JPS6171311A - Slant angle sensor - Google Patents

Slant angle sensor

Info

Publication number
JPS6171311A
JPS6171311A JP19313984A JP19313984A JPS6171311A JP S6171311 A JPS6171311 A JP S6171311A JP 19313984 A JP19313984 A JP 19313984A JP 19313984 A JP19313984 A JP 19313984A JP S6171311 A JPS6171311 A JP S6171311A
Authority
JP
Japan
Prior art keywords
light
rotating body
light source
angle sensor
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19313984A
Other languages
Japanese (ja)
Inventor
Shigeki Yamazaki
山崎 繁己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTO KOGYO KK
Original Assignee
OPUTO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTO KOGYO KK filed Critical OPUTO KOGYO KK
Priority to JP19313984A priority Critical patent/JPS6171311A/en
Publication of JPS6171311A publication Critical patent/JPS6171311A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/12Measuring inclination, e.g. by clinometers, by levels by using a single pendulum plumb lines G01C15/10
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means

Abstract

PURPOSE:To output the slant angle and direction automatically and highly accurately, by directly projecting light from a light source, or by reflecting the light by using a concave reflecting mirror. CONSTITUTION:A rotary body 21 is supported by an upper part of a capsule and a lower part 12 of the capsule in a freely rotating state by way of a liquid 22. The path of the body 21 is always vertical. In order to reflect the light from an upward light source 23a of a light source 23 downward, a concave reflecting mirror 24 is fixed to the shoulder of the step, which is formed on the inner surface of a spacer 17. The positions of the focal points of the light source 23 and the concave reflecting mirror 24 are determined and fixed, so that either of the reflected light from the concave reflecting mirror 21 and the upward light source 23b or the direct light from a downward light source 23b agrees with the axis of an optical fiber 2, which is attached to the rotary body 21. The projected light from the downward light source 23b directly reaches the inlet port of the optical path of the rotary body. When the light passes the optical fiber 2 and is outputted from a ball lens 4 at a lower part 5 of the rotary body, the light is converged by the lens effect. The focal point is formed on an effective light receiving surface 27 of a two-dimensional position detection element 26.

Description

【発明の詳細な説明】 (技術分野) 本発明は構造体や移動体の傾斜の二次元の傾斜角を検出
する傾斜角センサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a tilt angle sensor that detects a two-dimensional tilt angle of a structure or a moving body.

(発明の背景) 工業用ロボット、船舶、土木工事用の特殊車両などで傾
斜角を常時測定したいという強い要請がある。
(Background of the Invention) There is a strong desire to constantly measure the angle of inclination of industrial robots, ships, special vehicles for civil engineering work, and the like.

このような装置において使用される傾斜角センサには、
細密な測定精度よりも安定した確実な表示が可能である
こと、および構造が堅牢でかつ安価であることが求めら
れる。
Tilt angle sensors used in such devices include:
Rather than precise measurement accuracy, it is required that stable and reliable display be possible, and that the structure be robust and inexpensive.

従来の傾斜角測定装置として、一端に重りをつけた棒を
、支点を中心として一つの平面内で自由に回転できるよ
うな構造とすることで、支持構造が傾いても棒が常に鉛
直を保つことを利用して傾斜角度を表示するものがある
Conventional inclination angle measurement devices use a rod with a weight attached to one end that can be rotated freely in one plane around a fulcrum, so that the rod always remains vertical even if the supporting structure is tilted. There are some methods that take advantage of this to display the angle of inclination.

このような装置では支点と重りまでの長さが測定精度に
影響し、小形化すれば精度も悪く、振動の影響を受は易
い。
In such a device, the length from the fulcrum to the weight affects the measurement accuracy, and if the device is made smaller, the accuracy is poor and it is easily affected by vibration.

また測定に際して被測定平面上に装置を置き、測定点を
中心にして360度回軸回転仰角または俯角の最大の方
向を基準方向からの角度を読みとり、同時にそのとき示
す傾斜角度を読みとるという繁雑な操作が必要であり、
これらの欠点に対する改善が強く望まれていた。
In addition, during measurement, the device is placed on the plane to be measured, and the measurement point is rotated 360 degrees around the maximum angle of elevation or depression, which is read from the reference direction, and at the same time, the inclination angle indicated at that time is read. operation is required,
Improvements to these shortcomings have been strongly desired.

(発明の目的) 本発明の目的は、前記従来装置の問題点を解決し、yl
WEな操作を必要とせず確実な二次元の表示が可能であ
ること、および構造が堅牢でかつ安価である傾斜角セン
サを提供することにある。
(Object of the Invention) An object of the present invention is to solve the problems of the conventional device and
It is an object of the present invention to provide a tilt angle sensor that is capable of reliable two-dimensional display without requiring WE operations, has a robust structure, and is inexpensive.

(発明の構成) 前記目的を達成するために本発明による傾斜角センサば
傾斜角センサ本体と、おもり、あるいは浮き、あるいは
浮きとおもりを取りつけ、液体を隔てて前記1項斜角セ
ンサ本体に回転自在に支承され中心を通る光の経路を常
に鉛直方向に保つ回転体と、光源と、前記光源からの光
束を前記回転体の中心に向けて集束し、傾斜角センサ本
体の任意の傾斜位置において前記光源からの光を前記光
の経路に平行に入射させる光学系と、前記傾斜角センサ
本体に前記回転体の光の経路を通過した光を受ける位置
に配置されている2次元位置検出素子と、前記2次元位
置検出素子の出力を演算し傾斜角センサ本体の傾斜角と
、傾斜の方向を出力する位置演算回路で演算した結果に
より、(頃斜角センサ本体の傾斜角と、1頃斜の方向を
読み取るように構成されている。
(Structure of the Invention) In order to achieve the above object, the inclination angle sensor according to the present invention is provided by attaching the inclination angle sensor main body and a weight, or a float, or a float and a weight, and rotating the inclination angle sensor main body in the above item 1 with a liquid separated. a rotary body that is freely supported and always keeps the path of light passing through the center in a vertical direction; a light source; and a light beam from the light source is focused toward the center of the rotary body, and the tilt angle sensor body is positioned at any tilted position. an optical system that makes light from the light source enter parallel to the light path; and a two-dimensional position detection element that is disposed on the tilt angle sensor body at a position that receives the light that has passed through the light path of the rotating body. , the position calculation circuit calculates the output of the two-dimensional position detection element and outputs the inclination angle of the inclination angle sensor body and the direction of inclination. is configured to read the direction of the

さらに前記回転体は球の一部を切欠いてつくられるコマ
形状で、コマの軸に相当する部分に光路を有する構成と
するか、または回転体の本体と浮きを分離し、前記回転
体の本体内部の光路を延長して前記浮きを取りつけるこ
とによって回転体の本体と浮きを結合した構成としてい
る。
Further, the rotating body may have a top shape made by cutting out a part of a sphere and have an optical path in a portion corresponding to the axis of the top, or the body of the rotating body and the float may be separated and the inside of the body of the rotating body may be By extending the optical path and attaching the float, the main body of the rotating body and the float are combined.

前記回転体は回転体とカプセルとの間隙に液体を充填し
であるので、摩擦抵抗は掘めて小さく、回転体は自在に
回転でき、しかも回転体には厚き、あるいはおもりなど
が取りつけであるので比重の違いにより重い方が常に下
を向く。
Since the rotating body is filled with liquid in the gap between the rotating body and the capsule, the frictional resistance is extremely small and the rotating body can rotate freely. Because of this, the heavier one always points downwards due to the difference in specific gravity.

光源から出た光の内一部は直接回転体の上部に、また他
の一部は凹面反射鏡に反射された後回転体上部に当てら
れ、回転体の上部と光源の位置関係が変っても常に充分
な光が当てられる。
Part of the light emitted from the light source is directed to the top of the rotating body, and the other part is reflected by the concave reflector and then applied to the top of the rotating body, changing the positional relationship between the top of the rotating body and the light source. There is always sufficient light.

光は回転(7←の光路を上下に真直ぐ通過し、回転体下
θ11.1部のレンズボールの上下方向の軸の延長線上
に集光されるので、その焦点が2次元位置検出素子の受
光面上にあれば回転体を支承するカプセルを固定するケ
ースの傾斜に応じた正確な傾斜角度と方向とを容易に検
出することができる。
The light passes straight up and down the optical path of the rotation (7←) and is focused on the extension line of the vertical axis of the lens ball at θ11.1 below the rotating body, so its focus is the light receiving element of the two-dimensional position detection element. If it is on a plane, it is possible to easily detect an accurate inclination angle and direction corresponding to the inclination of the case that fixes the capsule that supports the rotating body.

(実施例) 以下、図面等を参照して本発明をさらに詳しく説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第1図は本発明による実施例の上面(断面)図で第2図
は第1図の傾斜角センサに使用する回転体の一例を斜視
図で示している。
FIG. 1 is a top (cross-sectional) view of an embodiment of the present invention, and FIG. 2 is a perspective view of an example of a rotating body used in the tilt angle sensor of FIG.

第2図の回転体は球形の一部を切欠いたコマ形状で、太
鼓の胴のような形の回転体中央部1と、光ファイバー2
を支える回転体上部3と、ポールレンズ4を埋め込んだ
回転体下部5とから構成され、回転体全体は真球度の高
い球面に内接する形として仕上げられる。
The rotating body in Fig. 2 has a top shape with a part of the sphere cut out, and has a central part 1 of the rotating body shaped like a drum body, and an optical fiber 2.
The rotating body is composed of an upper part 3 of the rotating body that supports the rotating body, and a lower part 5 of the rotating body in which the pole lens 4 is embedded, and the entire rotating body is finished in a shape inscribed in a highly spherical spherical surface.

回転体中央部1は材質として比重の非常に軽い物、例え
ば発泡型プラスチック材を選び、回転体下部5は非常に
重い物例えば鉛、黄銅などの材質を選ぶ。
The central portion 1 of the rotating body is made of a material with a very light specific gravity, such as a foamed plastic material, and the lower part 5 of the rotating body is made of a material that is very heavy, such as lead or brass.

このように回転体の下部が重く、液の中にあって回転自
在の状態では常に鉛直線に沿って上下の位置が定まるが
、さらに正確に鉛直姿勢を保つよう、また回転体と液体
の比重関係の調整にも役立つよう回転体中央部のやや下
寄り数ケ所に調整ねじ6.・・・6を設けである。
In this way, the lower part of the rotating body is heavy, and when it is in the liquid and can rotate freely, its vertical position is always determined along the vertical line. To help adjust the relationship, there are adjustment screws 6 at several locations slightly below the center of the rotating body. ...6 is provided.

使用する調整ねじ6の大きさで回転体全体の比重を微細
に調節し、そのねじ込みの深さによって光ファイバー2
およびポールレンズの中心を通る回転体の中心軸が鉛直
線に一致するようm細に調節することができる。
The specific gravity of the entire rotating body can be finely adjusted by the size of the adjusting screw 6 used, and the optical fiber 2 can be adjusted by adjusting the screwing depth.
The center axis of the rotating body passing through the center of the pole lens can be finely adjusted so that it coincides with the vertical line.

回転体を構成する各部の材質によって、回転体とカプセ
ルの間に入れる液体により経時変化が予想される場合は
、回転体全体に樹脂を吹付けるなどによりフィルムで覆
う必要がある。
Depending on the material of each part of the rotating body, if changes over time are expected due to the liquid placed between the rotating body and the capsule, it is necessary to cover the entire rotating body with a film, such as by spraying a resin.

なお回転の摩擦抵抗を小さくするため、回転体とカプセ
ルとの間に入れる液体の比重と、回転体全体の比重との
関係は、 (回転体の比重)≧(液体の比重)が成立するよう、回
転体の比重を調整し作成する。
In order to reduce the frictional resistance of rotation, the relationship between the specific gravity of the liquid inserted between the rotating body and the capsule and the specific gravity of the entire rotating body is such that (specific gravity of the rotating body) ≧ (specific gravity of the liquid) holds. , adjust the specific gravity of the rotating body and create it.

第3図は回転体の位置を決定するカプセルの一例を示す
。構成する各部はプラスチック成形品で光源波長を透過
しやすい材質を選ぶ。
FIG. 3 shows an example of a capsule for determining the position of a rotating body. Each component is a plastic molded product, and the material is selected to allow the light source wavelength to easily pass through.

なお光源波長域!2量がやや多いまたは、屈折率が大き
い材料の場合は第4図のように成形するとよい。図中カ
プセル上部11とカプセル下部12との間にできる空隙
13に回転体を挿入し組み上げる。回転体とカプセルの
間には、シリコンオイルとか、アルコールなどを液注入
口14から注入する。図中15は液圧人時に空隙13に
ある空気を逃すための空気抜き穴であり、16は回転体
の中の光の通路以外から光が漏れないようカプセル上部
11の下面で、カプセル下部12と接する部分に作られ
た全屈蒸着面または、金属箔である。
Furthermore, the light source wavelength range! In the case of a material with a relatively large amount of 2 or a high refractive index, it is preferable to mold it as shown in FIG. In the figure, a rotating body is inserted into the gap 13 created between the capsule upper part 11 and the capsule lower part 12 and assembled. Silicone oil, alcohol, or the like is injected between the rotating body and the capsule through the liquid injection port 14. In the figure, 15 is an air vent hole for releasing the air in the gap 13 during hydraulic operation, and 16 is an air vent hole on the lower surface of the capsule upper part 11 to prevent light from leaking from other than the light path in the rotating body. It is a fully curved vapor deposition surface or metal foil made on the contacting part.

17は凹面反射鏡との間に適当な距離を保ち、かつ光源
を適当な位置に保持するためのスペーサであり、この2
段リング上のスペーサの内側にも反射のための金BMM
面18を作る。スペーサの複数箇所に設けられた孔19
は光源を保持する細い棒を通して固定するためのもので
ある。
17 is a spacer for maintaining an appropriate distance between the concave reflector and the light source at an appropriate position;
Gold BMM for reflection inside the spacer on the step ring
Make side 18. Holes 19 provided at multiple locations on the spacer
is for fixing the light source through a thin rod that holds it.

第1図は本発明による実施例の傾斜角センサ本体の一例
を示す。
FIG. 1 shows an example of an inclination angle sensor main body according to an embodiment of the present invention.

回転体21は液体22を隔て回転自在の状態でカプセル
上部11およびカプセル下部12に支承され、常に光の
経路は鉛直となる。上下に背中合せに組み合わされた光
源23は、スペーサ17に設けられた孔19に挿入固着
された細い捧20によって支持されカプセルから適当な
位置に設置される。
The rotating body 21 is rotatably supported by the capsule upper part 11 and the capsule lower part 12 with a liquid 22 in between, and the path of light is always vertical. The light sources 23, which are arranged vertically and back to back, are supported by thin beams 20 that are inserted and fixed into holes 19 provided in the spacer 17, and are installed at appropriate positions from the capsule.

光源23のうち上向きの光’fM 23 aの孔を下方
へ反射させるため凹面反射鏡24をスペーサ17の内面
につけられた段の肩に凹面周辺を押付けるように固定す
る。この場合センサ使用状態における回転体のあらゆる
姿勢に対し、上向きの光源23aを凹面反射鏡24で反
射した反射光か、あるいは光源23の他の光源である下
向きの光源23bの直接光のいづれかが、回転体に取り
つけられた光ファイバー2の軸と一致するよう光源およ
び凹面反射鏡の焦点の位置を定め固定する。
In order to reflect the upward light 'fM 23a of the light source 23 downward through the hole, the concave reflecting mirror 24 is fixed so that the periphery of the concave surface is pressed against the shoulder of the step provided on the inner surface of the spacer 17. In this case, for any posture of the rotating body when the sensor is in use, either the reflected light from the upward light source 23a reflected by the concave reflector 24, or the direct light from the downward light source 23b, which is another light source of the light source 23, The positions of the light source and the focal point of the concave reflecting mirror are determined and fixed so as to coincide with the axis of the optical fiber 2 attached to the rotating body.

25はカプセル、スペーサを固定するマウントベースで
ある。マウントベース、スペーサは可視光、赤外光の無
反射とするため黒色とする。
25 is a mount base for fixing the capsule and spacer. The mount base and spacer are black to prevent reflection of visible and infrared light.

このように設置された光源の光のうち下向きの光源23
bから放射された光は、第1図のように被測定構造体に
置かれたマウントベースが鉛直か、あるいは比・咬的鉛
直に近い場合に直接回転体の光路入口に達し、光ファイ
バー2を通り回転体下部5にあるボールレンズ4から出
るとき、レンズ効果で集束され2次元位置検出素子26
の有効受光面27の面上に焦点を結ぶ。
Of the light from the light sources installed in this way, the downward light source 23
If the mount base placed on the structure to be measured is vertical or close to relative vertical as shown in FIG. When exiting from the ball lens 4 in the lower part 5 of the rotating body, it is focused by the lens effect and the two-dimensional position detection element 26
The light is focused on the effective light-receiving surface 27 of.

また光源の光のうち上向きの光源23aから放射された
光は構造が大きく傾き、マウントベースも第5図に示す
ように大きくθ1度傾いた場合に凹面反射鏡24で反射
されてから回転体の光路の入口に至り、下向きの光源2
3bから出た光の場合と同様に2次元位置検出素子26
の有効受光面270面上に焦点を結ぶ。
Furthermore, if the structure of the light emitted from the upward light source 23a is greatly tilted and the mount base is also tilted by θ1 degree as shown in FIG. Light source 2 reaching the entrance of the optical path and pointing downward
As in the case of the light emitted from 3b, the two-dimensional position detection element 26
The light is focused on the effective light-receiving surface 270 of .

傾斜角センサとしての性能は位置検出素子の分解能によ
って決定される。
The performance as a tilt angle sensor is determined by the resolution of the position detection element.

この実施例では、2次元位置検出素子26として浜松ポ
トニクス社製51300を使用する。
In this embodiment, 51300 manufactured by Hamamatsu Potonics Co., Ltd. is used as the two-dimensional position detection element 26.

検出限界を受光面上の距離で表示した場合6μmである
When the detection limit is expressed as a distance on the light receiving surface, it is 6 μm.

したがってボールの中心から受光面までの距離をXmm
とすると、1頃斜θは、 θ=tan−’  (0,006/X)となりχ=12
mmとすればθ=0.028°であるから、計算上、角
度読み取り精度は0.028゜となる。
Therefore, the distance from the center of the ball to the light receiving surface is
Then, the slope θ around 1 becomes θ=tan-' (0,006/X) and χ=12
Since θ=0.028° in mm, the angle reading accuracy is calculated to be 0.028°.

このような性能を有する2次元位置検出素子の出力をア
ナログ演算器で演算し、その出力で傾斜角度および方向
をアナログまたはデジタル表示することができる。
The output of the two-dimensional position detection element having such performance is calculated by an analog calculator, and the tilt angle and direction can be displayed in analog or digital form using the output.

第6図に本発明の実施例における電気的構成の系統図を
示す。
FIG. 6 shows a system diagram of the electrical configuration in an embodiment of the present invention.

図において傾斜角センサ31の2次元位置検出素子26
の出力をアナログ演算器32で演算処理後デジタル表示
のため、AD変換器33で変換し表示器34で表示する
In the figure, the two-dimensional position detection element 26 of the tilt angle sensor 31
After the output is processed by an analog calculator 32, it is converted by an AD converter 33 and displayed on a display 34 for digital display.

傾斜角センサ、アナログ演算器、AD変換器、表示器に
それぞれ動作電力を電源部35から供給する。
Operating power is supplied from the power supply unit 35 to the tilt angle sensor, analog computing unit, AD converter, and display, respectively.

電源部ACIO(IV用または車載蓄電池からDC−D
Cコンバータで所要直流電圧を得る直流用のいずれでも
良い。
Power supply unit ACIO (DC-D for IV or from in-vehicle storage battery)
Any DC type that obtains the required DC voltage with a C converter may be used.

第7図は本発明による傾斜角センサのさらに他の実施例
を示す図である。
FIG. 7 is a diagram showing still another embodiment of the tilt angle sensor according to the present invention.

図中第1図と同等または同等の働きをする部分には同一
符号を付しであるので説明は省略し、第1図の実施例と
異なる部分のみを説明する。
In the figure, parts that are the same or have the same function as those in FIG. 1 are denoted by the same reference numerals, so their explanation will be omitted, and only the parts that are different from the embodiment in FIG. 1 will be explained.

回転体は真球度の高い球形の回転体の本体7から逆円錐
形の浮き8を分離し、浮き8を貫通する光路をなす光フ
ァイバー2を延長して回転体本体内に導き、光ファイバ
ー2をもって比重の軽い浮き8と比重の、重い回転体の
本体7とを結合する形とし、回転体本体7の下部付近に
ボールレンズ4を内蔵する構成としている。
The rotating body separates an inverted conical float 8 from a highly spherical rotating body 7, extends an optical fiber 2 forming an optical path passing through the float 8, guides it into the rotating body, and carries the optical fiber 2. A float 8 having a light specific gravity is connected to a rotating body 7 having a heavy specific gravity, and a ball lens 4 is built in near the lower part of the rotating body 7.

カプセル上部11とカプセル12との間に形成され、液
体が充填される空隙は第1図の場合のような球形ではな
く、上部カプセルが空隙を形成する面は比較的大きな球
面の一部を含み、下部カプセルの空隙は小さい球形の回
転体の本体7との間に薄い液面を介して嵌合し回転体の
本体7が自在に回転できるよう形成されている。
The cavity formed between the capsule upper part 11 and the capsule 12 and filled with liquid is not spherical as in the case of FIG. 1, and the surface where the upper capsule forms the cavity includes a part of a relatively large spherical surface. The gap in the lower capsule is formed so that it fits with the small spherical body 7 of the rotating body through a thin liquid surface, so that the body 7 of the rotating body can freely rotate.

したがって回転体の回転の中心は回転体本体7の球の中
心点に一致し、浮き8はカプセル上部内側上向きの半球
形部に沿って自在に動く。
Therefore, the center of rotation of the rotating body coincides with the center point of the sphere of the rotating body 7, and the float 8 freely moves along the upwardly directed hemispherical part inside the upper part of the capsule.

厚き8が非常に軽い比重の物質で作られているのに対し
回転体の本体7は比重の重い金属で作られているので回
転体の内部を通る光は常に鉛直線に沿って上から下へ通
過することは第1図の場合と同様である。
The thickness 8 is made of a material with a very light specific gravity, whereas the main body 7 of the rotating body is made of a metal with a heavy specific gravity, so the light that passes through the interior of the rotating body is always directed from above along the vertical line. The downward passage is similar to that in FIG.

光源23の上向きの光源23aまたは下向きの光源23
bから放射された光が浮き8を貫通する光ファイバーを
通りボールレンズ4で葉先されて2次元位置検出素子2
6の有効受光面27の面上に焦点を結ぶ。
The upward light source 23a of the light source 23 or the downward light source 23
Light emitted from b passes through an optical fiber that penetrates the float 8 and is tipped by the ball lens 4 to the two-dimensional position detection element 2.
The light is focused on the effective light receiving surface 27 of No.6.

このように回転体の本体を小さな球形とし浮きを分離し
た構成とすることによって、回転体の比重調整が、第2
図のような調整ねしなどを設けなくとも比較的簡単に行
え、また光の経路と回転体の重心と一致させることがセ
ンサ性能の向上につながるが、この調整も容易となる。
By making the main body of the rotating body into a small sphere and separating the floats, the specific gravity of the rotating body can be adjusted by the second
This can be done relatively easily without the need for an adjustment screw as shown in the figure, and alignment of the light path with the center of gravity of the rotating body leads to improved sensor performance, which also makes this adjustment easier.

さらに第5図におけるθ1に相当する回転体の振り角は
第7図の実施例では第1図の実施例よりも広い範囲に振
、らせることができるので計測可能な傾斜角中ば2次元
位置検出素子の有効受光面積によってほぼ決定され、か
りに回転体の回転中心から受光面までの距離をX = 
6 m mとすれば、実施例に使用した浜松ホトニクス
社製51300の有’As受光面積は13X13mmで
あるから、計測可能な傾斜角中は±47.2°が得られ
る。
Furthermore, the swing angle of the rotating body corresponding to θ1 in FIG. 5 can be swung over a wider range in the embodiment shown in FIG. 7 than in the embodiment shown in FIG. It is approximately determined by the effective light-receiving area of the position detection element, and the distance from the rotation center of the rotating body to the light-receiving surface is defined as X =
6 mm, the As light receiving area of 51300 manufactured by Hamamatsu Photonics Co., Ltd. used in the example is 13×13 mm, so that a measurable inclination angle of ±47.2° is obtained.

第9図は本発明による傾斜角センサの第2の実施例の断
面拡大図である。
FIG. 9 is an enlarged sectional view of a second embodiment of the tilt angle sensor according to the present invention.

この実施例は光源40の光を前記回転体の中心に向けて
集束レンズ41a、41bにより集束している。集束レ
ンズ41a、41bはレンズ枠42により固定されてい
る。
In this embodiment, the light from the light source 40 is focused by focusing lenses 41a and 41b toward the center of the rotating body. The focusing lenses 41a and 41b are fixed by a lens frame 42.

この実施例は傾斜角センサの前髪が前記実施例に比較し
て、″tJ゛干長(なるが、光源は1つで足りる。
In this embodiment, the front part of the inclination angle sensor is ``tJ'' longer than in the previous embodiment, but one light source is sufficient.

(変形例) 以上詳しく説明した実施例につき本発明の範囲内で種々
の変形を施すことができる。
(Modifications) Various modifications can be made to the embodiments described in detail above within the scope of the present invention.

その−例として第8図に回転体の変形例を示す。As an example, FIG. 8 shows a modification of the rotating body.

同図(A)〜(D)は第1図の実施例に使用する回転体
の変形例であり同図(E)+’ (F)は第7図の実施
例に使用する回転体の変形例である。
Figures (A) to (D) are modified examples of the rotating body used in the embodiment shown in Figure 1, and (E) +' (F) are modified examples of the rotating body used in the embodiment shown in Figure 7. This is an example.

図(A)は回転体中央部1を上下に2分したもので遮光
性はそのままで回転体とカプセルとが液体を介して相対
する面積を減らし傾斜が変化したときの応動を速かにし
ている。
Figure (A) shows the center part 1 of the rotating body divided into two parts, upper and lower.The light shielding property remains the same, but the area where the rotating body and the capsule face each other via the liquid is reduced, and the response when the slope changes is made faster. There is.

図(B)も同様の目的で中央部1のカプセルに相対する
帯状の幅を薄くしたものである。
For the same purpose, the width of the strip facing the capsule in the central portion 1 is made thinner in Figure (B).

図(C)は回転体中央部1と回転体上部3を一体として
比重の軽い材質を使用し半球形としたものである。
In Figure (C), the central part 1 of the rotating body and the upper part 3 of the rotating body are integrally made of a material with a light specific gravity, and are formed into a hemispherical shape.

図(D)は遮光性の高い円板で回転体中央部1を形成し
、回転体上部3と回転体下部5を分離して球形としたも
のである。
In Figure (D), the central portion 1 of the rotating body is formed of a highly light-shielding disc, and the upper rotating body 3 and lower rotating body 5 are separated to form a spherical shape.

図(E)は回転体の本体7から分離した浮き8を球形と
したものであり、図(F)は同じく分離したdき8を上
面が上向きの球面の一部で形成された円筒形としたもの
である。
Figure (E) shows a float 8 separated from the main body 7 of the rotating body in a spherical shape, and Figure (F) shows a similarly separated float 8 in a cylindrical shape formed by a part of a spherical surface with the upper surface facing upward. This is what I did.

回転体についてはこの他にも種々の変形が考えられるが
、材質の比重、硬さ、加工性などを考慮して適当なもの
を選べばよく、構造の傾斜の変化に即応して自在円滑に
動き、常に光路が鉛直線に一致する位置に速かに静止す
るよう構成されていればよい。
Various other deformations are possible for the rotating body, but it is sufficient to select an appropriate one by taking into consideration the specific gravity, hardness, workability, etc. of the material, and it can quickly respond to changes in the inclination of the structure and can be made smoothly and freely. It is sufficient if the structure is such that it can move and quickly come to rest at a position where the optical path always coincides with the vertical line.

また回転体の種々の変形に伴って上記の回転体の動作が
満足されるようカプセルの構造にも種々の変形が考えら
れ、特に説明はしないがそれぞれIrk、通のものを選
ぶとよい。
Furthermore, various modifications of the structure of the capsule can be considered in order to satisfy the above-mentioned operation of the rotary body in accordance with various deformations of the rotary body, and although not particularly described, it is preferable to select one that is familiar to Irk.

(発明のダJ果) 以上説明したように、本発明によれば光源から出た光を
直接あるいは凹面反射鏡を用いて反射させるごとにより
、回転自在で常に鉛直方向に光が通過する回転体に能率
よく光を与え、回転体を通過した光を受ける2次元検出
素子出力を演算器に入れ演算することによって正確で精
度の高い傾斜角度および方向が自動的に出力される。
(Advantageous Effects of the Invention) As explained above, according to the present invention, by reflecting the light emitted from the light source directly or using a concave reflecting mirror, a rotating body that is freely rotatable and through which light always passes in the vertical direction. By efficiently applying light to the rotating body and inputting the output of the two-dimensional detection element that receives the light that has passed through the rotating body into a computing unit, an accurate and highly accurate inclination angle and direction are automatically output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による傾斜角センサの第1の実施例の断
面拡大図である。 第2図は第1図の実施例に使用する回転体の一例を示す
斜視拡大図である。 第3図は第2図の回転体を回転自在に支承するカプセル
の平面図および正面(l折面)図である。 第4図はカプセルの他の一例を示す断面図である。 第5図は第1図の傾斜角センサが01度傾いたときの要
部の断面拡大図である。 第6図は本発明による実施例の電気的構成を示す系統図
である。 第7図はさらに他の実施例を示す断面図である。 第8図は回転体の他の変形例を示す斜視拡大図である。 第9図は本発明による傾斜角センサの第2の実施例の断
面拡大図である。 1・・・回転体中央部  2・・・光ファイバー3・・
・回転体上部   4・・・ボールレンズ5−・・・回
転体下部   7・・・回転体の本体8・・・回転体の
浮ぎ  11・・・カプセル上部12・・・カプセル下
部 23・・・光源24・・・凹面反射鏡  26・・
・2次元位置検出素子27・・・2次元位置検出素子の
有効受光面32・・・アナログ演算器 40・・・光源 412.41b・・・集束レンズ 42・・・レンズ枠 特許出願人   オプト工業株式会社 代理人 弁理士  井 ノ ロ  壽 才 1  図 /176図 /l−7回 十   8  国 オ 9  図
FIG. 1 is an enlarged sectional view of a first embodiment of a tilt angle sensor according to the present invention. FIG. 2 is an enlarged perspective view showing an example of a rotating body used in the embodiment shown in FIG. 3 is a plan view and a front (l-folded plane) view of a capsule rotatably supporting the rotating body of FIG. 2. FIG. FIG. 4 is a sectional view showing another example of the capsule. FIG. 5 is an enlarged cross-sectional view of the main part when the inclination angle sensor of FIG. 1 is tilted by 01 degrees. FIG. 6 is a system diagram showing the electrical configuration of an embodiment according to the present invention. FIG. 7 is a sectional view showing still another embodiment. FIG. 8 is an enlarged perspective view showing another modification of the rotating body. FIG. 9 is an enlarged sectional view of a second embodiment of the tilt angle sensor according to the present invention. 1... Central part of rotating body 2... Optical fiber 3...
- Upper part of the rotating body 4... Ball lens 5 -... Lower part of the rotating body 7... Main body of the rotating body 8... Float of the rotating body 11... Upper part of the capsule 12... Lower part of the capsule 23...・Light source 24... Concave reflecting mirror 26...
・Two-dimensional position detection element 27...Effective light receiving surface of two-dimensional position detection element 32...Analog computing unit 40...Light source 412.41b...Focusing lens 42...Lens frame Patent applicant Opto Kogyo Agent Co., Ltd. Patent Attorney Jusai Inoro 1 Figure/176 Figure/l-7th 10th 8th Country O 9 Figure

Claims (5)

【特許請求の範囲】[Claims] (1)傾斜角センサ本体と、おもり、あるいは浮き、あ
るいは浮きとおもりを取りつけ、液体を隔てて前記傾斜
角センサ本体に回転自在に支承され中心を通る光の経路
を常に鉛直方向に保つ回転体と、光源と、前記光源から
の光束を前記回転体の中心に向けて集束し、傾斜角セン
サ本体の任意の傾斜位置において前記光源からの光を前
記光の経路に平行に入射させる光学系と、前記傾斜角セ
ンサ本体に前記回転体の光の経路を通過した光を受ける
位置に配置されている2次元位置検出素子と、前記2次
元位置検出素子の出力を演算し傾斜角センサ本体の傾斜
角と、傾斜の方向を出力する位置演算回路で演算した結
果により、傾斜角センサ本体の傾斜角と、傾斜の方向を
読み取るように構成した傾斜角センサ。
(1) A rotary body that is equipped with a tilt angle sensor body and a weight, a float, or a float and a weight, is rotatably supported by the tilt angle sensor body with a liquid separated, and always keeps the path of light passing through the center in the vertical direction. a light source; and an optical system that focuses the light beam from the light source toward the center of the rotating body and makes the light from the light source enter parallel to the light path at an arbitrary tilt position of the tilt angle sensor body. a two-dimensional position detecting element disposed on the tilt angle sensor body at a position that receives the light passing through the light path of the rotating body; and calculating the output of the two-dimensional position detecting element to determine the tilt of the tilt angle sensor body. A tilt angle sensor configured to read the tilt angle and direction of a tilt angle sensor body based on the results of calculations performed by a position calculation circuit that outputs the angle and direction of tilt.
(2)前記光学系は、凹面反射鏡であって、前記反射鏡
と前記回転体の間に配置された光源から前記凹面鏡に向
けて放出された光を前記回転体の中心に向けて反射する
特許請求の範囲第1項記載の傾斜角センサ。
(2) The optical system is a concave reflecting mirror, and reflects light emitted toward the concave mirror from a light source placed between the reflecting mirror and the rotating body toward the center of the rotating body. An inclination angle sensor according to claim 1.
(3)前記光学系は、前記光源からの光を前記回転体の
中心に向けて集束する集束レンズである特許請求の範囲
第1項記載の傾斜角センサ。
(3) The tilt angle sensor according to claim 1, wherein the optical system is a focusing lens that focuses light from the light source toward the center of the rotating body.
(4)前記回転体は球形の一部を切欠いて作られるコマ
形状で、コマの軸に相当する部分に光路を有する特許請
求の範囲第1項記載の傾斜角センサ。
(4) The tilt angle sensor according to claim 1, wherein the rotating body has a top shape made by cutting out a part of a sphere, and has an optical path in a portion corresponding to the axis of the top.
(5)前記回転体は回転体の本体と浮きを分離し、前記
回転体の本体内部の光路を延長して前記浮きの内部を貫
通させることにより回転体の本体と浮きを結合した特許
請求の範囲第1項記載の傾斜角センサ。
(5) The body of rotation is configured to separate the body of the body of rotation and the float, and extend the optical path inside the body of the body of rotation to pass through the interior of the body of the body of rotation, thereby combining the body of the body of rotation and the float. An inclination angle sensor according to range 1.
JP19313984A 1984-09-14 1984-09-14 Slant angle sensor Pending JPS6171311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19313984A JPS6171311A (en) 1984-09-14 1984-09-14 Slant angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19313984A JPS6171311A (en) 1984-09-14 1984-09-14 Slant angle sensor

Publications (1)

Publication Number Publication Date
JPS6171311A true JPS6171311A (en) 1986-04-12

Family

ID=16302927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19313984A Pending JPS6171311A (en) 1984-09-14 1984-09-14 Slant angle sensor

Country Status (1)

Country Link
JP (1) JPS6171311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014893A (en) * 2006-07-10 2008-01-24 Chem Grouting Co Ltd Clinometer and measurement method using the same
JP2011069798A (en) * 2009-09-28 2011-04-07 Waseda Univ Inclination angle measuring instrument
CN110645959A (en) * 2018-06-26 2020-01-03 晶翔机电股份有限公司 Surface slope discriminating device and discriminating method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014893A (en) * 2006-07-10 2008-01-24 Chem Grouting Co Ltd Clinometer and measurement method using the same
JP2011069798A (en) * 2009-09-28 2011-04-07 Waseda Univ Inclination angle measuring instrument
CN110645959A (en) * 2018-06-26 2020-01-03 晶翔机电股份有限公司 Surface slope discriminating device and discriminating method thereof
CN110645959B (en) * 2018-06-26 2022-02-01 晶翔机电股份有限公司 Surface slope discriminating device and discriminating method thereof

Similar Documents

Publication Publication Date Title
JP2002541445A (en) Surface inspection device with optical sensor
JP2003098328A (en) Concave cone lens made of synthetic resin for irradiation of laser line for reference
EP0626561B1 (en) Automatic inclination angle compensator
MXPA06000982A (en) Portable refractometer.
JPH0652171B2 (en) Optical non-contact position measuring device
US5917586A (en) Lens meter for measuring the optical characteristics of a lens
CN208432726U (en) Laser radar emission system and laser radar
JP4133884B2 (en) Optical displacement measuring instrument
JPS6171311A (en) Slant angle sensor
JP4086129B2 (en) Optical clinometer
JPH0659172A (en) Objective lens, method for adjusting inclination of objective lens and device for manufacturing objective lens
US8792092B2 (en) Optoelectronic inclination sensor
JP4278032B2 (en) Photoelectric displacement detector
US8619266B2 (en) Optical position-measuring device
CN1305090A (en) Inclined reflection-type automatic liquid levelling system
JPS57199909A (en) Distance measuring device
JPH10293029A (en) Surveying machine with machine height measurement function
JPH03289504A (en) Bubble measuring apparatus
JPH0381511U (en)
JP4442843B2 (en) Refractive index measuring device for test lens
CN108731812B (en) Non-contact temperature measuring device
JP2558149Y2 (en) Automatic leveling device
JP2594878Y2 (en) Cat's eye type reflector for surveying instruments
JPS60127409A (en) Slant angle sensor
JPH10176927A (en) Inclination sensor