JPS6170115A - Engine with turbocharger - Google Patents

Engine with turbocharger

Info

Publication number
JPS6170115A
JPS6170115A JP59190601A JP19060184A JPS6170115A JP S6170115 A JPS6170115 A JP S6170115A JP 59190601 A JP59190601 A JP 59190601A JP 19060184 A JP19060184 A JP 19060184A JP S6170115 A JPS6170115 A JP S6170115A
Authority
JP
Japan
Prior art keywords
catalyst
turbine
air
exhaust
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59190601A
Other languages
Japanese (ja)
Inventor
Osatoshi Handa
半田 統敏
Katsunori Miyamura
宮村 克則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59190601A priority Critical patent/JPS6170115A/en
Publication of JPS6170115A publication Critical patent/JPS6170115A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To prevent a catalyst and a turbine from overheat, by supplying air to the upstream of the catalyst further adjusting a flow of exhaust in the catalyst so as to control an inlet temperature of the turbine, for instance, when an engine is accelerated. CONSTITUTION:Air supplied to the upstream of a catalyst 6, reacts on an unburned material in exhaust mainly in the catalyst 6, rapidly increasing a temperature of exhaust, that is, an inlet temperature of gas to a turbine 4. As a result, the turbine 4 accordingly a compressor 3 is driven at a speed promptly increasing, eliminating a turbo lag. Here the temperature of exhaust reaching the turbine 4 is suitably controlled because a flow of exhaust in the catalyst 6 is controlled bypass passage 5b by detecting a temperature in the afterstrem of the catalyst 6 through a temperature sensor 10 or the like, consequently the catalyst 6 and the turbine 4 are prevented from overheat.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ターボチャージャ付エンジンのターボラグ
を改善する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique for improving turbo lag in a turbocharged engine.

[従来技術1 従来のターボチャージャ付エンジンとしては、例えば、
実開昭59−34033号公報に示すようなものがある
[Prior Art 1 As a conventional turbocharged engine, for example,
There is one shown in Japanese Utility Model Application Publication No. 59-34033.

これは、エンジンの吸気通路に吸気を11送Jる]ンブ
レッ→ノを備え、この]ンプレッリを駆動づるタービン
を排気通路に介具し、このタービンの上流に触媒装置を
設置したものである。従来のものは、このような構成に
より良Ifイr−Iンジン出ツノ性能と排気浄化性能の
両立を81らんと覆るものである。
This engine is equipped with a turbine that sends intake air into the engine's intake passage, a turbine that drives the engine is installed in the exhaust passage, and a catalyst device is installed upstream of the turbine. With such a configuration, the conventional engine is 81 times more capable of achieving both good Ifr-I engine output performance and exhaust purification performance.

[発明が解決しようとJ−る問題点] しかしながら、このような従来のターボチト−ジャ付エ
ンジンにあっては、タービン1流に触媒を介装してはい
たものの、す1気をイのまま触媒に導く構成としていた
ため、前者のエンジン出力に関するターボラグをなくす
という点からみると、必ずしも充分なものでなかった。
[Problems that the invention seeks to solve] However, in such conventional turbocharger engines, although a catalyst is installed in the first stream of the turbine, the first stream remains unchanged. Since it was configured to lead to a catalyst, it was not necessarily sufficient in terms of eliminating the turbo lag associated with the former engine output.

即ち、ターボチャージャ付エンジン搭載車にJjいて、
発進や低速からの加速を行なうとき、タービン入口のガ
ス(排気)温度を急激に高くすればターボチャージャの
回転の立上がりを早くでき、過給圧の立上りが遅い、い
わゆる、ターボラグの問題を4K <−’lことができ
るが、前記従来のものは、u1気を子のまま触媒に導く
ので、加速時等には11気中の未燃物質を反応するため
のMj4(02)itが不足りる場合があり、このよう
な場合、タービン人1−1のガス温度を急激に上昇させ
ることは困難ぐあり、また、刀ス温度が高くなり過ぎた
場合、これを:lン1〜[]−ルする配慮がないため、
加熱にJ、るタービン破損防出のための温痘制口11も
困難どなるものであ−)だ。
In other words, in a car equipped with a turbocharged engine,
When starting or accelerating from a low speed, by rapidly increasing the gas (exhaust) temperature at the turbine inlet, the turbocharger rotation can be started quickly, and the problem of so-called turbo lag, where the boost pressure rises slowly, can be solved by 4K <-'l can be used, but in the conventional method, since the u1 gas is guided to the catalyst as a child, there is a shortage of Mj4(02)it for reacting the unburned substances in the 11 gas during acceleration etc. In such cases, it is difficult to rapidly increase the gas temperature of the turbine 1-1, and if the gas temperature becomes too high, Because there is no consideration to
It is difficult to control the temperature control valve 11 to prevent damage to the turbine due to heating.

このブを明は、このような従来の問題点に肴1」シCな
されたもの(゛、加速時などに触媒上流に空気を供給し
、かつ、触媒に通=141[気の滝川を加減しくタービ
ン人[1tn +aを」シト【1−ルJることにJ、り
上記問題点を解決りることを目的とJる1゜[解決1段
l この発明は、前記目的を達成覆る/、: M)、吸気通
路に吸気を11−送づる二1ンブレツリーを備え、この
−1ンプレツリを駆動りるタービンを抽気通路に介装し
、前記タービンの1−流に触媒を設置したターボブドー
シト 気通路に空気を供給づる空気供給装置と、前記触媒をバ
イパス覆るバイパス通路と、1−ンジン運←1状態に応
じて触媒を通るfJ[気の流mlを前記バイパス通路に
より制御づる弁装請とを設置)たものである。
This is a solution to these conventional problems (141) that supplies air upstream of the catalyst during acceleration, etc., and that allows air to flow through the catalyst. The purpose of this invention is to solve the above-mentioned problems.This invention achieves the above-mentioned objects. ,: M), a turbo-bod which is equipped with a 21-breathing tree that sends intake air to an intake passage, a turbine that drives this 11-breathing tree is interposed in the bleed air passage, and a catalyst is installed in the 1st stream of the turbine. an air supply device that supplies air to the air passage; a bypass passage that bypasses the catalyst; This is the result of the following:

[作用] 触媒上流に供給された空気(酸木)は、排気中の未燃物
質(Go等)と、主とじで触媒中で及応し、排気の温度
、即ち、タービン入]ー1ガス温1aを急激に高める。
[Operation] The air (acid wood) supplied upstream of the catalyst reacts with unburned substances (Go, etc.) in the exhaust gas in the catalyst at the main end, reducing the temperature of the exhaust gas, that is, the turbine input] -1 gas Rapidly increase temperature 1a.

このため、タービン、従って、−1ンブレツリは1みや
かに回転を上げ、ターボラグを解洞する。この場合、温
鴎ヒン(す等により触媒後流の温度を検出し触媒を通る
排気の法網をバイパス通路によりa,II Inづ−る
のて゛、タービンに到る()1気の温度は過電にコント
ロールされ、この結束、触媒及びタービンの過熱が防止
される。
Therefore, the turbine, and thus the -1 engine speed, promptly increases its rotation by 1 to eliminate the turbo lag. In this case, by detecting the temperature downstream of the catalyst using a temperature sensor, etc., and redirecting the exhaust gas that passes through the catalyst through a bypass passage, the temperature of the air reaching the turbine will be too high. Electrically controlled, this bundle, catalyst and turbine are prevented from overheating.

以下、この発明の詳細な説明する。The present invention will be described in detail below.

第1図は、4気υ)コーンジンに適用したこの発明の一
実施例を小力図ぐある。まず、構成を説明りると、エン
ジン1はノfー側の吸気通路2に介装した」ンプレツザ
3を備え、これにより吸気を圧送し、公知の方法で供給
される燃f31と共に、エンジンシリンダ内に取り入れ
る。=1ンブレツサ3と同軸でこれを駆動1J−るター
ビン4は、エンジン1の右側のfJ)気通路5に介装さ
れ、排気通路の一部である耕気マニ11ールド9及び排
気通路5を通って排出される排気により、駆動されるよ
う設(プる。
FIG. 1 shows an embodiment of the present invention applied to corn gin. First, to explain the configuration, the engine 1 is equipped with a compressor 3 interposed in the intake passage 2 on the nof side. Take it inside. The turbine 4, which is coaxial with the engine 1 and drives it, is installed in the air passage 5 on the right side of the engine 1, and connects the tillage manifold 9 and the exhaust passage 5, which are part of the exhaust passage. It is designed to be driven by the exhaust gas discharged through it.

タービン5の上流に、酸化又は3元等の触媒6をi4 
i−j、この触媒6の上流の排気マニホルド9に噴射口
13より空気を噴IJJるエアポンプ(空気供給装置)
8をエンジン1でベルト駆1,IJ iるよう設 【ノ
 る 。
An oxidation or ternary catalyst 6 is installed upstream of the turbine 5.
i-j, an air pump (air supply device) that injects air IJJ from the injection port 13 into the exhaust manifold 9 upstream of this catalyst 6;
8 is set so that engine 1 drives belt drive 1, IJi.

触媒側通路5aをバイパスするバイパス通路5bを、触
媒6とパラレルに設け、噴射口13の下流の分岐点11
で分岐し、タービン4の上流の合流点14で合流づるよ
うにJる。
A bypass passage 5b that bypasses the catalyst side passage 5a is provided in parallel with the catalyst 6, and a branch point 11 downstream of the injection port 13 is provided.
The two branches diverge at J, and merge at a junction 14 upstream of the turbine 4.

触媒6の下流で合流点14の上流の・工j[気通路5a
1.:iiI!度センサ10を設け、この信号をコント
ローラ15に受け、]ンヒト1コーラ15J:リアクチ
コ■夕16に指令し、分岐点11に設()た弁12を動
かずように覆る。これらのアクチコエータ16、弁12
等は触媒6を通る排気の■を制御IIツる弁装v117
を構成づる。例えば、温度セン1J10の設定温度75
0℃とし、この温度を越づと、二1ン1〜ローラ15の
指令でアクチュ■−夕16が弁11を右方に回転し、触
媒6を通るIJ+気の流めを減らして、バイパス通路5
bを通る+31気の流mlを増すようにする。
Downstream of the catalyst 6 and upstream of the confluence 14 [air passage 5a]
1. :iii! A temperature sensor 10 is provided, this signal is received by a controller 15, and a command is given to the controller 15J: reactor 16 to cover the valve 12 installed at the branch point 11 so that it does not move. These acticoator 16, valve 12
etc. is the valve system v117 that controls the exhaust gas passing through the catalyst 6.
Configure. For example, the set temperature of temperature sensor 1J10 is 75.
0℃, and when this temperature is exceeded, the actuator 16 rotates the valve 11 to the right in response to a command from the rollers 15 to 15, reducing the flow of IJ+ air through the catalyst 6 and bypassing it. aisle 5
Increase the +31 qi flow ml through b.

或いは、コントローラ15は、必要にJ:り二Iーンジ
ン回転数、スロワ]・ル開度、排気管内圧力などの信号
を入力して、排気温度以外の他の]−ンジン運転状態に
応じて出力するようにJる。
Alternatively, the controller 15 inputs signals such as the engine rotational speed, throttle opening, and exhaust pipe internal pressure as necessary, and outputs signals other than the exhaust temperature according to engine operating conditions. Jru to do.

なお、7はウェストゲート弁で、吸気圧ツノが所定値以
上のとき、この弁を開いて、排気をタービン4を迂回し
て流(ようにJる。
Reference numeral 7 designates a waste gate valve, which opens when the intake pressure is above a predetermined value, allowing the exhaust gas to bypass the turbine 4.

次に作用を説明する。Next, the action will be explained.

エンジンの運転中、特にエンジンの加速中は多くの未燃
物質(Co等)が数%のオーダのi!度でtJ1気中に
含まれているので、空気をこの排気中に供給、混合しこ
れを触媒に通すようにすれば、C0等は触媒0川C酸化
し発熱反応することは良く知られている。この場合、こ
の発熱反応を無a−1限に行なうことは触媒のへ渇耐久
性や、タービンの高温強電に限界があるため好ましく 
/i <、発熱反応の品にはおのずから制限が生ずる。
During engine operation, especially during engine acceleration, many unburned substances (such as Co) are present on the order of several percent i! It is well known that if air is supplied and mixed into the exhaust gas and passed through the catalyst, C0 etc. will be oxidized and an exothermic reaction will occur. There is. In this case, it is preferable to carry out this exothermic reaction to the limit of a-1 because there is a limit to the starvation durability of the catalyst and the high temperature and high electric power of the turbine.
/i <, restrictions naturally arise for products that undergo exothermic reactions.

−1ノ、ターボラグを解消するには、タービンには、前
述の発熱反応により大きな熱1ネルギ、即ち、なるべく
高い温度のガスを供給1Jる必要がある。
-1. In order to eliminate the turbo lag, it is necessary to supply the turbine with a large amount of heat energy through the exothermic reaction described above, that is, to supply 1 J of gas at as high a temperature as possible.

以−1−の即山から、タービン入口ガス温石を適切に、
即ら、設定温石範囲内でできるだtノへ編になるJ、う
に−1ント「コールする必要が(1−し、この]ン1〜
[J−ルは触媒に通す排気の流量を弁装置で調節し、余
分の1)1気をバイパス通路に流づことにJ、り得られ
る。
From the above-1-, properly set the turbine inlet gas hot stone.
In other words, it is possible to do it within the set temperature range.
[J-ru can be obtained by adjusting the flow rate of the exhaust gas passing through the catalyst with a valve device and allowing the excess 1) 1 gas to flow into the bypass passage.

即ち、]−ンジン1が比較的低速回転にある状態(イン
タセプト点以下)から全開加速覆ると、排気マニホルド
9内のCO等と、エアポンプ8から噴i)J D 13
を介して供給される空気中の酸素が触媒6で反応し、タ
ービン4の入口ガス温度を上昇させる。従って、タービ
ン4、二1ンブレッ93が高速回転し、過給圧を」二げ
ることにより、いわゆるターボラグを解消づる。
That is, when the engine 1 is fully accelerated from a relatively low-speed rotation state (below the intercept point), CO, etc. in the exhaust manifold 9 and jets from the air pump 8 i) J D 13
Oxygen in the air supplied via the reactor reacts with the catalyst 6, increasing the gas temperature at the inlet of the turbine 4. Therefore, the turbines 4, 21 and 93 rotate at high speed and reduce the supercharging pressure, thereby eliminating so-called turbo lag.

温度センサ10は上記のガス温度を検出し、設定飴75
0℃を越Mと、コン]・ローラ15はアクチュエータ1
6に指令し、弁12をも方に動かし触媒6を通る排気の
流量を減じ、バイパス通路5bの流量を増重ので、反応
熱湯は少くなり、タービン入口のガス温度を低下する。
The temperature sensor 10 detects the above gas temperature and sets the setting candy 75.
When the temperature exceeds 0℃, the controller 15 is actuator 1.
6, the valve 12 is moved in the opposite direction to reduce the flow rate of exhaust gas passing through the catalyst 6, and the flow rate of the bypass passage 5b is increased, so that the amount of reaction hot water decreases and the gas temperature at the turbine inlet is lowered.

このように、触媒6を通るJJ)気の流量を弁12によ
り=1ントロールし、この流量ど密接に関係りる反応熱
湯を変えるので、タービン入目のガス温度を設定温度範
囲内でできるだ1ノ高温に保持Jることが極めて容易、
かつ、確実に行なえるのである。
In this way, the flow rate of gas passing through the catalyst 6 is controlled by 1 by the valve 12, and the hot water for reaction, which is closely related to this flow rate, is changed, so the gas temperature entering the turbine can be kept within the set temperature range. It is extremely easy to maintain the temperature at a high temperature.
And it can be done reliably.

また、中速以上からの全開加速時又は、高速回転時は、
もともと排気の[IJjは^いので、コン1〜ローラ1
5はエンジン回転数等の信号を受1)、アクチュエータ
16を介して弁12を作動し、触媒6への排気流量を絞
るか、又は閉じることにJ、す、タービン入II温石の
過上昇を防ぐと共に、触媒6による排気抵抗を減らづ。
Also, when accelerating at full speed from medium speed or higher or rotating at high speed,
Originally, the exhaust [IJJ is ^^, so controller 1 to roller 1
5 receives a signal such as the engine speed (1), and operates the valve 12 via the actuator 16 to throttle or close the exhaust flow to the catalyst 6 to prevent excessive rise of the hot stone entering the turbine. At the same time, the exhaust resistance caused by the catalyst 6 is reduced.

第2図には、他の実施例を示J0この実施例は、6気筒
エンジン1の中央(吸気マニホルド19)に吸気通路2
を接続し、ノ「右一対の排気マニホルド9に夫々エアポ
ンプ8の吐出空気を噴射口13より@副供給ηるよう配
管し、左右の排気マニホルド9の出口を連結管5Cで連
結しその中央をバイパス通路5bの入[1部となし、こ
こに左側の排気マニホルド9側の排気がバイパス通路5
bと触媒6に流出分配されるようバルブ12を設けたち
のぐある。
FIG. 2 shows another embodiment. In this embodiment, an intake passage 2 is provided in the center (intake manifold 19) of a 6-cylinder engine 1.
The exhaust manifolds 9 on the right are connected to each other so that the air discharged from the air pump 8 is supplied from the injection port 13 to the sub-supply η, and the outlets of the left and right exhaust manifolds 9 are connected with a connecting pipe 5C, and the center is The entrance of the bypass passage 5b is defined as part 1, where the exhaust on the left side exhaust manifold 9 is
A valve 12 is provided so that the outflow is distributed to the catalyst 6 and the catalyst 6.

バルブ12を上方に傾りると、h−右の排気マニホルド
9のIJj気が全組、触媒6を通るので、比較的高温の
ガスをタービン4に供給でさ、バルブ12を上げると、
左側の排気マニホルド9のIJj気は、バイパス通路5
bに流れるので、タービン入口ガス温度を低下させるこ
とができる。この実施例は右側の排気マニホルド9の排
気は常時、触媒6を通るので、m泥合気傾向の場合調節
困雌であり、b− 従って、60等酸化される成分の枡気聞が少い、iiI
混合気傾向のエンジンに適している。
When the valve 12 is tilted upward, all IJj air from the right exhaust manifold 9 passes through the catalyst 6, so relatively high temperature gas is supplied to the turbine 4. When the valve 12 is raised,
The exhaust manifold 9 on the left side is connected to the bypass passage 5.
b, the turbine inlet gas temperature can be lowered. In this embodiment, the exhaust from the exhaust manifold 9 on the right always passes through the catalyst 6, so it is difficult to adjust if it tends to be muddy. ,iiiI
Suitable for engines with a mixture tendency.

第3図には、他の実施例を示づ。この実施例は右側の排
気マニホルド9のみに空気を[アポンブ8から噴射口1
3を介して供給し、これを連結管5Cとの連結部に設け
た弁12によりバイパス通路5bと触媒6とに流量分配
置るものである。この実施例は、右側の排気マニホルド
9を通ったIJj気しか、触媒6に通さないので前実施
例よりタービン入口ガス温度は低いが、全量の排気をバ
イパスできるので、co等の成分を多めに含む濃混合気
傾向のエンジンに適しており、また、排気のL[力損失
も小さくできるものである。
FIG. 3 shows another embodiment. In this embodiment, air is supplied only to the exhaust manifold 9 on the right side [from the pump 8 to the injection port 1].
3, and the flow rate is arranged in the bypass passage 5b and the catalyst 6 by a valve 12 provided at the connection part with the connecting pipe 5C. In this embodiment, only the IJj air that has passed through the exhaust manifold 9 on the right side passes through the catalyst 6, so the turbine inlet gas temperature is lower than in the previous embodiment, but since the entire amount of exhaust gas can be bypassed, a larger amount of components such as co It is suitable for engines that tend to have rich air-fuel mixtures, and can also reduce exhaust L power loss.

第4図には、他の実施例を示J0この実施例はタービン
入口ガス温度をバイパス流間の制御に加え、空気娼も制
御して調節りるようにしたちのぐある。
FIG. 4 shows another embodiment in which the turbine inlet gas temperature is controlled and regulated in addition to the bypass flow.

即ち、触媒6の通路5aにはエアポンプ8の空気通路1
8の噴射弁13を間OL、、この通路18の空気調節弁
19の上流から分岐してリリーフ弁20を介しくバイパ
ス通路5bに他の噴射1−.121を聞1−1−りる。
That is, the air passage 1 of the air pump 8 is connected to the passage 5a of the catalyst 6.
The injection valves 13 of No. 8 are branched from the upstream side of the air control valve 19 of this passage 18, and the other injection valves 1-. Listen to 121 and get 1-1.

一1ンI〜1]−フ15は温[良ヒンリ10の他に、エ
ンジン1に取り付i−Jたノックセンリ22の侶舅をλ
ツノし、設定淘瑣jス1−32はノック時、空気調節弁
19及びバイパス用バルブ12のアクチユエータ16へ
(+3 S’rを出力Jるよう組成Mる。
11n I~1]-F15 is temperature [In addition to Ryo Hinri 10, the father-in-law of knock sensor 22 attached to engine 1 is
The setting selection 1-32 is configured so that +3 S'r is output to the actuator 16 of the air control valve 19 and the bypass valve 12 at the time of knock.

J: /=、■アポシブ8のクラッチ(電磁式又番よ機
械式)23に1ン1へ1]−ラ15から出カイ^阿を出
りようにηる。なお、コントローラ15Gよエンジンt
in転数又はノ′クセルペダル等の407’)も入力す
る。
J: /=, ■Aposive 8 clutch (electromagnetic type and mechanical type) 23 to 1 to 1] - From 15 to 1 to 1 to 1 to 1] - From 15 to 15 to 1 to 1 to 1 to 1 for apositive 8. In addition, controller 15G and engine t
407') such as the in rotation number or accelerator pedal, etc., is also input.

&!4図の実施例の作用を第5図を用いて説明する。&! The operation of the embodiment shown in FIG. 4 will be explained using FIG. 5.

まり゛、エンジンのffi速回転(インタヒプト貞以十
)から急加速したときは、二1ント[]−ラ15は湿痘
ヒンリ10などのイム号により、アクテコ1−−タ16
に出力しバルブ12を作動しくバイパス通路5〕1)を
全開(点線イずl置)に覆ると共に、空気調節jj 1
9を全開にJる。従ってJJI気流111は全ml、触
媒6に流れ、かつ、1アボンブ8の空気も人品にu1気
中に混入づるので、加速時の排気中の未燃物質が反応酸
化され、通常の温度上昇線l)の時間t2よりも早い時
間t1でa線のように急上昇し設定湯度T1に達Jる。
When the engine suddenly accelerates from ffi speed rotation (interrupt speed), the 21st []-ra 15 is activated by the im number such as 10, and the actuator 1--ta 16 is activated.
output to operate the valve 12 to fully open the bypass passage 5] 1) (dotted line position 1), and at the same time turn on the air adjustment jj 1
9 at full throttle. Therefore, all ml of the JJI air flow 111 flows to the catalyst 6, and the air of 1 bomb 8 is also mixed into the u1 air, so the unburned substances in the exhaust gas during acceleration are reacted and oxidized, causing a normal temperature rise. At time t1, which is earlier than time t2 of line l), the water temperature rises rapidly like line a and reaches the set hot water temperature T1.

これによりターボラグは解消される。This eliminates turbo lag.

タービン入口ガス温度が設定温良−1に達づる時点(〔
I)で温度センリ−10の信号を入力し、コント【コー
ラ15は空気調節弁19に指令し、この開度をa線に沿
って徐々に減じ、時間t2 (・仝閑になるようにJる
。その間、−[アボンブ8の空気は、リリーフ弁20を
介してバイパス通路5bに供給されタービン4の駆動に
役立つ。従っC111〜【2の時間は触媒6を通る空気
組の徐々の減少により温度はその限界値(設定(11)
T1の状態を維持Jる。
The point in time when the turbine inlet gas temperature reaches the set temperature -1 ([
I) inputs the signal from the temperature sensor 10, and the controller 15 instructs the air control valve 19 to gradually reduce its opening along the line a, and for a time t2 (J During this time, the air from the bomb 8 is supplied to the bypass passage 5b via the relief valve 20 and serves to drive the turbine 4. Therefore, during the time period C111 to C112, the air group passing through the catalyst 6 gradually decreases. The temperature is its limit value (setting (11)
Maintain the state of T1.

次に、時間t2に達すると、」ン1〜ローラ15はアク
チコJ−夕16に指令し、バイパスバルブ12を実線の
ように開とし、排気を仝mバイパス通路5bに流づ。タ
ービン人口温度は]1を超しエンジンの出力上昇と共に
上昇してタービンの駆+1 − 動に奇!−Jする。イiお、この場合は触媒6側をJJ
I気が通ら/、、−いの(、III気温度が設定14石
(限界値)IIを超しても問題がない。
Next, when time t2 is reached, the engine 1 to the roller 15 command the actuator 16 to open the bypass valve 12 as shown by the solid line, allowing the exhaust gas to flow into the bypass passage 5b. The turbine population temperature exceeds 1 and rises as the engine output increases, causing the turbine to drive +1 - which is strange! -J. Ii, in this case, connect the catalyst 6 side to JJ.
I ki pass /,, - Ino (, III There is no problem even if the temperature exceeds the set 14 koku (limit value) II.

まI、:、1ンジン1がノック、1ングを9すると、ノ
ックしンリ22からの48号を一1ント1l−715)
131人力し、空気調節弁19又はバイパスパルj12
を伯動じタービンの回転数を調11i1りる。この場合
1−ンジンは(I(1i−if転数で比較的過給)j−
が^くイjるのて゛ノッコ1ングか/l、じ易く、従来
ではJj、(火11.5期のν角にJ、る面倒/、I−
’IIシト[1−ルを必東どしIこが、この実施例でt
it、ノックヒンリの追加のみぐタービンの1【1転を
調節しノック回避できる利点がある。
Ma I, :, 1 engine 1 knocks, 1 engine 9, knocks 48 from 22, 11 nt 1l-715)
131 Manpower, air control valve 19 or bypass pal j12
The rotational speed of the turbine is adjusted to 11i1. In this case, the 1-engine is (I (relatively supercharged at 1i-if rotation)j-
It is easy to calculate the angle of 1/l, but in the past, Jj, (Tue 11.5 period's ν angle J, is troublesome/, I-
In this example,
It has the advantage of being able to adjust the 1st rotation of the additional turbine to avoid knocking.

なお、リリーフ弁20はエンジン前月−によって排気が
逆流りるのを防ぐにう、また、触!1M6の上流のIJ
Jjの高い所に空気を噴IJ1でさるJ、う予F〔をか
1)だ弁構成にづる。
In addition, the relief valve 20 is used to prevent exhaust gas from flowing backwards due to the engine. IJ upstream of 1M6
Air is injected at the high point of Jj with IJ1, and the valve configuration is as follows.

J−アポンプ8のクラッチ231よ、前述の空気流量の
制御Iて’ 7aa l良が調節し切れないような緊急
時において、−]]ン1〜11−ラ1の指令(゛作動し
、エンジン1からの、1アボンゾ8への動力遮断を行な
う。
In an emergency when the clutch 231 of the J-A pump 8 cannot fully adjust the air flow rate control I'7aa1, the commands of the engines 1 to 11-1 (-) are activated and the engine is activated. Power is cut off from 1 to 1 Abonzo 8.

第6図には、伯の実施例を承り。この実施例iJバイパ
スバルブの切換と連動したかIJらでJアボンブからの
空気を振り分けるにうにしIこbのぐある。即ち、第7
図に示すように、バイパスバルブ12の上流にυll連
通路5横切るように3個の空気噴射口13を段目、この
上流の空気通路18に絞り24を設ける。更に、バイパ
ス通路5bを触媒側通路5aより大ぎくとり、また空気
噴射口13の右側のものを小径にする。
Figure 6 shows an example of Haku. In this embodiment, the air from the J bomb is distributed by the IJ in conjunction with the switching of the IJ bypass valve. That is, the seventh
As shown in the figure, three air injection ports 13 are provided in stages upstream of the bypass valve 12 so as to cross the υll communication path 5, and a throttle 24 is provided in the air path 18 upstream of the three air injection ports 13. Further, the bypass passage 5b is made larger than the catalyst side passage 5a, and the diameter of the one on the right side of the air injection port 13 is made smaller.

これにより、バルブ12を動かしてn1気を撮り分ける
とき、空気も共に振り分【Jることができ、触媒側通路
5aからバイパス通路5bにバルブ12を切換える途中
で、必要以上の空気が触媒に流れその焼損を+n <こ
とを防11−でき効果的ぐある。
As a result, when moving the valve 12 to separately take pictures of n1 air, the air can also be distributed, and in the process of switching the valve 12 from the catalyst side passage 5a to the bypass passage 5b, more air than necessary is sent to the catalyst. It is possible to effectively prevent the flow from burning out.

なお、第6図には制御部祠を省略しCある。In addition, in FIG. 6, the control section is omitted and is indicated by C.

この実施例は絞りを適切にJることにより、前実施例の
空気調節弁やリリーフ弁が不要どなり、かつ、バルブ1
3の空気冷却にも役ftっムのとなる。
By appropriately adjusting the throttle, this embodiment eliminates the need for the air control valve and relief valve of the previous embodiment, and also eliminates the need for valve 1.
It is also useful for air cooling.

第8図には、他の実施例を示1゜この実施例はバイパス
バルブの駆動アクヂコ]−−タの動力を吸入几力によっ
て行なうようにしたもので・ある。
FIG. 8 shows another embodiment. In this embodiment, the actuator for driving the bypass valve is powered by suction power.

即ら、触媒6をケース25の右側に奇ぜて、右側にバイ
パス通路5bを設け、この切換えを行なうバルブ12を
アクチュ■−夕16(第9図参照)のダイX7フラム2
6に[1ツド27を介して連結する。アクチ]−1−夕
16の右側の圧力室28には]ンプレツサ3の出1」汗
h4!:導管35を介して接続し、右側の圧力室30に
は絞弁33下流の吸入管の圧力を逆止弁34及びT1磁
弁36を介しく導管37により接続りる。なお、圧力室
30にはぼね31を設置−Jるど共に、ロッド27の貫
通部にシール祠32を設置ノる。また、触!116の直
ぐ上流に空気の1lJi IJ l’+ 13を設GJ
、図示けざるI−7ボン/により空気を供給ぐきるよう
に覆る。
That is, the catalyst 6 is moved to the right side of the case 25, the bypass passage 5b is provided on the right side, and the valve 12 that performs this switching is connected to the die
6 through the [1] wire 27. In the pressure chamber 28 on the right side of [Acti]-1-E 16] there is [Output 1 of Empressa 3] Sweat h4! : Connected via a conduit 35, and the pressure of the suction pipe downstream of the throttle valve 33 is connected to the pressure chamber 30 on the right side via a conduit 37 via a check valve 34 and a T1 magnetic valve 36. In addition, a spring 31 is installed in the pressure chamber 30, and a sealing hole 32 is installed in the penetrating portion of the rod 27. Touch again! Air 1lJi IJ l'+ 13 is installed immediately upstream of 116GJ
, covered so that air can be supplied by an I-7 bomb/not shown.

次に作用を説明りる。エンジンが低負向低回転数のとき
、絞弁33が閉じ【いるため、下流の吸気管(吸入通路
)2は数100mv+ gの負ハとイfす、]コンプレ
ツリの出1」圧力は若干の+lE fJ’−(0〜数l
 Qms++ g )となっている。吸気管2の負圧に
より、逆止弁34が開き、N磁片36の大気遮断のため
、アクチュエータ16は右側の圧力室30が大きな負圧
となり、ばね31のツノに打勝って[1ツド27を右方
に移動し第8図のようにバルブ12を右方へ傾ける。従
って、排気はバイパス通路5bを通ってタービン4に流
れ込み、通常の作用をづる。この場合、空気の噴射口1
3は閉状態とする。
Next, the effect will be explained. When the engine is running at a low rotational speed in the negative direction, the throttle valve 33 is closed, so the downstream intake pipe (intake passage) 2 has a negative impact of several 100mV + g. +lE fJ'-(0 to several l
Qms++g). Due to the negative pressure in the intake pipe 2, the check valve 34 opens, and the N magnetic piece 36 blocks the atmosphere, causing the actuator 16 to create a large negative pressure in the pressure chamber 30 on the right side, which overcomes the horn of the spring 31 and becomes 1. 27 to the right and tilt the valve 12 to the right as shown in FIG. Therefore, the exhaust gas flows into the turbine 4 through the bypass passage 5b and resumes normal operation. In this case, air injection port 1
3 is in the closed state.

次に、加速のため、絞弁33を全開状態にすると、絞弁
33下流の吸気管2の圧力は大気圧又は正圧となるため
逆止弁34は閉じ、同時に、電磁弁36を、該圧力の変
化率又は、絞弁33の開度位置を検出して大気と導通す
るように作動さける。
Next, when the throttle valve 33 is fully opened for acceleration, the pressure in the intake pipe 2 downstream of the throttle valve 33 becomes atmospheric pressure or positive pressure, so the check valve 34 closes, and at the same time, the solenoid valve 36 is opened. The rate of change in pressure or the opening position of the throttle valve 33 is detected to establish communication with the atmosphere.

このため、アクチュ1−夕16は右側の圧力室30が大
気圧となることにより、ばね31で【」ラド27を左側
に移動し、バルブ12を点線のように右側に傾【プる。
Therefore, when the pressure chamber 30 on the right side becomes atmospheric pressure, the actuator 1-16 moves the rod 27 to the left side by the spring 31, and tilts the valve 12 to the right side as shown by the dotted line.

従って、排気は酸化触媒6を通ることになる。この時、
噴射口13を開き、空気を排気中に噴IJJするので、
排気中のCO等は空気−1R− 中のMAと触媒6内で反応し、タービン入1ニ1温撓を
高める。これにより、タービン4、従って、−1ンブレ
ツリ3の回転を上界し、空気流舗の増加によりエンジン
出力を増しターボラグを解消する。
Therefore, the exhaust gas passes through the oxidation catalyst 6. At this time,
Since the injection port 13 is opened and the air is injected while exhausting,
CO, etc. in the exhaust reacts with MA in the air -1R- in the catalyst 6, increasing the thermal deflection entering the turbine. This limits the rotation of the turbine 4 and, therefore, the -1 engine 3, increases the engine output by increasing the air flow, and eliminates turbo lag.

次に」ンブレッサ3の出力の出D 1.fカが更に上昇
して、エンジンが高負荷又は高回転数(ターボチャーシ
トも高負荷)になると、アクチュエータ16は圧力室(
正圧室)28の圧力上昇により、ばね31に抗し1目ツ
ド27を右方に移動し、バルブ12を実線の位置に覆る
ので、排気をバイパス通路51)に通し、触媒6には通
さない、このような状態では1ノ[気の温度も高まって
いるので、これにより触媒の焼損を防止し、その耐久性
を向上Jる。なJ−3、バルブ12を閉じた時点で噴射
口13を閉じる。
Next, the output D of the compressor 3 1. When the f-force increases further and the engine becomes a high load or high rotation speed (the turbocharger also has a high load), the actuator 16 closes the pressure chamber (
As the pressure in the positive pressure chamber 51) increases, the first valve 27 moves to the right against the spring 31, covering the valve 12 to the position shown by the solid line. Under these conditions, the temperature of the air is also high, which prevents the catalyst from burning out and improves its durability. J-3, the injection port 13 is closed when the valve 12 is closed.

絞弁33を閉じると、電磁弁36も閉じ、逆1[弁34
は開き、最初の状態に戻る。
When the throttle valve 33 is closed, the solenoid valve 36 is also closed, and the reverse 1 [valve 34
opens and returns to its initial state.

なお、空気の噴射口13は、制御Uずに、常時間口づる
ようにし−Cもによい。また、第8図には、コンプレツ
リ3の上流の吸気通路2にはエア70− I 〇 − 一メータ38を尚え空気流M + it ml−Jるよ
うにしである。
In addition, it is also preferable that the air injection port 13 be kept open all the time without the control U. In addition, in FIG. 8, an air 70-1 meter 38 is provided in the intake passage 2 upstream of the compressor 3 so that an air flow M+it ml-J is provided.

第10図には、他の実施例を示1゜この実施例はバイパ
スバルブの制till uJ力源をロンブレラ]Jの出
口圧力のみとし、これを触媒の温度等により電子的に制
御するようにしたものである。
Fig. 10 shows another embodiment.1 In this embodiment, the power source for controlling the bypass valve is only the outlet pressure of the Lombrera, and this is electronically controlled by the temperature of the catalyst, etc. This is what I did.

即ち、バルブ12のアクチーl−,I−夕16は圧力室
28に導管41により二lンブレツザ3の出口圧力が導
かれ、この導管41から]ンプレッリ3の上流吸気通路
に分岐する導管42との分岐部に、電磁弁40を備える
That is, the actuators 1 and 16 of the valve 12 are connected to a pressure chamber 28 through a conduit 41 to which the outlet pressure of the two-liter cylinder 3 is introduced, and from this conduit 41 to a conduit 42 that branches to the upstream intake passage of the amplifier 3. A solenoid valve 40 is provided at the branch portion.

」ン1−〇−ラ15は圧力セン1す39により」ンブレ
ッサの出口圧力信号を入力覆ると共に、触媒6の内部温
度を温度センサ10で1測しで人力(る。また、必要に
応じて二[ンジン回転数、−「アノローメータ、又は絞
弁開度等の信号を入力でる。
The engine 1-0-ra 15 inputs the output pressure signal of the engine 1 through the pressure sensor 139, and also measures the internal temperature of the catalyst 6 with the temperature sensor 10 manually. 2. Signals such as engine rotation speed, anorometer or throttle valve opening can be input.

これらの信号に基づいて、」シト[1−ラ15は、電磁
弁40にこれを駆動づるデユーティ信号を出力する。
Based on these signals, the valve 15 outputs a duty signal to the solenoid valve 40 to drive it.

デユーティ信号は第11図に示1ように、1リイクルの
時間を−1とし、電磁弁40の問いでいる時間をIon
とりると、デユーディ顧はI / 1’ onx100
%ど<N 6゜ ぞこぐ、このデー1−ティ飴をらえ(電磁弁の制御特性
を第12図のように、元ル一定の場合、デフ−ティ(I
fの増加と共に、制御1Eツノが減少りるように決める
The duty signal is as shown in FIG.
If you take it, Dudy's advice is I / 1' onx100
%do<N
It is determined that the control 1E horn decreases as f increases.

即ら、温石Lンリ10又は、J−f力しンリご39か設
定(IC1に近づくはどデ?−ティ碩を小さくし、電磁
プf’42の弁体を右hMに突出刃割合を多くシ(導管
/12から一1ンゾレツ1J3の入口への灰し流品を減
らし、アクブト−1−一夕16の汀力室2 B /\1
する導管41の制御圧力を畠くJる。
In other words, set the warm stone L 10 or the J-f force 39 (as it approaches IC1, make the tee smaller and set the protruding blade ratio to the right hM of the valve body of the electromagnetic valve f'42). Many (reduce the amount of waste flowing from conduit/12 to the entrance of 11 Nzoretsu 1J3, and force chamber 2 B/\1 of Akubut-1-16)
The control pressure of the conduit 41 is controlled.

この結束、バルジ12は図のようにイ、に移動し7バイ
パス通路51)のυF気気流音多くし、触媒6の温度を
トげ、かくして、タービン人1−1111気渇1ηをで
きるだ目高編に保つと共に、過給1Fを規定値以内に保
持Jるのぐある。
With this binding, the bulge 12 moves to A as shown in the figure, increases the υF airflow noise in the bypass passage 51), increases the temperature of the catalyst 6, and thus makes it possible to reduce the temperature of the turbine 1-1111 by 1η. In addition to maintaining the high knitting, there is also a loop to maintain the supercharging 1F within the specified value.

1発明の効果1 以上説明しくきたように、この発明によれば、その構成
をタービン上流の排気通路に触媒を設番ノると共にこの
触媒をバイパスする弁装置を設i−J、空気混合した触
媒を通るu1気の流出を調節Jる構成としたため、以下
に掲げる効果が得られる。
1 Effects of the Invention 1 As explained above, according to the present invention, the configuration is such that a catalyst is installed in the exhaust passage upstream of the turbine, and a valve device is installed to bypass this catalyst, and air is mixed. Since the configuration is such that the outflow of air through the catalyst is regulated, the following effects can be obtained.

(1)  触媒を通る可燃ガス(Co等)の絶対量を調
節りるため、タービン入口のガス編瓜の調節を極めて容
易、かつ確実に行なうことができる。
(1) Since the absolute amount of combustible gas (such as Co) passing through the catalyst is adjusted, the gas flow at the turbine inlet can be adjusted extremely easily and reliably.

(2)バイパス通路を設けたので、エンジン高速回転時
、バイパス流聞を増やし、]ンジン背圧の」二昇を少な
くすることができる。
(2) Since the bypass passage is provided, it is possible to increase the bypass flow and reduce the increase in engine back pressure when the engine rotates at high speed.

(3)排気中のCO等を処理するため、υ[気油浄化と
共に、排気]−ネルギの有効回収を用能と覆る。
(3) In order to treat CO, etc. in the exhaust, υ [gas and oil purification as well as exhaust] - effective recovery of energy is considered a function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の位置実施例を示?I説明図、第2図
〜第12図は他の実施例の説明図である。 図面に表われた符号の説明 1・・・]−ンジン    2・・・吸気通路3・・・
」ンブレッサ  4・・・タービン5・・・排気通路 
   6・・・触媒8・・・エアポンプ(空気供給装置
) 9・・・排気マニホルド 10・・・温度センサ12・
・・弁       13・・・鴫躬口、15・・・」
ン1〜ローラ  16・・・アクチコ■−タ17・・・
弁菰餠 −・二・、1.〒ζ月? 一20= 第1図 3:つ>フル1丁 第2図        第3図 第4図 第10図 第9図 心
Figure 1 shows a positional embodiment of this invention? I explanatory diagrams and FIGS. 2 to 12 are explanatory diagrams of other embodiments. Explanation of symbols appearing in the drawings 1...] - Engine 2... Intake passage 3...
”Bressor 4...Turbine 5...Exhaust passage
6... Catalyst 8... Air pump (air supply device) 9... Exhaust manifold 10... Temperature sensor 12...
...Ben 13...Yumankou, 15..."
N1~Roller 16... Actico ■-ta 17...
Benkomochi-・2・、1. 〒ζ month? 120 = Figure 1 3: Full 1 piece Figure 2 Figure 3 Figure 4 Figure 10 Figure 9 Centroid

Claims (1)

【特許請求の範囲】[Claims]  吸気通路に吸気を圧送するコンプレッサを備えこのコ
ンプレッサを駆動するタービンを排気通路に介装し、前
記タービンの上流に触媒を設置したターボチャージャ付
エンジンにおいて、触媒の上流の排気通路に空気を供給
する空気供給装置と、前記触媒をバイパスするバイパス
通路と、エンジン運転状態に応じて触媒を通る排気の流
量を前記バイパス通路により制御する弁装置とを設けた
ことを特徴とするターボチャージャ付エンジン。
In a turbocharged engine that includes a compressor that pumps intake air into an intake passage, a turbine that drives the compressor is interposed in the exhaust passage, and a catalyst installed upstream of the turbine, air is supplied to the exhaust passage upstream of the catalyst. A turbocharged engine comprising an air supply device, a bypass passage that bypasses the catalyst, and a valve device that controls the flow rate of exhaust gas passing through the catalyst depending on the engine operating state using the bypass passage.
JP59190601A 1984-09-13 1984-09-13 Engine with turbocharger Pending JPS6170115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59190601A JPS6170115A (en) 1984-09-13 1984-09-13 Engine with turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59190601A JPS6170115A (en) 1984-09-13 1984-09-13 Engine with turbocharger

Publications (1)

Publication Number Publication Date
JPS6170115A true JPS6170115A (en) 1986-04-10

Family

ID=16260777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59190601A Pending JPS6170115A (en) 1984-09-13 1984-09-13 Engine with turbocharger

Country Status (1)

Country Link
JP (1) JPS6170115A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309725A (en) * 1987-06-10 1988-12-16 Yanmar Diesel Engine Co Ltd Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
EP1233162A1 (en) * 2001-01-04 2002-08-21 Superdrive Inc. Supplemental air system for engine exhaust manifolds
US6862885B1 (en) 2003-11-20 2005-03-08 Super Drive, Inc. Air injection apparatus for a turbocharged diesel engine
FR2859760A1 (en) * 2003-09-15 2005-03-18 Renault Sa IMPROVED DEVICE AND METHOD FOR CHEMICAL AND KINETIC ENERGY MANAGEMENT OF EXHAUST GASES
FR2872858A1 (en) * 2004-07-09 2006-01-13 Renault Sas SUPERIMENT THERMAL MOTOR WITH ADDITIONAL COMPRESSOR
WO2008114730A1 (en) 2007-03-14 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust control device for internal combustion engine
JP2008280873A (en) * 2007-05-09 2008-11-20 Nissan Motor Co Ltd Internal combustion engine
WO2012060155A1 (en) 2010-11-02 2012-05-10 日立造船株式会社 Exhaust gas emission purification device
DE102008057572B4 (en) 2008-11-15 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Exhaust system for an internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309725A (en) * 1987-06-10 1988-12-16 Yanmar Diesel Engine Co Ltd Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
EP1233162A1 (en) * 2001-01-04 2002-08-21 Superdrive Inc. Supplemental air system for engine exhaust manifolds
FR2859760A1 (en) * 2003-09-15 2005-03-18 Renault Sa IMPROVED DEVICE AND METHOD FOR CHEMICAL AND KINETIC ENERGY MANAGEMENT OF EXHAUST GASES
US6862885B1 (en) 2003-11-20 2005-03-08 Super Drive, Inc. Air injection apparatus for a turbocharged diesel engine
FR2872858A1 (en) * 2004-07-09 2006-01-13 Renault Sas SUPERIMENT THERMAL MOTOR WITH ADDITIONAL COMPRESSOR
WO2008114730A1 (en) 2007-03-14 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust control device for internal combustion engine
US8286418B2 (en) 2007-03-14 2012-10-16 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2008280873A (en) * 2007-05-09 2008-11-20 Nissan Motor Co Ltd Internal combustion engine
DE102008057572B4 (en) 2008-11-15 2021-09-02 Bayerische Motoren Werke Aktiengesellschaft Exhaust system for an internal combustion engine
WO2012060155A1 (en) 2010-11-02 2012-05-10 日立造船株式会社 Exhaust gas emission purification device

Similar Documents

Publication Publication Date Title
GB2529540A (en) Forced induction device for a combustion engine, combustion engine and method for operating a combustion engine
GB2453211A (en) Operating a turbocharged i.c. engine having high-pressure EGR
JPS5996434A (en) Internal combustion engne
JPS6170115A (en) Engine with turbocharger
JPS59160022A (en) Secondary air supplying apparatus of engine with turbosupercharger
JPS5982526A (en) Supercharger for internal-combustion engine
JPH09137754A (en) Exhaust gas recirculation device of internal combustion engine furnished with supercharger
JPS63309727A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JPH0478818B2 (en)
GB2089429A (en) Ic enginee with two exhaust-driven turbochargers
JPH0751897B2 (en) Control device for turbocharger
GB2089425A (en) Ic engine with two exhaust-driven turbochargers
JPH0192532A (en) Engine provided with exhaust turbocharger
JPH0433966B2 (en)
JPS61201828A (en) Turbo-charging device of internal-combustion engine
EP4206446B1 (en) Air intake system for a vehicle&#39;s internal combustion engine
JPS61277817A (en) Engine equipped with exhaust turbosupercharger
JPS58195023A (en) Internal-combustion engine with exhaust turbo supercharger
JPS61291728A (en) 2-step type supercharging device
JPS58170827A (en) Supercharging device for internal-combustion engine
JPS61112734A (en) Multiple turbo-supercharger for internal-combustion engine
JPS6042191Y2 (en) Bypass path control device for engine with exhaust turbocharger
JP2605053B2 (en) Engine boost pressure control device
JPS63124832A (en) Internal combustion engine with exhaust turbosupercharger
JPS61205317A (en) Engine with turbocharger