JPS6171162A - Method for controlling surface temperature of ingot in continuous casting machine - Google Patents

Method for controlling surface temperature of ingot in continuous casting machine

Info

Publication number
JPS6171162A
JPS6171162A JP19271584A JP19271584A JPS6171162A JP S6171162 A JPS6171162 A JP S6171162A JP 19271584 A JP19271584 A JP 19271584A JP 19271584 A JP19271584 A JP 19271584A JP S6171162 A JPS6171162 A JP S6171162A
Authority
JP
Japan
Prior art keywords
cooling
slab
surface temperature
temp
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19271584A
Other languages
Japanese (ja)
Inventor
Masahiko Horio
堀尾 正彦
Yuji Yoshikawa
吉川 雄司
Akira Tanahashi
棚橋 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Topy Industries Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd, Sumitomo Heavy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP19271584A priority Critical patent/JPS6171162A/en
Publication of JPS6171162A publication Critical patent/JPS6171162A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve the accuracy of control by determining the heat conductivity of the ingot for each of water spraying segments by taking the previous spraying segments into consideration and calculating the temp. decreasing pattern in accordance with such heat conductivity. CONSTITUTION:The ingot formed to a predetermined shape by a mold 2 is conducted by guide rolls 3 and enters the secondary cooling zone 5. The zone 5 is segmented to water spraying segments (a), (b), (c), (d), (e) and finally a recuperating part (f) is provided thereto. Ingot surface thermometers 6a-6e and water spraying nozzles 7a-7e are respectively disposed to the cooling parts (a)-(e). The water is sprayed by the nozzle 7a in the cooling part (a) and the temp. measured with the thermometer 6a is fed to a control device. This temp. is compared with the temp. decreasing pattern and the nozzle 7a is so controlled as to adjust the water spraying rate in the next cooling part (b) in the control device. The temp. decreasing patterns are successively calculated by taking the previous water spraying segments into consideration in the respective cooling parts, by which the accuracy of control is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は連続鋳造機における鋳片の表面温度を制御する
ための制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for controlling the surface temperature of a slab in a continuous casting machine.

[従来技術] 連続鋳造機では所定の鋳込速度を維持しながら、予じめ
定められたβ度降下パターンに従って鋳片を所定の温度
まで冷却している。特に湾曲型の連続鋳造機においては
所謂矯正点での温度が所定の範囲内にないと、鋳片の内
部欠陥及び表面欠陥などが生ずる恐れが多い。
[Prior Art] A continuous casting machine cools a slab to a predetermined temperature according to a predetermined β degree drop pattern while maintaining a predetermined casting speed. Particularly in a curved continuous casting machine, if the temperature at the so-called straightening point is not within a predetermined range, there is a high risk that internal defects and surface defects will occur in the slab.

ところで連続鋳造機における鋳片の冷却は所謂2次冷却
帯において行なわれている。2次冷却帯における鋳片の
冷却は(1)冷却水による冷却、(2)ガイドロールへ
の熱伝達、(3)輻射、などが考えられ降下パターンに
従うように冷却水量(散水水量)を各散水区分ごとに制
御している。
By the way, cooling of slabs in a continuous casting machine is carried out in a so-called secondary cooling zone. The cooling of the slab in the secondary cooling zone is thought to include (1) cooling by cooling water, (2) heat transfer to guide rolls, and (3) radiation. Control is performed for each watering category.

ところが、従来の鋳片の表面温度の制御は散水と実測上
の温度降下パターンとの相違が著しく、的確な温度制御
か行なえないという問題点がある。
However, in the conventional control of the surface temperature of the slab, there is a significant difference between the water spraying and the actually measured temperature drop pattern, and there is a problem in that accurate temperature control cannot be performed.

[発明の目的] 本発明の目的は予じめ定めらた温度パターンに従って鋳
片の表面温度の制御が的確に行える表面温度の制御方法
を提供することである。
[Object of the Invention] An object of the present invention is to provide a surface temperature control method that can accurately control the surface temperature of a slab according to a predetermined temperature pattern.

[発明の構成] 本発明によれば、複数の散水区分に分かれた2ンで制御
するための制御方法であって、上記の散水区分ごとの鋳
片の熱伝達率が当該散水区分前段の散水区分を考慮して
決定され、上記の熱伝達率によって上記の温度降下パタ
ーンを算出するようにしたことを特徴とする連続鋳造機
における鋳片の表面温度制御方法が得られる。
[Structure of the Invention] According to the present invention, there is provided a control method for controlling in two water spraying sections divided into a plurality of watering sections, wherein the heat transfer coefficient of the slab in each of the above watering sections is equal to the water spraying in the previous stage of the watering section. There is obtained a method for controlling the surface temperature of a slab in a continuous casting machine, characterized in that the temperature drop pattern is determined in consideration of the classification, and the temperature drop pattern is calculated based on the heat transfer coefficient.

[発明の実施例] 以上本発明についての実施例に基づいて説明する。[Embodiments of the invention] The present invention will be described above based on embodiments.

まず、第1図を参照すると、クンディツシュ1からの溶
鋼か鋳型(モールド)2へ注入され、このrs!12!
はモールド2で所定の温度に冷却される(−次冷却)。
First, referring to FIG. 1, the molten steel from the kundish 1 is injected into the mold 2, and this rs! 12!
is cooled to a predetermined temperature in mold 2 (-secondary cooling).

モールド2で予じめ定められた形状に成形された鋳片4
はガイドロール3に導かれて、2次冷却帯5へはいる。
A slab 4 formed into a predetermined shape with a mold 2
is guided by guide rolls 3 and enters secondary cooling zone 5.

この2次冷却帯5は図示のようにz、 b、  c、 
d、  eの散水区分及びfの領域に区分され(以下a
、  b、  c、  d、  eの区分を冷却部、r
の区分を復熱部という。)、各冷却部a、  b、  
c、  d、  eには図示のようにそれぞれ鋳片表面
温度計6a、6b、6c、6cl、6e及び散水用スプ
レーノズル7a、  7b、  7c、  7d。
This secondary cooling zone 5 has z, b, c,
It is divided into watering sections d and e and area f (hereinafter referred to as a).
, b, c, d, e are the cooling section, r
This section is called the recuperation section. ), each cooling section a, b,
As shown in the figure, c, d, and e respectively have slab surface thermometers 6a, 6b, 6c, 6cl, and 6e and water spray nozzles 7a, 7b, 7c, and 7d.

7e、がそれぞれ配置されている。モールド2から引き
出された鋳片4は2次冷却帯5において、予じめ設定さ
れた鋳片の表面温度降下パターンに従って冷却される。
7e, are arranged respectively. The slab 4 pulled out from the mold 2 is cooled in a secondary cooling zone 5 according to a preset surface temperature drop pattern of the slab.

即ちまず冷却部aにおいて、所定量の冷却水をスプレー
ノズル7aより散水し、これによって冷却された鋳片4
の表面温度を表面温度計6aで計測して、制御装置へ送
る。制御装置では上記の予しめ設定された温度降下パタ
ーンとこの測定された鋳片の表面温度を比較し、例えば
、冷却部aにおける鋳片4の表面温度が温度降下パター
ンより高ければ、冷却部すにおける散水水量が設定量よ
り多くなるようにスプレーノズル7bを制御して、鋳片
4の表面温度を設定された温度降下パターンに近づける
。一方、冷却部aにおける鋳片4の表面温度が温度降下
パターンより低ければ、冷却部すにおける散水量が設定
量より少なくなるようにスプレーノズル7aを制御する
That is, first, in the cooling section a, a predetermined amount of cooling water is sprayed from the spray nozzle 7a, thereby cooling the slab 4.
The surface temperature is measured by a surface thermometer 6a and sent to the control device. The control device compares the preset temperature drop pattern described above with the measured surface temperature of the slab, and for example, if the surface temperature of the slab 4 in cooling section a is higher than the temperature drop pattern, all cooling sections are The spray nozzle 7b is controlled so that the amount of water sprayed at is greater than the set amount, and the surface temperature of the slab 4 is brought close to the set temperature drop pattern. On the other hand, if the surface temperature of the slab 4 in the cooling section a is lower than the temperature drop pattern, the spray nozzle 7a is controlled so that the amount of water sprayed in the cooling section is less than the set amount.

以下同様にして、冷却部c、  d、  eにおいて、
順々に鋳片4の冷却が所定の温度降下パターンに応じて
行なわれるようにスプレーノズル7c、7d、7eが制
御される。冷却部eから出た鋳片4は復熱部fで自然冷
却されるとともに矯正ロール8によって矯正される。
Similarly, in the cooling sections c, d, and e,
The spray nozzles 7c, 7d, and 7e are controlled so that the slab 4 is sequentially cooled according to a predetermined temperature drop pattern. The slab 4 coming out of the cooling section e is naturally cooled in the recuperation section f and is straightened by the straightening rolls 8.

第2図に示すように連続鋳造機の制御装置10には、上
述した表面温度計6からの鋳片表面温度信号の他に、鋳
片速度測定器11によって測定された鋳込速度信号が人
力される。また制御装置10には溶!Ijlil!!度
、モールド冷却水量、モールド冷却水温、スプレー冷却
水水温が測定人力され、さらに鋼種(物理定数)、鋳片
サイズ等の情報が操作テーブルより予じめ入力され、前
述したように最適冷却水量を決定し、その水量を設定す
るとともに操作吠況をディスプレイ(図示せず)等で監
視するようにしている。
As shown in FIG. 2, in addition to the slab surface temperature signal from the above-mentioned surface thermometer 6, the control device 10 of the continuous casting machine receives the casting speed signal measured by the slab speed measuring device 11 manually. be done. In addition, the control device 10 has melting! Ijlil! ! temperature, mold cooling water volume, mold cooling water temperature, and spray cooling water temperature are measured manually, and information such as steel type (physical constants), slab size, etc. is entered in advance from the operation table, and as described above, the optimum cooling water volume is determined. The amount of water is determined and the amount of water is set, and the operation status is monitored on a display (not shown) or the like.

ところで、2次冷却帯における鋳片の冷却において前述
したように、(1)冷却水による冷却、(2)ガイドロ
ールへの熱伝達、(3)輻射などにより鋳片が冷却され
る。よって2次冷却帯における給熱伝達率(h)は第1
式で示される。
By the way, in cooling the slab in the secondary cooling zone, as described above, the slab is cooled by (1) cooling by cooling water, (2) heat transfer to the guide rolls, (3) radiation, etc. Therefore, the heat transfer coefficient (h) in the secondary cooling zone is the first
It is shown by the formula.

h= hw+ h r o l l + h rad−
・・・−−−−(1)ただし、hW:  冷却水による
熱伝達率hroll  : fJイドトルへの熱伝達率
hrad  :  輻射による熱伝達率第1式において
、鋳片の冷却に決定的に作用するのは右辺第1項の冷却
水による熱伝達率(hW)である。従って第1式は第2
式のようになる。冷却水と熱伝達率 h=αhw・・・・・・・・・(2) 示される。                    
      ′hwi=f  (T、wi)・・・・・
・・・・(3)ただし、T :鋳片の表面温度 W :水量密度(単位面積に散水さ れる冷却水量) i : i番目の冷却部 ところが、第2式及び第3式を用いて伝熱計算を行い、
鋳片の表面温度降下パターンを求めると、実測された温
度降下パターンと極しく相違してしまう。この原因は2
次冷却帯において例えばi番目の冷却部では1〜(i−
1)番目で使用された冷却水が垂れ水として鋳片にかか
ったり、ガイドロールを冷却したりあるいはガイドa−
ルと鋳片との間で溜り水になったりして、鋳片を間接的
に冷却しているためと考えられる。従って、i番目にお
ける水量密度Wiを1〜(i−1)番目までの冷却部を
考慮して第4式に示すようにする。第4式における Wi=a1wl+a2w2+・=−・・+aiw;= 
 2:、 hjvvj−−−−−−−−−(4)σ:l 係数ajは実測(第3図に各冷却部’Ll  b、  
c。
h= hw+ h r o l l + h rad-
・・・---(1) However, hW: Heat transfer coefficient due to cooling water hroll: Heat transfer coefficient to fJ idle hrad: Heat transfer coefficient due to radiation In the first equation, it has a decisive effect on cooling the slab The first term on the right side is the heat transfer coefficient (hW) due to the cooling water. Therefore, the first equation is
It becomes like the expression. Cooling water and heat transfer coefficient h = αhw (2) is shown.
'hwi=f (T, wi)...
...(3) However, T: surface temperature of slab W: water flow density (amount of cooling water sprinkled on unit area) i: i-th cooling section However, using the second and third equations, Perform thermal calculations,
When the surface temperature drop pattern of the slab is determined, it is extremely different from the actually measured temperature drop pattern. The reason for this is 2
For example, in the i-th cooling zone in the next cooling zone, 1 to (i-
1) The cooling water used in step 1 may drip onto the slab, cool the guide rolls, or cause damage to the guide a-
This is thought to be because water accumulates between the steel plate and the slab, cooling the slab indirectly. Therefore, the water density Wi at the i-th position is set as shown in the fourth equation, taking into consideration the 1st to (i-1)th cooling sections. Wi=a1wl+a2w2+・=−・・+aiw;= in the fourth equation
2: hjvvj------------(4) σ:l The coefficient aj is measured (Fig. 3 shows each cooling section'Ll b,
c.

d、  eにおける熱伝達率の実測を示す。)によって
−次元の伝熱方程式(示さず)を解いて得られる熱伝達
率と水量密度の関係からWiを求め、このWiに適合す
るajを回帰的に決定する。
Actual measurements of heat transfer coefficient in d and e are shown. ), Wi is obtained from the relationship between the heat transfer coefficient and water density obtained by solving a -dimensional heat transfer equation (not shown), and aj that fits this Wi is determined recursively.

第1図に示す連続鋳造機に上記の第4式を適用して、第
3図に示す実測による伝熱率からajを求め、各冷却部
a、  b、  c、 d、 eにおける水量密度(W
i)を次のように決定した。
Applying the above-mentioned formula 4 to the continuous casting machine shown in Fig. 1, aj is determined from the measured heat transfer rate shown in Fig. 3, and the water volume density ( W
i) was determined as follows.

W1=wl              (冷却部a)
W2=0.15w1+w2          (冷却
部b)W3:=0.hl+0.30w2+w3=0.3
0w2+w3  (冷却部C)W4=0.0wl +0
.Div2+0.05v3+w4=0.05w3+w4
(冷却部d) W5=0.0wl+O,Ow2÷0.Ow3÷0.Ow
4+w5=w5(冷却部e) とのW1〜W5を用いて伝熱計算をおこなった結(℃)
、横軸は第1図に示すメニスカス9からの距離を示す。
W1=wl (cooling section a)
W2=0.15w1+w2 (cooling section b) W3:=0. hl+0.30w2+w3=0.3
0w2+w3 (Cooling part C) W4=0.0wl +0
.. Div2+0.05v3+w4=0.05w3+w4
(Cooling part d) W5=0.0wl+O, Ow2÷0. Ow3÷0. Ow
4+w5=w5 (cooling section e) The result of heat transfer calculation using W1 to W5 (℃)
, the horizontal axis indicates the distance from the meniscus 9 shown in FIG.

図中0印及び・印はそれぞれ2色式二度計及びハンディ
温度計で実測した鋳片の表面温度を示す(鋳造法If(
vc)= 1.05 m/分)。また△印及びム印はそ
れぞれ2色式忍度計及びハンディ温度計で実測した場合
の鋳片の表面温度を示す(鋳込速度(vc)= 1.1
5 m/分)。ここで本発明による表面温度降下パター
ンと従来方式による表面温度降下パターンを比較するた
め、第5図に従来方式による表面温度降下パターンを示
す。な、5− お、第を図において、縦軸は鋳片の表面温度ハンディ温
度計で実測した鋳片の表面温度を示ず(鋳込速度(vc
)= 1.05 m/分)。
In the figure, the 0 mark and the mark indicate the surface temperature of the slab measured using a two-color double meter and a handy thermometer, respectively (Casting method If (
vc) = 1.05 m/min). In addition, the △ mark and the mu mark indicate the surface temperature of the slab when measured using a two-color thermometer and a handy thermometer, respectively (Pouring speed (vc) = 1.1
5 m/min). Here, in order to compare the surface temperature drop pattern according to the present invention and the surface temperature drop pattern according to the conventional method, FIG. 5 shows the surface temperature drop pattern according to the conventional method. In Figure 5-5, the vertical axis does not indicate the surface temperature of the slab actually measured with a handy thermometer (casting speed (vc
) = 1.05 m/min).

第4図と第5図を比較してみると本発明による表面温度
降下パターンは実測値と高い精度で一致することがわか
る。
Comparing FIG. 4 and FIG. 5, it can be seen that the surface temperature drop pattern according to the present invention matches the actually measured value with high accuracy.

さらに本発明による鋳片の表面温度制御方法を一用いた
場合の冷却部す及びCにおける冷却水量のバラツキを第
6図(a)及び(b)にそれぞれ示す。なお第6図(a
)及び(b)において縦軸を度数、横軸を冷却水量C1
Z分)とする。ここで従来の表面温度制御方法を用いた
場合の冷却部す及びCにおける冷却水量のバラツキを第
7図(a)及び(b)にそれぞれ示す。なお第6図(a
)及び(b)、第7図(a)及び(b)の場合とも鋳込
速度は一定とする。第6図(a)及び(b)、第7図(
a)及び(b)から明らかなように本発明による表面温
度制御方法はバラツキが少ないことがわかる。このこと
は第6図(a)及び(b)また第7図(a)及び(b)
から求めた標準偏差を示す下記の表からも明らかである
Further, FIGS. 6(a) and 6(b) respectively show variations in the amount of cooling water in cooling sections S and C when the method for controlling the surface temperature of a slab according to the present invention is used. In addition, Fig. 6 (a
) and (b), the vertical axis is the degree, and the horizontal axis is the cooling water amount C1
Z minutes). Here, the variations in the amount of cooling water in cooling sections S and C when the conventional surface temperature control method is used are shown in FIGS. 7(a) and 7(b), respectively. In addition, Fig. 6 (a
) and (b), and the casting speed is constant in both cases of FIGS. 7(a) and (b). Figures 6(a) and (b), Figure 7(
As is clear from a) and (b), the surface temperature control method according to the present invention has little variation. This is shown in Figures 6(a) and (b) and Figure 7(a) and (b).
This is also clear from the table below which shows the standard deviation calculated from .

表 [発明の効果] 以上説明したように本発明によれば制御装置に予じめ設
定される温度降下パターンに基づいて鋳片の表面温度を
精度よく制御てき、鋳片の品質管理上極めて有益である
Table [Effects of the Invention] As explained above, according to the present invention, the surface temperature of the slab can be accurately controlled based on the temperature drop pattern preset in the control device, which is extremely useful for quality control of the slab. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造板における鋳片の鋳造過程を示すため
の図、第2図は本発明による制御を示すための図、第3
図は2次冷却帯の各散水区分(冷却部)における鋳片の
実測された熱伝達率を示すための図、第4図は本発明を
用いた場合の温度降下パターンを示すための図、第5図
は従来の温度降下パターンを示すための図、第6図(a
)及び(b)は本発明による設定水量のバラツキを示す
ための図、第7図(a)及び(b)は従来の設定水量の
バラツキを示すための図である。 1・・・夕/ディツシュ、  2・・・鋳型(モールド
)。 3・・・ガイドロール、  4・・・鋳片、  5・・
・2次冷却帯、  6・・・表面温度計、  7・・・
スプレーノズル。 8・・・矯正ロール、  9・・・メニスカン10・・
・制御装置、  11・・・速度測定器 代理人(58=il’)弁理上戸 1) 坦第1図 (α) 度数 (b)
Fig. 1 is a diagram showing the casting process of a slab in a continuous casting plate, Fig. 2 is a diagram showing the control according to the present invention, and Fig. 3 is a diagram showing the control according to the present invention.
The figure is a diagram showing the actually measured heat transfer coefficient of the slab in each water sprinkling section (cooling section) of the secondary cooling zone, and Figure 4 is a diagram showing the temperature drop pattern when using the present invention. Figure 5 is a diagram to show the conventional temperature drop pattern, Figure 6 (a
) and (b) are diagrams showing variations in the set amount of water according to the present invention, and FIGS. 7(a) and (b) are diagrams showing variations in the conventional set amount of water. 1... evening/ditshu, 2... mold. 3... Guide roll, 4... Slab, 5...
・Secondary cooling zone, 6...Surface thermometer, 7...
spray nozzle. 8... Straightening roll, 9... Meniscan 10...
・Control device, 11...Speed measuring device agent (58=il') Patent Attorney Ueto 1) Diagram 1 (α) Frequency (b)

Claims (1)

【特許請求の範囲】[Claims] 1、複数の散水区分に分かれた2次冷却帯を有する連続
鋳造機によって予じめ定められた温度降下パターンで鋳
造される鋳片の表面温度を制御するための制御方法であ
って、前記散水区分ごとの前記鋳片の熱伝達率が当該散
水区分前段の散水区分を考慮して決定され、前記熱伝達
率よって前記温度降下パターンを算出するようにしたこ
とを特徴とする鋳片の表面温度制御方法。
1. A control method for controlling the surface temperature of a slab cast in a predetermined temperature drop pattern by a continuous casting machine having a secondary cooling zone divided into a plurality of water sprinkling sections, the method comprising: The surface temperature of the slab, characterized in that the heat transfer coefficient of the slab for each section is determined by taking into consideration the watering section preceding the watering section, and the temperature drop pattern is calculated from the heat transfer coefficient. Control method.
JP19271584A 1984-09-17 1984-09-17 Method for controlling surface temperature of ingot in continuous casting machine Pending JPS6171162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19271584A JPS6171162A (en) 1984-09-17 1984-09-17 Method for controlling surface temperature of ingot in continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19271584A JPS6171162A (en) 1984-09-17 1984-09-17 Method for controlling surface temperature of ingot in continuous casting machine

Publications (1)

Publication Number Publication Date
JPS6171162A true JPS6171162A (en) 1986-04-12

Family

ID=16295850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19271584A Pending JPS6171162A (en) 1984-09-17 1984-09-17 Method for controlling surface temperature of ingot in continuous casting machine

Country Status (1)

Country Link
JP (1) JPS6171162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056522A1 (en) * 1997-06-12 1998-12-17 Alcan International Limited Method and apparatus for controlling the temperature of an ingot during casting, particularly at start-up
JP2013215777A (en) * 2012-04-09 2013-10-24 Jfe Steel Corp Continuous casting apparatus and solidification state estimation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151156A (en) * 1980-03-13 1981-11-24 Fives Cail Babcock Method of controlling cooling of casting in continuous casting facility
JPS5779059A (en) * 1980-11-05 1982-05-18 Kawasaki Steel Corp Method for controlling of secondary cooling water in continuous casting
JPS5835055A (en) * 1981-08-28 1983-03-01 Hitachi Ltd Controller for flow rate of cooling water for continuous casting machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151156A (en) * 1980-03-13 1981-11-24 Fives Cail Babcock Method of controlling cooling of casting in continuous casting facility
JPS5779059A (en) * 1980-11-05 1982-05-18 Kawasaki Steel Corp Method for controlling of secondary cooling water in continuous casting
JPS5835055A (en) * 1981-08-28 1983-03-01 Hitachi Ltd Controller for flow rate of cooling water for continuous casting machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056522A1 (en) * 1997-06-12 1998-12-17 Alcan International Limited Method and apparatus for controlling the temperature of an ingot during casting, particularly at start-up
JP2013215777A (en) * 2012-04-09 2013-10-24 Jfe Steel Corp Continuous casting apparatus and solidification state estimation method

Similar Documents

Publication Publication Date Title
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
JPS6171162A (en) Method for controlling surface temperature of ingot in continuous casting machine
CA2111948A1 (en) Contained quench system for controlled cooling of continuous web
CN1022174C (en) Method for controlling expansion of metal mould and continuous metal casting machine
TWI645922B (en) Method for reducing surface defects of cast embryo
JPS638868B2 (en)
JPS6321587B2 (en)
JP2004508203A (en) Control of hot sulfur in continuous metal casting.
AU2001291556A1 (en) Control of heat flux in continuous metal casters
JP3458758B2 (en) Method and apparatus for cooling steel sheet
JP5949316B2 (en) Manufacturing method of continuous cast slab
JP3101069B2 (en) Continuous casting method
JPH11156505A (en) Production method and equipment for continuous casting cast piece
JPS6016300B2 (en) Secondary cooling water control method and device in continuous casting equipment
JPH10328803A (en) Method for controlling cooling water quantity
JPS62203652A (en) Method and apparatus for finishing casting work of steel strip casting apparatus
JP2867894B2 (en) Continuous casting method
JPH01501455A (en) Apparatus and method for continuously casting steel slabs
JPS63235055A (en) Method for controlling surface temperature of continuously cast slab
JPS61238453A (en) Method for controlling secondary cooling water in continuous casting installation
KR100650600B1 (en) Method of the melt temperature control in twin roll strip casting
JPS6171161A (en) Method for controlling surface temperature of ingot in continuous casting machine
JP2002248553A (en) Method for controlling secondary cooling of continuous- cast steel piece
JPS5823549A (en) Controlling method for broadside thickness of thin strip produced by quenching of molten metal
JPS6219935B2 (en)