JPS6170777A - Driving circuit for laser diode - Google Patents

Driving circuit for laser diode

Info

Publication number
JPS6170777A
JPS6170777A JP19202384A JP19202384A JPS6170777A JP S6170777 A JPS6170777 A JP S6170777A JP 19202384 A JP19202384 A JP 19202384A JP 19202384 A JP19202384 A JP 19202384A JP S6170777 A JPS6170777 A JP S6170777A
Authority
JP
Japan
Prior art keywords
circuit
optical output
reference value
bias currents
atc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19202384A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakada
中田 裕章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19202384A priority Critical patent/JPS6170777A/en
Publication of JPS6170777A publication Critical patent/JPS6170777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To keep the ratio of bias currents to threshold currents constant at all times, and to enable transmission, through which a symbol error rate is reduced, by using bias currents through an APC circuit as an input to an ATC circuit. CONSTITUTION:An optical output from a LD is detected by an optical output detecting element 3, and transmitted over an APC circuit 4, the APC circuit 4 compares the optical output and the reference value of a previously set optical output, and the APC circuit 4 reduces bias currents IB when the optical output is larger than the reference value. When the optical output is smaller than the reference value, inversely, the APC circuit 4 operates so as to increase bias currents IB. Bias currents IB are added to an ATC circuit 5, bias currents IB and the reference value of previously set IB are compared, and the ATC circuit 5 drives a thermoelectric cooling element 2 so as to cool a LD1 when bias currents IB are larger than the reference value. When bias currents IB are smaller than the reference value, inversely, the ATC circuit 5 drives the thermoelectric cooling element 2 so as to heat the LD1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザダイオード(以下、LDと略記する)の
駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a driving circuit for a laser diode (hereinafter abbreviated as LD).

従来例の構成とその問題点 LDは変調可能帯域が広いため、数百Mbit/sの高
速伝送に広く用いられている。これらの分野でLDを用
いるためには、光出力特性の安定化が望まれる。
Conventional configurations and their problems LDs have a wide modulation band, and are therefore widely used for high-speed transmissions of several hundred Mbit/s. In order to use LDs in these fields, stabilization of optical output characteristics is desired.

そのために、従来のLD駆動回路には、光出力を一定に
保つAPC回路やLDの周辺温度を一定に保つATC回
路が設けられている。
To this end, conventional LD drive circuits are provided with an APC circuit that keeps the optical output constant and an ATC circuit that keeps the ambient temperature of the LD constant.

第1図にLDの順方向電流!F対光出力P特性を示す。Figure 1 shows the forward current of the LD! The F vs. optical output P characteristics are shown.

同図に示すように、LDはその周辺温度T1.T2によ
ってしきい値電流■thが変化する。
As shown in the figure, the LD has an ambient temperature of T1. The threshold current th changes depending on T2.

このとき光出力P0を一定に保つためにはバイアス電流
IBをしきい値電流”thに応じて”B1 、より2の
ように変えてやればよい0このように信号電流1sを一
定にしバイアス電流IBの大きさを変化させるAPC回
路は、その回路構成が簡単なことから汎用されている。
At this time, in order to keep the optical output P0 constant, the bias current IB should be changed according to the threshold current "th", such as B1, or 2. In this way, the signal current 1s is kept constant, and the bias current APC circuits that change the size of IB are widely used because of their simple circuit configuration.

しかし、APC回路を設けていても、LDのしきい値電
流Ithが周辺温度の上昇あるいはLDの経年変化など
により増加し始めると、APC回路の働きによりバイア
ス電流IBが増し、LDの消費電力が大きくなり自己発
熱によりますますLDの温度が高くなる。そのため、更
にしきい値Ithが上昇するといった悪循環におちいる
恐れがある。このような熱暴走を防ぎ、LDの周辺温度
を一定にし、LDの光出力特性の安定化と冷却して長寿
命化を図るためにATC回路が併用されることが多い。
However, even if an APC circuit is provided, when the threshold current Ith of the LD starts to increase due to a rise in ambient temperature or aging of the LD, the bias current IB increases due to the action of the APC circuit, and the power consumption of the LD decreases. As the temperature increases, the temperature of the LD increases due to self-heating. Therefore, there is a risk of falling into a vicious cycle in which the threshold value Ith further increases. In order to prevent such thermal runaway, keep the ambient temperature of the LD constant, and stabilize and cool the optical output characteristics of the LD to extend its life, an ATC circuit is often used in combination.

ATC回路は、LDの周辺温度をサーミスタ等で検出し
、熱電冷却素子によってその温度を一定に制御する。
The ATC circuit detects the ambient temperature of the LD using a thermistor or the like, and controls the temperature to be constant using a thermoelectric cooling element.

ところで、PCM光伝送においては、バイアス電流!B
としきい値電流工thの比より/工thが0.9〜1.
0のとき、受信された信号の符号誤り率は最少となるこ
とが知られている。
By the way, in PCM optical transmission, bias current! B
From the ratio of the threshold current and the threshold current, th is 0.9 to 1.
It is known that when the bit error rate is 0, the bit error rate of the received signal is the minimum.

ところが、前述のAPC回路ではバイアス電流が変化す
るため、より/工thの比率は変化する。
However, in the APC circuit described above, since the bias current changes, the ratio of t/th changes.

またATC回路はあくまでもLDの周辺温度を一定にす
るものであり、LDのしきい値電流が一定である保証は
ないといった問題がある。
Furthermore, the ATC circuit is only intended to keep the ambient temperature of the LD constant, and there is a problem in that there is no guarantee that the threshold current of the LD will be constant.

発明の目的 本発明は、このような問題点に鑑み、常にIB/工th
の比率を一定に保つことができるレーザダイオード駆動
回路を提供することを目的とする。
Purpose of the Invention In view of these problems, the present invention has always been developed to
An object of the present invention is to provide a laser diode drive circuit that can maintain a constant ratio of .

発明の構成 本発明のレーザダイオード駆動回路はAPC回路と、そ
のAPC回路により制御されるバイアス電流よりをAT
C回路への入力信号とするATC回路とから構成されて
いる。
Structure of the Invention The laser diode drive circuit of the present invention includes an APC circuit and a bias current controlled by the APC circuit.
It is composed of an ATC circuit which serves as an input signal to the C circuit.

実施例の説明 第2図に本発明の一実施例を示す。同図において、1は
レーザダイオード(LD)、2は熱電冷却素子、3は光
出力検出素子、4は自動利得制御回路(APC回路)、
6は自動温度制御回路(ATC回路)である。    
□LDの光出力は、光出力検出素子3によシ検出され、
APC回路4に加えられる。APC回路4は、光出力と
予め設定された光出力の基準値とを比較し光出力が基準
値より大きい場合には、APC回路4はバイアス電流I
Bを減らす0逆に光出力が基準値より小さい場合には、
APC回路4はバイアス電流IBを増すように働く。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an embodiment of the present invention. In the figure, 1 is a laser diode (LD), 2 is a thermoelectric cooling element, 3 is an optical output detection element, 4 is an automatic gain control circuit (APC circuit),
6 is an automatic temperature control circuit (ATC circuit).
□The optical output of the LD is detected by the optical output detection element 3,
It is added to the APC circuit 4. The APC circuit 4 compares the optical output with a preset optical output reference value, and if the optical output is larger than the reference value, the APC circuit 4 changes the bias current I.
Decrease B0 Conversely, if the optical output is smaller than the reference value,
APC circuit 4 works to increase bias current IB.

また、バイアス電流よりはATC回路5に加えられてお
り、バイアス電流よりが予め設定されたIBの基準値と
を比較し、バイアス電流IBが基準値より大きい場合に
は、ATC回路6はLDlを冷却するように熱電冷却素
子2を駆動する0逆にノくイアスミ流よりが基準値より
小さい場合には、ATC回路5はLDlを加熱するよう
に熱電冷却素子2を駆動する。
Also, the bias current is applied to the ATC circuit 5, and the bias current is compared with a preset reference value of IB, and if the bias current IB is larger than the reference value, the ATC circuit 6 increases the LDl. On the other hand, when the IA current that drives the thermoelectric cooling element 2 to cool the LD1 is smaller than the reference value, the ATC circuit 5 drives the thermoelectric cooling element 2 to heat the LD1.

以上のように構成されたレーザダイオード駆動回路にお
いて、LDlのしきい値電流工thが増加し始めるとA
PC回路4の働きによりバイアス電fiIBが増加する
。同時にATC回路5の働きによりLDlは冷却され、
LDlのしきい値電流Ithの増加が抑えられ、バイア
ス電流よりは一定に保たれる。従って、IB/Ith 
 は一定に保たれる0 発明の効果 本発明によれば、ATC回路の入力をAPC回路を介し
たバイアス電流としたことから、バイアス電流IBとし
きい値電流工thの比より/工th は常に一定に保た
れ、符号誤り率の少ない伝送が可能となる。
In the laser diode drive circuit configured as above, when the threshold current th of LDl starts to increase, A
The bias current fiIB increases due to the action of the PC circuit 4. At the same time, LDl is cooled by the action of ATC circuit 5,
The threshold current Ith of LDl is suppressed from increasing and is kept more constant than the bias current. Therefore, IB/Ith
Effects of the Invention According to the present invention, since the input of the ATC circuit is the bias current via the APC circuit, the ratio of the bias current IB to the threshold current This enables transmission with a low bit error rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はLDの電流対光出力特性図、第2図は本発明の
一実施例の構成図である。 1・・・・・・レーザダイオード、2・・・・・・熱電
冷却素子。 3・・・・・・光出力検出素子、4・・・・・・APC
回路、5・・・・・・ATC回路。
FIG. 1 is a current vs. light output characteristic diagram of an LD, and FIG. 2 is a configuration diagram of an embodiment of the present invention. 1... Laser diode, 2... Thermoelectric cooling element. 3... Optical output detection element, 4... APC
Circuit, 5...ATC circuit.

Claims (1)

【特許請求の範囲】[Claims] レーザダイオードのバイアス電流を調整し前記レーザダ
イオードの光出力を一定に制御するAPC回路と、前記
バイアス電流の変化に応じ前記レーザダイオードの周辺
温度を制御するATC回路を設けたことを特徴とするレ
ーザダイオード駆動回路。
A laser comprising an APC circuit that adjusts a bias current of a laser diode and controls the optical output of the laser diode to a constant value, and an ATC circuit that controls an ambient temperature of the laser diode according to changes in the bias current. Diode drive circuit.
JP19202384A 1984-09-13 1984-09-13 Driving circuit for laser diode Pending JPS6170777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19202384A JPS6170777A (en) 1984-09-13 1984-09-13 Driving circuit for laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19202384A JPS6170777A (en) 1984-09-13 1984-09-13 Driving circuit for laser diode

Publications (1)

Publication Number Publication Date
JPS6170777A true JPS6170777A (en) 1986-04-11

Family

ID=16284309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19202384A Pending JPS6170777A (en) 1984-09-13 1984-09-13 Driving circuit for laser diode

Country Status (1)

Country Link
JP (1) JPS6170777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323668B1 (en) 1997-11-20 2001-11-27 Advantest Corporation IC testing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323668B1 (en) 1997-11-20 2001-11-27 Advantest Corporation IC testing device

Similar Documents

Publication Publication Date Title
US4955029A (en) Process and device for regulating the light power of laser diodes
JP3226624B2 (en) Laser diode drive circuit and optical transmission device
JPH0680853B2 (en) Optical transmission device
EP0910143B1 (en) Laser diode protecting circuit
JPH0821747B2 (en) Optical transmission device
US8345721B2 (en) Method for driving optical transmitter
US20060262818A1 (en) Microcontroller based thermoelectric cooler controller
JP3423115B2 (en) Optical signal transmission device
US9184557B2 (en) Optical module and method of controlling optical module
JPH11126939A (en) Method and device for controlling temperature of semiconductor laser module
JP3795762B2 (en) Optical output control circuit
JPS6170777A (en) Driving circuit for laser diode
GB2054949A (en) Cooling arrangement for laser diode
JPH01166578A (en) Led driving circuit with temperature control function
JPS5955083A (en) Semiconductor laser output stabilizing system
JP3488451B2 (en) Optical transmitter
JPS592392B2 (en) Laser equipment for optical communication
JPS6163074A (en) Driving circuit for semiconductor laser diode
JP2006005042A (en) Optical transmitter and method for optical transmission
JP2005072197A (en) High-temperature operation laser diode device
JPS62236208A (en) Drive circuit for semiconductor light emitting element
JP2830794B2 (en) Optical transmission circuit
JPH0344083A (en) Automatic laser output control circuit
JPS5917291A (en) Semiconductor laser controller
JP2001197014A (en) Optical transmitter