ウェハ表面の結晶性を信頼性高く評価すること
ができるものである。
As described above, according to the embodiment of the present invention, since backscattered electron beam diffraction is performed on a sample piece prepared in liquid nitrogen, the wafer surface is By detecting only changes in crystallinity, the crystallinity of the wafer surface can be evaluated with high reliability.

なお、本発明は金属および無機結晶を問わず電子線の照
射により回折可能な全ての結晶性物質に適用できる。
Note that the present invention is applicable to all crystalline substances that can be diffracted by electron beam irradiation, regardless of whether they are metals or inorganic crystals.

又、液体窒素の代わりに液体酸素、液体空気あるいは液
体ヘリウム等を用いても試料片への転位および歪の導入
をきわめて良く抑制することができる。
Further, even if liquid oxygen, liquid air, liquid helium, or the like is used instead of liquid nitrogen, the introduction of dislocations and strains into the sample piece can be extremely effectively suppressed.

[発明の効果] 以上、詳細に説明した通り本発明によれば次のような顕
苔な効果を奏するものである。
[Effects of the Invention] As described above in detail, the present invention provides the following significant effects.

(1)ウェハから試料片を作製する際に極低温液体中に
おいて行っているため、試料片への転位および歪の導入
をきわめて良く抑制することができる。
(1) Since a sample piece is prepared from a wafer in a cryogenic liquid, the introduction of dislocations and strains into the sample piece can be extremely well suppressed.

(2)試料片にウェハ加工工程以外の転位および歪がほ
とんど導入されていないため、各ウェハ加工工程時のウ
ェハ表面に生ずる結晶性の変化だけを検出でき、ウェハ
表面の結晶性を信頼性良く評価することができる。
(2) Since almost no dislocations or strains are introduced into the sample piece other than during the wafer processing process, only the changes in crystallinity that occur on the wafer surface during each wafer processing process can be detected, and the crystallinity of the wafer surface can be determined with high reliability. can be evaluated.

(3)反射電子線回折は、透明電子線回折に比較して試
料の作製が簡単であり、かつ、ウェハの裏面および内部
の結晶性に係わらず、ウェハ表面の結晶性だけを評価す
ることができる。
(3) Reflected electron beam diffraction is easier to prepare a sample than transparent electron diffraction, and it is possible to evaluate only the crystallinity of the wafer surface, regardless of the crystallinity of the back surface and inside of the wafer. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、反射電子線回折の原理を示す説明図。 第2図、第3図および第4図は本発明による電子線回折
像を示す反射電子顕微鏡写真である。 1・・・電子線、 2・・・試料片、3・・・表面。 4・・−へき開面、5・・・エツジ、6・・・フィルム
。 7・・・回折斑点、 8・・・原点。 代理人 弁理士 佐 藤 不二雄 第 1 目 、ll)+2邑 一オー13ピ ・十4聞 1事件の表示 昭和59年1 11g1第193070号2発明の名称 結晶性物質ウェハ表面の評価方法 3 補正をする者 代表者      水 上 徳五部 5 補正命令の日付 昭和60年1月29日 6、補正の対象 明細書の図面の簡単な説明の欄。 7、補正の内容 (1)明細書の第10頁第18行の「詳細」を「簡単」
と訂正する。 (2)明細書の第10頁第20行の「第4図は」と「本
発明」の間に「図面代用写真あり、」を挿入する。 (3)明細書の第10頁第20行の「本発明によるJを
「本発明により得られた」と訂正する。 以上
FIG. 1 is an explanatory diagram showing the principle of reflected electron beam diffraction. FIGS. 2, 3, and 4 are reflection electron micrographs showing electron diffraction images according to the present invention. 1... Electron beam, 2... Sample piece, 3... Surface. 4...-cleavage plane, 5... edge, 6... film. 7...Diffraction spots, 8...Origin. Agent Patent Attorney Fujio Sato No. 1, ll) + 2 Oichi-oh 13th P. 14th Case 1981 11g1 No. 193070 2 Name of the invention Method for evaluating the surface of a crystalline material wafer 3 Amendment Representative Tokugobu Mizukami 5 Date of amendment order January 29, 1985 6. Column for a brief explanation of the drawings in the specification subject to amendment. 7. Contents of amendment (1) “Details” on page 10, line 18 of the specification has been changed to “simple”
I am corrected. (2) On page 10, line 20 of the specification, insert ``Photographs available in place of drawings'' between ``Figure 4'' and ``This invention''. (3) "J according to the present invention" on page 10, line 20 of the specification is corrected to "obtained according to the present invention."that's all

Claims (2)

【特許請求の範囲】[Claims] (1)結晶性物質ウェハを極低温液体中でへき開してへ
き開面を設け、該へき開面と前記結晶性物質ウェハ表面
とで形成されるエッジ上の任意の点に前記結晶性物質ウ
ェハ表面の上方から適宜設定された角度で電子線を照射
し、前記エッジ上の任意の点で反射されることにより得
られた電子線回折像より前記結晶性物質表面の結晶性を
評価することを特徴とする結晶性物質ウェハ表面の評価
方法。
(1) A crystalline material wafer is cleaved in a cryogenic liquid to provide a cleavage plane, and an arbitrary point on the edge formed by the cleavage plane and the crystalline material wafer surface is attached to the crystalline material wafer surface. The crystallinity of the surface of the crystalline substance is evaluated from an electron beam diffraction image obtained by irradiating an electron beam from above at an appropriately set angle and reflecting it at an arbitrary point on the edge. A method for evaluating the surface of a crystalline material wafer.
(2)前記極低温液体が液体酸素、液体空気、液体窒素
あるいは液体ヘリウムのいずれかであることを特徴とす
る特許請求の範囲第1項記載の結晶性物質ウェハ表面の
評価方法。
(2) The method for evaluating the surface of a crystalline material wafer according to claim 1, wherein the cryogenic liquid is any one of liquid oxygen, liquid air, liquid nitrogen, or liquid helium.
JP59193070A 1984-09-14 1984-09-14 Method for evaluating surface of wafer of crystalline material Pending JPS6171342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193070A JPS6171342A (en) 1984-09-14 1984-09-14 Method for evaluating surface of wafer of crystalline material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193070A JPS6171342A (en) 1984-09-14 1984-09-14 Method for evaluating surface of wafer of crystalline material

Publications (1)

Publication Number Publication Date
JPS6171342A true JPS6171342A (en) 1986-04-12

Family

ID=16301702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193070A Pending JPS6171342A (en) 1984-09-14 1984-09-14 Method for evaluating surface of wafer of crystalline material

Country Status (1)

Country Link
JP (1) JPS6171342A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895879A (en) * 1972-03-21 1973-12-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895879A (en) * 1972-03-21 1973-12-08

Similar Documents

Publication Publication Date Title
US5127983A (en) Method of producing single crystal of high-pressure phase material
US4100014A (en) Etching agent for III/V semiconductors
US5439723A (en) Substrate for producing semiconductor wafer
WO2009052475A9 (en) Method of generating x-ray diffraction data for integral detection of twin defects in super-hetero-epitaxial materials
US3664867A (en) Composite structure of zinc oxide deposited epitaxially on sapphire
EP0972097B1 (en) MECHANO-CHEMICAL POLISHING OF CRYSTALS AND EPITAXIAL LAYERS OF GaN AND Ga1-x-yAlxInyN
Rozgonyi et al. X-ray characterization of stresses and defects in thin films and substrates
US5147824A (en) Semiconductor wafer
JP2008028259A (en) Method for manufacturing monocrystal garium-nitride substrate
Tanner et al. Advanced X-ray scattering techniques for the characterization of semiconducting materials
US6753955B2 (en) Inspection device for crystal defect of silicon wafer and method for detecting crystal defect of the same
JP3888416B2 (en) Method for manufacturing silicon epitaxial wafer and silicon epitaxial wafer
JPS6171342A (en) Method for evaluating surface of wafer of crystalline material
Shibata et al. Generation mechanism of dislocations in local oxidation of silicon
Sato et al. Nucleation of Multiply Twinned Particles at an Early Stage of Vapor Deposition
Barber et al. Observations of dislocations and surface features in corundum crystals by electron transmission microscopy
US20110265940A1 (en) Method for producing a multiplicity of semiconductor wafers by processing a single crystal
US4439268A (en) Orientation of INP substrate wafers
WO2022244304A1 (en) Silicon single crystal ingot evaluation method, silicon epitaxial wafer evaluation method, silicon epitaxial wafer manufacturing method, and silicon mirror surface wafer evaluation method
Hoff et al. Ion implanted, outdiffusion produced diamond thin films
Hildebrandt et al. High precision crystal orientation measurements with the X-ray Omega-Scan-A tool for the industrial use of quartz and other crystals
US20240230553A1 (en) Method of evaluating silicon single-crystal ingot, method of evaluating silicon epitaxial wafer, method of manufacturing silicon epitaxial wafer, and method of evaluating silicon mirror polished wafer
Miller et al. Analysis of growth related strain in Czochralski grown indium antimonide using x-ray anomalous transmission topography
JPH04113619A (en) Wafer and its manufacture
JP2002052448A (en) Semiconductor wafer and its machining method