JPS617010A - Method for diagnosing factor for thickness deviation of seamless pipe - Google Patents

Method for diagnosing factor for thickness deviation of seamless pipe

Info

Publication number
JPS617010A
JPS617010A JP59127745A JP12774584A JPS617010A JP S617010 A JPS617010 A JP S617010A JP 59127745 A JP59127745 A JP 59127745A JP 12774584 A JP12774584 A JP 12774584A JP S617010 A JPS617010 A JP S617010A
Authority
JP
Japan
Prior art keywords
wall thickness
thickness
value
pipe
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59127745A
Other languages
Japanese (ja)
Inventor
Kazuo Fujisawa
藤沢 和夫
Hisao Yamaguchi
久雄 山口
Riichi Murayama
村山 理一
Koichi Hashimoto
晃一 橋本
Yasuhei Nakanishi
中西 廉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59127745A priority Critical patent/JPS617010A/en
Publication of JPS617010A publication Critical patent/JPS617010A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To diagnose exactly the factors for the thickness deviation of a pipe by measuring the wall thickness in the various parts along the axial direction of the pipe at plural circumferential points thereof and detecting the specific factors contributing to generating the change in the wall thickness from the distribution and period of the thickness deviation, and the max. and min. values of the circumferential thickness deviation. CONSTITUTION:The wall thicknesses in the various parts in the axial length direction of the seamless pipe are measured at the plural circumferential point thereof by using an electromagnetic ultrasonic method. The functions of the wall thickness distributions in the axial length direction are determined with the optional two points in the circumferential direction in accordance with the measured values. The cross-correlation functions are drived from these functions of the wall thickness distributions. Whether the peak value in the prescribed region of the cross-correlation functions exceeds a predetermined reference value or not is judged. The average values of the wall thickness in the axial length direction of the measured values described above are calculated and whether the difference between the max. value and min. value in the circumferential direction among the average values exceeds the predetermined other reference value or not is judged. The exact diagnosis of the factors for the thickness deviation is thus made possible and the adequate disposition is executed with a good timing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は穿孔機、マンドレルミル等の製管設備の不良、
或いは製管用素材−たるビレットの熱処理不良等の偏肉
要因を製造された管の肉厚を分布に基づいて診断する方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is intended to solve problems in pipe manufacturing equipment such as drilling machines and mandrel mills,
Alternatively, the present invention relates to a method for diagnosing the cause of uneven wall thickness, such as poor heat treatment of a raw material for pipe making - a barrel billet, based on the distribution of the wall thickness of a manufactured pipe.

〔従来技術〕[Prior art]

継目無管を、例えばマンネスマン・マンドレルミル 式
で製造する場合、素材たるビレットを加熱炉にて所要温
度に加熱した後、穿孔機にて中心に沿って孔を穿ち素管
を得、この素管を必要に応じてエロンゲータに通した後
、又は直接マンドレルミルに通して延伸圧延し、ストレ
ソチレシューサ、その他の圧延機で所定の外径、肉厚に
仕」二げることにより製造している。ところでこのよう
にして製造される継目無管には種々の要因に基づき肉厚
にばらつきが生じる。このような肉厚のばらつき発生の
要因としては管素材の材質、加熱温度の不均一等に基づ
く場合の外、穿孔機、マンドレルミル、レデューサ等の
製管設備に起因する場合も少なくない。例えば穿孔機に
あってはそのプラグの摩耗、偏心等によって、またマン
ドレルミルにあってはロールのアライメント不良、ロー
ル摩耗、マンドレルバ−のたわみ等が偏肉を発生させる
ことが知られており、上記した加工具等の点検。
When manufacturing seamless pipes using, for example, a Mannesmann mandrel mill, the raw material billet is heated to the required temperature in a heating furnace, and then a hole is punched along the center using a drilling machine to obtain a blank tube. After passing it through an elongator as necessary, or directly passing it through a mandrel mill and elongating it, it is manufactured by finishing it to the specified outer diameter and wall thickness using a stretcher or other rolling mill. There is. However, seamless pipes manufactured in this manner have variations in wall thickness due to various factors. The causes of such variations in wall thickness are not only due to the material of the tube material, non-uniform heating temperature, etc., but also often due to tube manufacturing equipment such as a punching machine, a mandrel mill, and a reducer. For example, it is known that uneven thickness can occur in drilling machines due to wear and eccentricity of the plug, and in mandrel mills due to roll misalignment, roll wear, deflection of the mandrel bar, etc. Inspection of processed tools, etc.

整備、交換により偏肉の程度を低減し得ることが認めら
れる。
It is recognized that the degree of uneven thickness can be reduced by maintenance and replacement.

しかし従来にあってはこのような点検整備、工具交換等
は定期的に、例えば製管本数等に基づいて行われている
ため安全を見込んで点検整備、或いは工具交換を早めに
行いがちであり、点検、整備回数が多(なり、また工具
コストも高くつく等の問題があった。
However, in the past, such inspections and maintenance, tool replacement, etc. were performed periodically, for example, based on the number of pipes being manufactured, so inspections and maintenance or tool replacements tended to be carried out early with safety in mind. There were problems such as frequent inspections and maintenance, and high tool costs.

本発明者等は製造された管の偏肉とその発生要因で在る
穿孔機、マンドレルミル等の製管設備の不良、或いはビ
レットの片焼は等の熱処理不良との関係につき実験、研
究を行なった結果、例えば穿孔機のプラグ不良、特に偏
心がある場合には管内面に螺旋状の偏肉が発生し、また
マンドレルミル、プラグミルの不良、特にロールギャソ
プアライメント不良が在る場合には管の軸長方向に二定
間隔で90°ずつ向きの異った位置で偏肉が生じ、更に
ビレット片焼は等の不良が存する場合には管内面に前記
穿孔機不良の場合と同様の螺旋状の偏肉が発生するが、
この偏肉の周期は穿孔機不良の場合と異ったものとなる
こと等を知見した。またこれらの特徴的な肉厚変化は継
目無管の最終製品の段階においても残存し、従って各製
管装置の出側毎に肉厚針を配して逐一肉厚分布を測定す
る必要はなく、最終製品について、その周方向の複数個
所の夫々において軸長方向の肉厚を測定しミこれを解析
して各偏肉要因毎に肉厚変動分を分離し、偏肉発生要因
を正確に、しかも容易に診断し得ることも解った。
The present inventors conducted experiments and research into the relationship between uneven wall thickness of manufactured pipes and defects in pipe manufacturing equipment such as punching machines and mandrel mills, which are the causes of uneven thickness, and defects in heat treatment such as billet charring. As a result, for example, if there is a defective plug in the drilling machine, especially if there is eccentricity, a spiral thickness deviation will occur on the inner surface of the tube, or if there is a defect in the mandrel mill or plug mill, especially if there is a defective roll gas sop alignment. If uneven thickness occurs at two 90° different positions in the axial direction of the tube, and if there are other defects such as billet burnt, the inner surface of the tube should be treated in the same manner as in the case of a defective punching machine. Spiral-like uneven thickness occurs,
It was found that the period of this uneven thickness was different from that in the case of a defective drilling machine. In addition, these characteristic wall thickness changes remain even in the final product stage of seamless pipes, so there is no need to measure the wall thickness distribution one by one by placing a wall thickness needle on each exit side of each pipe manufacturing device. For the final product, we measure the wall thickness in the axial direction at multiple points in the circumferential direction, analyze this, and separate the wall thickness variation for each cause of thickness unevenness to accurately identify the causes of uneven thickness. , and that it can be easily diagnosed.

〔目的〕〔the purpose〕

本発明はかかる知見に基づきなされたものであって、そ
の目的とするところは電磁超音波法を用いて周方向複数
個所の夫々において管の軸長方向各部の肉厚を測定し、
、この肉厚測定値に基づい了、その偏肉分布、偏肉の周
期、周方向の偏肉の最大値、最小値等を求め、偏肉発生
要因特有の肉厚変化を検出し、正確に偏肉要因を診断し
、適切な処理を適性なタイミングで無駄なく整備点検を
行い得るようにした継目無管の偏肉要因診断方法を提供
するにある。
The present invention has been made based on this knowledge, and its purpose is to measure the wall thickness of each part in the axial direction of the tube at each of a plurality of circumferential locations using an electromagnetic ultrasonic method,
Based on this wall thickness measurement value, the uneven thickness distribution, period of uneven thickness, maximum and minimum values of uneven thickness in the circumferential direction, etc. are determined, and changes in wall thickness peculiar to the cause of uneven thickness can be detected and accurately measured. To provide a method for diagnosing the cause of uneven thickness of a seamless pipe by diagnosing the cause of uneven thickness of a seamless pipe and enabling appropriate treatment and maintenance and inspection at an appropriate timing without waste.

〔構成〕〔composition〕

本発明に係る継目無管の偏肉要因診断方法はビレットに
穿孔機を用いて、穿孔し、得られた素管を延伸圧延して
製造された継目無管の周方向複数個所について夫々軸長
方向各部の肉厚を測定し、該測定値に基づき周方向の任
意の2箇所についての各軸長方向肉厚分布関数を求め、
これら肉厚分布関数に基づいて相互相関関数を導出し、
該相互相関関数に基づいて偏肉要因を判別することを特
徴とする。
The method for diagnosing the cause of uneven wall thickness of a seamless pipe according to the present invention is to perforate a billet using a punching machine, and to elongate and roll the obtained raw pipe, to determine the axial length of the seamless pipe at a plurality of locations in the circumferential direction. Measure the wall thickness at each part in the direction, calculate the wall thickness distribution function in the longitudinal direction of each axis at any two locations in the circumferential direction based on the measured values,
A cross-correlation function is derived based on these thickness distribution functions,
The present invention is characterized in that the cause of uneven thickness is determined based on the cross-correlation function.

本発明に係るいまひとつの継目無管の偏肉要因診断方法
はビレットに穿孔機を用いて穿孔し、得られた素管を延
伸圧延して製造された継目無管の周方向複数個所につい
て夫々軸長方向各部の肉厚を測定し、該測定値に基づき
周方向の任意の2個所についての各軸長方向肉厚分布関
数を求め、これら肉厚分布関数に基づいて相互相関関数
を導出し、該相互相関関数の所定領域内でのピーク値が
予め定めた基準値を越えるか否かの判断、並びに前記測
定値の各軸長方向肉厚の平均値を算出し、平均値のうち
の周方向における最大値と最小値との差を予め定めた他
の基準値と比較し、差が基準値を越えるか否かの判断に
基づいて偏肉要因を判別することを特徴とする。
Another method for diagnosing the cause of thickness unevenness in a seamless pipe according to the present invention is to perforate a billet using a punching machine, and then elongate and roll the obtained raw pipe to form a seamless pipe at multiple locations in the circumferential direction. Measure the wall thickness of each part in the longitudinal direction, determine the thickness distribution function in the longitudinal direction of each axis for any two points in the circumferential direction based on the measured value, derive the cross-correlation function based on these thickness distribution functions, It is determined whether the peak value within a predetermined region of the cross-correlation function exceeds a predetermined reference value, and the average value of the wall thickness in the longitudinal direction of each axis of the measured values is calculated, and the circumference of the average value is calculated. The method is characterized in that the difference between the maximum value and the minimum value in the direction is compared with another predetermined reference value, and the cause of uneven thickness is determined based on a judgment as to whether or not the difference exceeds the reference value.

〔実施例〕 以下本発明をその実施例を示す図面に基づき具体的に説
明する。第1図はマンネスマン・マンドレルミル方式に
よる製管工程及び本発明方法の制御系を示す模式図であ
り、図中1はビ1ノット、2は加熱炉、3は穿孔機、4
ばマンドレルミル、5は再加熱炉、6はストレンチレデ
ューサ、7は冷却床を示している。ビレット1は加熱炉
2にて所定温度に加熱され、穿孔機3にて中心部に穿孔
され、次いでマンドレルミル4にて粗圧延され、ホット
ソーにてクロップ部を切断され、再加熱炉5にて加熱し
た後、ストレッチレデューサ6にて所定の外径、肉厚に
圧延され、冷却床7にて冷却して継目無管を製造してい
る。そしてストレッチレデューサ6の出側において肉厚
測定装置10を用いて管Pの周方向におげる複数個所で
夫々軸長方向に所定のピッチ(0,1〜10cm)で肉
厚を測定する。
[Example] The present invention will be specifically described below based on drawings showing examples thereof. FIG. 1 is a schematic diagram showing the pipe making process using the Mannesmann mandrel mill method and the control system of the method of the present invention.
5 is a reheating furnace, 6 is a trench reducer, and 7 is a cooling bed. The billet 1 is heated to a predetermined temperature in a heating furnace 2, perforated in the center with a perforator 3, then roughly rolled in a mandrel mill 4, cut into cropped parts with a hot saw, and then transferred to a reheating furnace 5. After heating, it is rolled to a predetermined outer diameter and thickness using a stretch reducer 6, and then cooled on a cooling bed 7 to produce a seamless pipe. Then, on the outlet side of the stretch reducer 6, the wall thickness is measured at a plurality of locations in the circumferential direction of the pipe P at predetermined pitches (0.1 to 10 cm) in the axial direction using the wall thickness measuring device 10.

第2図は肉厚測定装置lOの計測部及び信号処理部の1
例を示すブロック図であり、ストレンチレデューサの出
側における継目無管Pの移動域の周囲に励磁コイルaが
同心に配設せしめられており、これに直流電流が通流せ
しめられると、継目無管Pにその軸方向への直流磁界が
付与されるようになっている。一方13は同期パルス発
生回路であって、そのトリガー信号に基づきパルス電流
発生回路14はパルス電流を発し、送信コイル11に通
電するごとにより管Pの半径方向の磁束が変化し、この
磁束変化に伴って管Pの表面に渦電流が発生する。この
渦電流と前記磁界とによるローレンツ力にて管2表面と
垂直な方向に変化する歪(フレミングの左手の法則)が
発生し、該歪は管Pの表面と垂直な方向に伝播する。即
ち管2表面から縦波の超音波が発生する。この超音波は
管P中を伝播し、その内周面で反射し、この反射超音波
は夕(表面に到達し、前述と逆の過程(フレミングの右
手の法則)により渦電流を発生し、受信コイル12によ
り誘起電圧として検出され、増幅器15にて増幅された
後、同期検波器16により包絡線検波されて時間差測定
回路17へ入力される。同期検波器16には同期パルス
発生回路13からトリガー信号が与えられており、これ
によりパルス電流を送信コイル11に通電した時点から
最初のエコーを検出した時点まで計数を行わせるべき信
号を時間差測定回路・17へ出力する。時間差測定回路
17は管Pの表面に超音波が発生した時点から内表面で
反射しノこエコーが検出される時点までの時間差を求め
インターフェース18を通して演算装置20の肉厚変換
回路21へ与える。肉厚変換回路21は上記時間差及び
別途求めた管Pの温度及び該温度での縦波伝播速度に基
づいて管Pの肉厚を測定する。この肉厚は管Pの周方向
複数個所、例えば6ケ所の夫々について管Pの全長にわ
たる肉厚を算出し、夫々′/jfJW、回路22へ出力
する。
Figure 2 shows 1 of the measuring section and signal processing section of the wall thickness measuring device IO.
It is a block diagram showing an example, in which an excitation coil a is arranged concentrically around the movement range of the seamless pipe P on the exit side of the trench reducer, and when a direct current is passed through this, the joint A DC magnetic field is applied to the tubeless P in its axial direction. On the other hand, 13 is a synchronous pulse generation circuit, and based on the trigger signal, the pulse current generation circuit 14 emits a pulse current, and each time the transmitting coil 11 is energized, the magnetic flux in the radial direction of the tube P changes. Accordingly, an eddy current is generated on the surface of the tube P. The Lorentz force caused by this eddy current and the magnetic field generates a strain (Fleming's left-hand rule) that changes in a direction perpendicular to the surface of the tube 2, and this strain propagates in a direction perpendicular to the surface of the tube P. That is, longitudinal ultrasonic waves are generated from the surface of the tube 2. This ultrasonic wave propagates through the tube P and is reflected by its inner circumferential surface, and this reflected ultrasonic wave reaches the surface (Fleming's right-hand rule) and generates an eddy current. It is detected as an induced voltage by the receiving coil 12, amplified by the amplifier 15, envelope-detected by the synchronous detector 16, and inputted to the time difference measuring circuit 17. A trigger signal is given, and this outputs a signal to the time difference measuring circuit 17 to cause counting to be performed from the time when the pulse current is applied to the transmitting coil 11 to the time when the first echo is detected.The time difference measuring circuit 17 The time difference between the time when the ultrasonic wave is generated on the surface of the pipe P and the time when the saw echo is detected when it is reflected on the inner surface is determined and sent to the wall thickness conversion circuit 21 of the arithmetic unit 20 through the interface 18.Thickness conversion circuit 21 measures the wall thickness of the pipe P based on the above time difference, the separately determined temperature of the pipe P, and the longitudinal wave propagation velocity at this temperature. The wall thickness over the entire length of the pipe P is calculated and output to the circuit 22 as '/jfJW, respectively.

演算回路22は入力された肉厚データについて、軸長方
向の肉厚分布関数、またこれりに基づき相互相関関数を
求め、更には肉厚データに基づいて軸長方向の平均値及
び平均値の周方向における値゛の最大値、最小値を求め
てこれらの差を算出し、夫々判定回路23へ出力する。
The arithmetic circuit 22 calculates the thickness distribution function in the axial direction and the cross-correlation function based on the input wall thickness data, and further calculates the average value in the axial direction and the average value based on the wall thickness data. The maximum value and minimum value of the value in the circumferential direction are determined, the difference between these values is calculated, and each is outputted to the determination circuit 23.

判定回路23は入力された各算出値に基づき継目無管に
形成された偏肉の原因がマンドレルミルに起因するもの
か、或いは穿孔機若しくはビレット片焼に起因するもの
かを判断する。
The determination circuit 23 determines whether the uneven thickness formed in the seamless pipe is caused by the mandrel mill, the punching machine, or the billet sintering, based on each input calculated value.

以下先ず継目無管に形成された偏肉がマンドレルミル、
特にそのロールギャップアライメント等に起因するか否
かの判断手順について第3図に従い説明する。先ず得ら
れた管に′ついてその周方向複数個所i  (i=1・
・・k)について管の軸長方向各部j (変形の大きい
トップ部、ボトム部を除く)についてくJ−1〜n点)
管各部の肉厚Di3を測定しくステップ■)、この肉厚
データに基づいて管の周方向複数個所について夫々軸長
方向についての測定値の相加平均−b−1、即ち このように管の軸長方向の肉厚値についてその相加平均
’−D +を求めると、この平均肉厚値Di は穿孔機
の不良及びヒレノドの片焼b3による偏肉の影響が消去
され一、マンドレルミルに起因する偏肉のみが抽出され
たものとなる。この理由は次のように説明される。
First, the uneven thickness formed in the seamless pipe is processed using a mandrel mill.
In particular, the procedure for determining whether the problem is caused by roll gap alignment or the like will be explained with reference to FIG. First, the obtained tube has multiple locations i (i=1・
・・J-1 to n points for each part j in the axial direction of the tube (excluding the top and bottom parts, which are subject to large deformations) for k)
Measure the wall thickness Di3 of each part of the pipe (Step 2). Based on this wall thickness data, calculate the arithmetic average -b-1 of the measured values in the axial direction at multiple points in the circumferential direction of the pipe, that is, the When the arithmetic average '-D + of the wall thickness values in the axial length direction is calculated, this average wall thickness value Di is determined by eliminating the effects of the uneven thickness due to defects in the punching machine and side burning b3 of the fillet throat, and Only the resulting uneven thickness is extracted. The reason for this is explained as follows.

即ち、素管について得た軸長方向の肉厚分布が例えば穿
孔機不良、ビレットの片焼りに起因する偏肉と、マンド
レルミルの不良に起因する偏肉とが重畳した結果である
とし、マンドレルミルの不良に起因する偏肉をa(1、
また穿孔機のプラグ、ビレットの片焼けに起因する偏肉
の周期をω、軸長方向の位置をLj とすると、素管の
軸長方向偏肉分布はa。+sinωLj と表わせる。
In other words, it is assumed that the wall thickness distribution in the axial direction obtained for the raw pipe is the result of a combination of uneven thickness due to a defect in the punching machine, single burning of the billet, and uneven thickness due to a defect in the mandrel mill, The uneven thickness due to defects in the mandrel mill is a(1,
Further, if the cycle of uneven thickness due to one-sided burning of the plug of the punching machine and the billet is ω, and the position in the axial direction is Lj, the uneven thickness distribution in the axial direction of the raw pipe is a. It can be expressed as +sinωLj.

ところでこれを素管の軸長方向に平均(前記偏肉周期の
少なくとも数周期分)すると、下式の如(になる。
By the way, if this is averaged in the axial length direction of the raw pipe (at least for several cycles of the uneven thickness cycle), the following equation is obtained.

従って穿孔機のプラグ不良、ビレット片焼けに起因する
偏肉に関する項が消去され、マンドレルミルの不良に起
因する偏肉aoのみの値となるのである。
Therefore, terms related to uneven thickness caused by a defective plug of the punching machine and uneven billet burnt are eliminated, and only the value of uneven thickness ao caused by a defect in the mandrel mill is obtained.

次に上述の如くにして求めた管の軸長方向肉厚平均値の
内、周方向における最大値Dimaχ、と最小値Di 
minとの差ΔDiを求め(ステップ■)、この偏差Δ
D+が予め定めた基準値に1よりも大きいか否かを判断
しくステップ■)、基準値に1よりも小さいときはマン
ドレルミルの不良に起因する偏肉は許容範囲内の値と判
断し診断を終了する。また基準値に1よりも人きい場合
にはマンドレルミルの圧延条件不良としてその再調節を
行い(ステップ■)、調節が終了すると次の管の製造を
開始しくステップ■)、当該素管についてステップ■に
戻り上述の過程を反復し、ΔDiが基準値に1より小さ
くなるまでマンドレルミルを再調節してゆく。
Next, among the average wall thickness values in the axial direction of the pipe obtained as described above, the maximum value Dimaχ in the circumferential direction and the minimum value Di
Find the difference ΔDi from min (step ■), and calculate this deviation Δ
Determine whether or not D+ is greater than 1 to the predetermined reference value (Step ■). If it is smaller than 1 to the reference value, the uneven thickness due to a defect in the mandrel mill is determined to be within the allowable range and diagnosed. end. In addition, if the reference value is greater than 1, the rolling conditions of the mandrel mill are deemed to be defective and the conditions are readjusted (step ■). When the adjustment is completed, the production of the next tube is started (step ■), and the step Return to step (3) and repeat the above process, readjusting the mandrel mill until ΔDi becomes smaller than 1 to the reference value.

次に穿孔機のプラグ不良、ピレノ1へ片焼けに起因する
偏肉発生の有無の検出過程について第4図に示すフロー
チャート及び第5図(イ)〜(ニ)の説明図に従って説
明する。先ず前述の場合と同様に得られた管について第
5図(イ)に示す如く管の周方向複数個所(,1〜h)
におげる軸長方向各部の肉厚を求め、第5図(ロ)、(
ハ)に示す如く変形の大きいトップ部、ボトム部(破線
の位置から夫々トップ側、ボトム側のデータを陣<)を
除く中間部の肉厚データ総数をN (j=1・・・N)
、データの取付間隔をΔβとして周方向にθだ&、l隔
てられた2個所の管軸方向の肉厚分布関数ψ1(j、Δ
l)、ψ2 (j、Δl)を求め(ステップ■)、これ
に基づいてkを変数とする相互相関関数C12’ (k
 、  Δl)を下式に従って導出する(ステップ■)
Next, the process of detecting whether or not there is uneven thickness due to a defective plug in the punching machine or uneven burnt on the pireno 1 will be described with reference to the flowchart shown in FIG. 4 and the explanatory diagrams shown in FIGS. 5(a) to 5(d). First, for the tube obtained in the same manner as in the case described above, as shown in FIG.
Determine the wall thickness of each part in the axial direction, and calculate the thickness of each part in the axial direction.
As shown in c), the total number of wall thickness data for the middle part excluding the top and bottom parts (from the broken line position to the top and bottom parts, respectively) is N (j=1...N).
, the installation interval of the data is Δβ, and the wall thickness distribution function ψ1(j, Δ
l), ψ2 (j, Δl) (step ■), and based on this, the cross-correlation function C12' (k
, Δl) is derived according to the formula below (step ■)
.

C+2(k、  Δβ) 但しに:係数 上式において右辺のψ2をψ2  (j−に+Δβ)と
したのはΔβが製管サイズにより変化するためである。
C+2(k, Δβ) However: Coefficient The reason why ψ2 on the right side in the above equation is set to ψ2 (+Δβ for j-) is that Δβ changes depending on the pipe size.

いま穿孔機のプラグ偏心が存する場合、或いはビレット
に片焼けがあった場合、得られた管の肉厚分布は夫々の
要因に基づく第5図(ロ)。
If there is an eccentricity of the plug in the punching machine or if the billet is burnt on one side, the wall thickness distribution of the obtained tube will depend on each factor as shown in Figure 5 (B).

(ハ)に示す如き周期的偏肉が形成される。換言すれば
管の軸方向肉厚分布をみた場合、夫々第5図(ニ)、(
ホ)に示す如き所定の周期で偏肉のピークが表われる。
Periodic thickness deviations as shown in (c) are formed. In other words, when looking at the wall thickness distribution in the axial direction of the pipe, Fig. 5 (d) and (
A peak of uneven thickness appears at a predetermined period as shown in e).

いま第5図(ニ)、(ホ)の如く基準位置から管の軸長
方向における肉厚のピーク値を示す位置までの距離を穿
孔機に起因する場合をに1Δl、ビレット片焼けに起因
する場合をに2Δlとすると相互相関関数Cl2(k、
 4g)も夫々C+2(k、、  ΔA) 、CI2 
(k2 、  Δl)でピークを有することとなる。
Now, as shown in Fig. 5 (d) and (e), if the distance from the reference position to the position showing the peak value of wall thickness in the axial direction of the tube is caused by the drilling machine, it is 1Δl, which is caused by billet burnt. If the case is 2Δl, then the cross-correlation function Cl2(k,
4g) are also C+2(k,, ΔA) and CI2, respectively.
It has a peak at (k2, Δl).

従って、逆に穿孔機のプラグ偏心、ビレット片焼は等に
よる偏肉周期を予め実験的、経験的に求めてに、、に2
を設定しておき、相互相関関数Cl2(k、  ΔI2
)が第5図(へ)に示す如(k、の近傍において基準値
を越えるピーク値を有するか否かを判断しくステップ■
)、ピーク値を有さないときはに2の近傍ピーク値を有
するか否かを判断しくステップ■)、同様にピーク値を
有さないときは穿孔機のプラグ不良、ビレット片焼けに
起因する偏肉は存在しないこと、換言すれば穿孔機、ビ
レット加熱炉の調整、点検不要と判断し、診断を終了す
る。
Therefore, on the other hand, the uneven thickness period due to the eccentricity of the plug of the punching machine, the billet side burning, etc. should be experimentally and empirically determined in advance.
is set, and the cross-correlation function Cl2(k, ΔI2
) has a peak value exceeding the reference value in the vicinity of (k) as shown in FIG.
), if it does not have a peak value, it is determined whether or not it has a peak value in the vicinity of step 2 (Step ■), similarly, if it does not have a peak value, it is due to a defective plug in the punching machine or burnt part of the billet. It is determined that there is no uneven thickness, in other words, there is no need to adjust or inspect the punching machine or billet heating furnace, and the diagnosis is completed.

一方に1で基準値以上のピーク値を有する場合はビレッ
トの片焼けによる偏肉が発生していることが検知され、
ビレット加熱炉について加熱条件の調節を行い(ステッ
プ■)、調節が終了するとに2でピーク値を有するか否
かを判断しくステソプ■)、ピーク値を有するときは穿
孔機のプラグ交換、調節を行い(ステップ■)、次の継
目無管の製造を行い(ステップ■)、相互相関関数Cl
2(k、 Δβ)がkl+  k2のいずれにおいても
ピーク値を有しなくなるまでステップ■に戻って上記過
程を反復し、加熱炉及び/又は穿孔機の再調節を繰り返
し行う。なお上記したに、、Jの決定に際しては穿孔機
の穿孔速度及びその後の圧延ミルの圧延比を考慮して定
められることは勿論である。
On the other hand, if the peak value of 1 is higher than the standard value, it is detected that uneven thickness due to one-sided burnt of the billet has occurred.
Adjust the heating conditions for the billet heating furnace (step ■), and when the adjustment is completed, determine whether or not the peak value is present in step 2 (step ■). If the peak value is found, replace the plug of the drilling machine and make adjustments. (Step ■), manufacture the next seamless pipe (Step ■), and calculate the cross-correlation function Cl
Return to step (2) and repeat the above process until 2(k, Δβ) no longer has a peak value at any of kl+k2, and readjustment of the heating furnace and/or drilling machine is repeated. As mentioned above, when determining J, it goes without saying that it is determined by taking into consideration the perforation speed of the perforator and the subsequent rolling ratio of the rolling mill.

なお上記ステップ■〜■の過程はより具体的には次の如
く行う。即ち管の周方向に夫々01.θ2・・・θnだ
け隔てられた各管軸方向の肉厚分布関数に基づき求めた
相互相関関数について、予め経験的、或いは実験的に求
めた判断域に□±Δk (n=1.2)を設定しておき
、この間での相互相関関数ピーク値Cl2(kl ′、
ΔIり 、C,2(k2 ’。
In addition, the process of the above-mentioned steps (1) to (2) is more specifically carried out as follows. That is, 01. Regarding the cross-correlation function obtained based on the wall thickness distribution function in each tube axis direction separated by θ2...θn, □±Δk (n=1.2) is within the judgment range empirically or experimentally obtained in advance. is set, and the cross-correlation function peak value Cl2(kl ′,
ΔIri, C,2(k2'.

Δ12)、k、−Δk<k、’<k、+Δに、J−Δk
<k2 ′〈k2→−Δkを求める。そしてこのような
ピーク値を各相互相関関数について求めその複数個に・
ついて平均をとり、それが所定の値を越えた場合にのみ
夫々に応じて穿孔機のプラグ不良、加熱炉不良を改善す
べく必要な措置を採ることとする。
Δ12), k, −Δk<k, '<k, +Δ, J−Δk
Find <k2'<k2→-Δk. Then, find such peak values for each cross-correlation function and divide them into multiple values.
The average value will be taken, and only if the average exceeds a predetermined value will the necessary measures be taken to improve the plug failure of the drilling machine and the failure of the heating furnace.

〔効果〕〔effect〕

以上の如く本発明方法にあっては製造された管の周方向
複数個所の夫々において軸長方向の肉厚を測定し、この
肉厚データに基づいて偏肉の程度、周期を算出し、各偏
肉要因毎の特徴的肉厚変動パターンを抽出し、各要因の
有無を判断し得ることとなって、偏肉要因を正確、且つ
容易に検出し得て適正な処置を施し得ることとなって管
品質の格段の向上を図れることは勿論、不必要な点検、
整備が省略出来て、省力化が図れる外、部品交換等も適
切なタイミングで行い得るから無駄な部品交換も防止出
来て部品コストの低減も図れるなど、本発明は優れた効
果を奏するものである。
As described above, in the method of the present invention, the wall thickness in the axial direction is measured at each of multiple locations in the circumferential direction of the manufactured pipe, and the degree and period of wall thickness deviation are calculated based on this wall thickness data. It is now possible to extract the characteristic wall thickness variation pattern for each cause of thickness imbalance and determine the presence or absence of each factor, making it possible to accurately and easily detect the cause of thickness imbalance and take appropriate measures. This not only greatly improves pipe quality, but also eliminates unnecessary inspections and
The present invention has excellent effects in that maintenance can be omitted and labor can be saved, and parts can be replaced at appropriate times, preventing unnecessary parts replacement and reducing parts costs. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用したマン翠スマン・マンドレ
ルミルによる継目無管の製造工程を示す模式図、第2図
は電磁超音波による肉厚測定装置のブロック図、第3,
4図は本発明方法の偏肉要因判定過程を示すフローチャ
ー1−1第5図(イ)〜(へ)は穿孔機のプラグ不良、
ビレ・ノ1−片焼&Jに起因する偏肉の診断過程を示す
説明図である。 1・・・ビレット 2・・・加熱炉 3・・・穿孔機4
・・・マンドレルミル 5・・・再加熱炉 6・・・ス
トレッチレデューサ 7・・・冷却床 10・・・肉厚
測定装置11、]、2・・・送、受信コイル 20・・
・演算制御装置30・・・表示部 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫祁3図 第4図 (八) 簀、箸 4、a      (″) 軸長方商礼さ くホ) (へ) 品
Fig. 1 is a schematic diagram showing the manufacturing process of a seamless pipe using a Mansuman mandrel mill to which the method of the present invention is applied; Fig. 2 is a block diagram of a wall thickness measuring device using electromagnetic ultrasonic waves;
Figure 4 is a flowchart 1-1 showing the process of determining factors for uneven thickness in the method of the present invention.
It is an explanatory diagram showing a diagnosis process of uneven thickness caused by Bile No. 1 - One-sided grilling & J. 1... Billet 2... Heating furnace 3... Drilling machine 4
... Mandrel mill 5 ... Reheating furnace 6 ... Stretch reducer 7 ... Cooling bed 10 ... Thickness measuring device 11, ], 2 ... Transmission and reception coils 20
・Arithmetic and control unit 30...Display unit patent Applicant: Sumitomo Metal Industries Co., Ltd. Agent Patent attorney: Noboru Kono Fugei Figure 3, Figure 4 (8) Screen, chopsticks 4, a ('') Shaft length direction ) (to) item

Claims (1)

【特許請求の範囲】 1、ビレットに穿孔機を用いて穿孔し、得られた素管を
延伸圧延して製造された継目無管の周方向複数個所につ
いて夫々軸長方向各部の肉厚を測定し、該測定値に基づ
き周方向の任意の2箇所についての各軸長方向肉厚分布
関数を求め、これら肉厚分布関数に基づいて相互相関関
数を導出し、該相互相関関数に基づいて偏肉要因を判別
することを特徴とする継目無管の偏肉要因診断方法。 2、ビレットに穿孔機を用いて穿孔し、得られた素管を
延伸圧延して製造された継目無管の周方向複数個所につ
いて夫々軸長方向各部の肉厚を測定し、該測定値に基づ
き周方向の任意の2個所についての各軸長方向肉厚分布
関数を求め、これら肉厚分布関数に基づいて相互相関関
数を導出し、該相互相関関数の所定領域内でのピーク値
が予め定めた基準値を越えるか否かの判断、並びに前記
測定値の各軸長方向肉厚の平均値を算出し、平均値のう
ちの周方向におげる最大値と最小値との差を予め定めた
他の基準値と比較し、差が基準値を越えるか否かの判断
に基づいて偏肉要因を判別することを特徴とする継目無
管の偏肉要因診断方法。
[Scope of Claims] 1. Measure the wall thickness at multiple locations in the circumferential direction of a seamless pipe manufactured by drilling a billet using a punching machine and stretching and rolling the resulting raw pipe, at each location in the axial direction. Then, based on the measured values, the thickness distribution function in the longitudinal direction of each axis is determined for any two locations in the circumferential direction, a cross-correlation function is derived based on these thickness distribution functions, and a bias is calculated based on the cross-correlation function. A method for diagnosing uneven wall thickness of seamless pipes, which is characterized by determining the wall thickness factor. 2. Measure the wall thickness of each part in the axial direction at multiple locations in the circumferential direction of a seamless pipe manufactured by drilling holes in the billet using a punching machine and stretching and rolling the obtained raw pipe, and calculate the wall thickness at each part in the axial direction. Based on this, the thickness distribution function in the longitudinal direction of each axis is determined for two arbitrary points in the circumferential direction, a cross-correlation function is derived based on these thickness distribution functions, and the peak value of the cross-correlation function within a predetermined region is Judging whether or not it exceeds the established standard value, calculating the average value of the wall thickness in the longitudinal direction of each axis of the above measured values, and calculating the difference between the maximum value and the minimum value in the circumferential direction among the average values. A method for diagnosing a cause of uneven thickness of a seamless pipe, characterized by comparing the cause with another predetermined reference value and determining the cause of uneven thickness based on a judgment as to whether the difference exceeds the reference value.
JP59127745A 1984-06-20 1984-06-20 Method for diagnosing factor for thickness deviation of seamless pipe Pending JPS617010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127745A JPS617010A (en) 1984-06-20 1984-06-20 Method for diagnosing factor for thickness deviation of seamless pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127745A JPS617010A (en) 1984-06-20 1984-06-20 Method for diagnosing factor for thickness deviation of seamless pipe

Publications (1)

Publication Number Publication Date
JPS617010A true JPS617010A (en) 1986-01-13

Family

ID=14967634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127745A Pending JPS617010A (en) 1984-06-20 1984-06-20 Method for diagnosing factor for thickness deviation of seamless pipe

Country Status (1)

Country Link
JP (1) JPS617010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055243A1 (en) * 1997-06-05 1998-12-10 Mannesmann Ag Method and device for detecting the actual state of a hot tube
WO2003064070A1 (en) * 2002-01-28 2003-08-07 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless steel pipe
CN115069787A (en) * 2022-07-27 2022-09-20 承德建龙特殊钢有限公司 Seamless steel pipe production system of laser identification handling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055243A1 (en) * 1997-06-05 1998-12-10 Mannesmann Ag Method and device for detecting the actual state of a hot tube
WO2003064070A1 (en) * 2002-01-28 2003-08-07 Sumitomo Metal Industries, Ltd. Method of manufacturing seamless steel pipe
US7028518B2 (en) 2002-01-28 2006-04-18 Sumitomo Metal Industries, Ltd. Method of producing seamless steel tubes
CN115069787A (en) * 2022-07-27 2022-09-20 承德建龙特殊钢有限公司 Seamless steel pipe production system of laser identification handling

Similar Documents

Publication Publication Date Title
JP4826949B2 (en) Seamless pipe manufacturing status monitoring apparatus and method, and seamless pipe manufacturing equipment
US7174761B2 (en) Method of manufacturing a seamless pipe
US10209199B2 (en) Surface inspection method, surface inspection device, manufacturing system, method of identifying defect formed area, and manufacturing method of steel pipe
US9221127B2 (en) Method for producing welded tubes from steel
JP3797064B2 (en) Steel plate manufacturing equipment
JP3912185B2 (en) Steel strip end forming method and forming apparatus
JPS617010A (en) Method for diagnosing factor for thickness deviation of seamless pipe
JP2007144430A (en) Controller of width pressing equipment of sizing press of hot rolling mill
CN1259063A (en) Method and device for detecting the actual state of a hot tube
JP2001121203A (en) Thickness non-uniformity monitoring method of seamless pipe
JP2002035817A (en) Method for controlling metal rolling in seamless steel pipe manufacturing line
JP2015010936A (en) Surface flaw detection device and surface flaw detection method
JP4050897B2 (en) Steel material tracking method and apparatus in continuous rolling
JP4569093B2 (en) Method for detecting solidification completion position of continuous cast slab
JP4543386B2 (en) Method and apparatus for detecting outer surface flaws of pipe material
JP7205459B2 (en) Method for detecting shape defects in steel sheet pile rolling and method for manufacturing steel sheet piles
JP6536637B2 (en) Metal pipe defect generation prediction system, metal pipe rolling system, metal pipe defect generation prediction method, and metal pipe manufacturing method
JP4613431B2 (en) Rolling method of steel pipe by mandrel mill
JPS6245761Y2 (en)
JP2000288616A (en) Manufacture of seamless steel tube
JPH04157005A (en) Method for detecting generation of thickness deviation of seamless tube
JP5359388B2 (en) Sheet fracture determination method and apparatus, and rolling method and apparatus in hot finish rolling
KR20200061650A (en) Apparatus for inspecting quality of steel plate and method thereof
JPS59159218A (en) Method and device for monitoring condition of wall thickness deviation of seamless pipe
JP2023147783A (en) Method for measuring bending of rolled material