JPS6169012A - Image pickup device with ttl focus detector - Google Patents

Image pickup device with ttl focus detector

Info

Publication number
JPS6169012A
JPS6169012A JP59191997A JP19199784A JPS6169012A JP S6169012 A JPS6169012 A JP S6169012A JP 59191997 A JP59191997 A JP 59191997A JP 19199784 A JP19199784 A JP 19199784A JP S6169012 A JPS6169012 A JP S6169012A
Authority
JP
Japan
Prior art keywords
focus detection
beam splitter
luminous flux
imaging device
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59191997A
Other languages
Japanese (ja)
Inventor
Yasushi Kono
河野 康司
Atsushi Sekine
淳 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59191997A priority Critical patent/JPS6169012A/en
Publication of JPS6169012A publication Critical patent/JPS6169012A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To simplify the structure by arranging dispersedly many minute reflecting or light-transmissive faces on the split surface of a beam splitter which leads a luminous flux to a focus detector. CONSTITUTION:A luminous flux L1 from an object passes a focusing system 1, a magnification varying system 2, a correcting system 3, and the first group 4a of a master system and is divided by a beam splitter 5, and one luminous flux L2 reaches a solid-state image pickup element 7 provided with a mosaic filter through the second group 4b of the master system, and the other luminous flux L3 reaches a focus detecting element 9 through a focusing system 8 for focus detection. Many minute reflecting faces 20 are provided on a beam split surface 5a of the beam splitter 5, and the luminous flux L3 to the focus detecting element 9 is obtained by them, and the luminous flux L2 to the solid-state image pickup element 7 is obtained by a light-transmissive part 21.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は撮像光学系の一部を通過した撮像素子への光束
の一部を一次元又は二次元光電変換素子アレイに結像さ
せて焦点検出を行うTTL焦点検出装置を有する撮像装
置に関する。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention focuses a part of a light beam that passes through a part of an imaging optical system and is directed to an imaging element onto a one-dimensional or two-dimensional photoelectric conversion element array to detect a focus. The present invention relates to an imaging device having a TTL focus detection device that performs.

・(発明の背景) 撮、像管や固体撮像素子等の面センサーによって被写体
光像を光電変換して画像信号を得る撮像装置にあっては
少くとも撮像面の一方向については離散的な光電変換が
行なわれる。即ち撮像管であれば撮像面の水平方向には
アナログ的であるが垂直方向には有限本数の水平走査線
による離散的な光電変換であり、固体撮像素子であれば
光電変換部が離散的に2次元配置されるので撮像面の水
平方向にも垂直方向にも離散的な光電変換である。
・(Background of the Invention) In an imaging device that obtains an image signal by photoelectrically converting an optical image of a subject using a surface sensor such as a picture tube or a solid-state image sensor, discrete photoelectric conversion is performed in at least one direction of the imaging surface. A conversion takes place. In other words, in the case of an image pickup tube, the horizontal direction of the image pickup surface is analog, but in the vertical direction, it is discrete photoelectric conversion using a finite number of horizontal scanning lines, and in the case of a solid-state image sensor, the photoelectric conversion section is discrete. Because they are two-dimensionally arranged, photoelectric conversion is discrete both in the horizontal and vertical directions of the imaging plane.

又、単一の撮像管や固体撮像素子(以下単に撮像素子と
いう)を用いる撮像装置にあっては、撮像面にストライ
プフィルターやモザイクフィルター等の色分解フィルタ
ーが貼着されて該色分解フィルターによる離散的光電変
換が行われる。
In addition, in an imaging device that uses a single image pickup tube or solid-state image sensor (hereinafter simply referred to as an image sensor), a color separation filter such as a stripe filter or a mosaic filter is attached to the image pickup surface. Discrete photoelectric conversion is performed.

この様に被写体光像を離散的に光電変換する場合標本化
定理より被写体光像の持つ空間周波数成分の高域をカッ
トする必要があることが一般的に良く知られている。そ
こで従来は撮像素子の撮像面に空間ローパスフィルター
である水晶フィルターを貼着していた。
It is generally well known that when photoelectrically converting a subject light image in a discrete manner as described above, it is necessary to cut off the high spatial frequency components of the subject light image based on the sampling theorem. Conventionally, therefore, a crystal filter, which is a spatial low-pass filter, was attached to the imaging surface of the image sensor.

例えば単一の撮像素子によってカラー画像信号を得る撮
像装置にあっては撮像面に設けられるストライプフィル
ターやモザイクフィルター等のいわゆる色分解フィルタ
ーのパターンのピッチによって決定される一定値以上の
空間周波数成分がカットされる様な水晶フィルターが撮
像面近傍に設けられている。また3枚の固体撮像素子を
用いる(3板式)撮像装置にあっても本来各々の固体撮
像素子の撮像面に離散的に2次元配置された光電り  
   変換部のパターンのピッチによって決定される一
定周波数以上の空間周波数成分をカットする様な手段を
講じる必要がある。但し現在の3板式撮像装置では何ら
対応処置は講じられてはいない。
For example, in an imaging device that obtains a color image signal using a single imaging element, spatial frequency components exceeding a certain value determined by the pattern pitch of a so-called color separation filter such as a stripe filter or a mosaic filter provided on the imaging surface are A cut-off crystal filter is provided near the imaging surface. Furthermore, even in an imaging device that uses three solid-state imaging devices (three-plate type), photoelectric sensors are originally discretely arranged two-dimensionally on the imaging surface of each solid-state imaging device.
It is necessary to take measures to cut spatial frequency components above a certain frequency determined by the pitch of the pattern of the converter. However, no countermeasures have been taken for the current three-panel imaging device.

又、撮像管を用いた白黒ビデオカメラや3管式カラービ
デオカメラでも本来であれば水平走査線の本数によって
定まる垂直方向の空間周波数成分の一定周波数以上をカ
ットすべきことになるが、実際には何ら対応処置はなさ
れていない。
In addition, even with a black and white video camera using an image pickup tube or a three-tube color video camera, it is necessary to cut out a certain frequency or more of the spatial frequency component in the vertical direction determined by the number of horizontal scanning lines, but in reality. No countermeasures have been taken.

一方撮像光学系の一部を通過した撮像素子へ至る光束の
一部を焦点検出用の一次元又は2次元光電変換素子アレ
イに導いてこれに被写体像を結像させて焦点検出するT
TL焦点検出装置例えば2つのラインセンサーからの出
力の位相差を検出してそれをOにする様制御する位相法
や2つのラインセンサーの各光電変換素子間の差出力の
総和を比較し、これを0にする様制御するコントラスト
法等に於いてもやはり光像を離散的に光電変換すること
から標本化定理より被写体像の空間周波数成分の高域に
対する制約がある。この為各種の方    1.)法即
ち光学フィルターや信号処理によって被写体光像或いは
画像信号の空間周波数成分の高域をカットする空間ロー
パスフィルター機能従って上述の如き焦点検出装置を有
する撮像装置にあっては、撮像素子と、焦点検出用光電
変換素子の両方に空間ローパスフィルターを設ける必要
が生ずる。
On the other hand, a part of the light beam that passes through a part of the imaging optical system and reaches the image sensor is guided to a one-dimensional or two-dimensional photoelectric conversion element array for focus detection, and a subject image is formed on this to detect the focus.
TL focus detection device For example, a phase method that detects the phase difference between the outputs from two line sensors and controls it to O, or a method that compares the sum of the difference outputs between each photoelectric conversion element of the two line sensors. Even in the contrast method, etc., in which the image is controlled to be zero, since the optical image is photoelectrically converted in a discrete manner, there are restrictions on the high range of the spatial frequency components of the subject image due to the sampling theorem. For this reason, various people 1. ) method, that is, a spatial low-pass filter function that cuts high frequencies of the spatial frequency components of the subject light image or image signal using an optical filter or signal processing. It becomes necessary to provide a spatial low-pass filter on both of the detection photoelectric conversion elements.

ここで一般的には撮像素子と焦点検出用光電変換素子と
のカットすべき空間周波数は同一ではな(、通常撮像素
子の空間ローパスフィルターの方がより高域迄を通過さ
せるものである必要がある。
Generally, the spatial frequencies to be cut by the image sensor and the photoelectric conversion element for focus detection are not the same (usually the spatial low-pass filter of the image sensor needs to pass higher frequencies). be.

これは一般的に撮像素子側の空間ローパスフィルターの
性質を決定するストライプフィルターやモザイクフィル
ター等の色分解フィルターのピッチや撮像素子の光電変
換部の配列ピッチの方が焦点検出用光電変換索子アレイ
の光電変換部の配列ピッチより細かいことに起因する。
Generally speaking, the pitch of color separation filters such as stripe filters and mosaic filters, which determine the properties of the spatial low-pass filter on the image sensor side, and the arrangement pitch of the photoelectric conversion section of the image sensor are better than the photoelectric conversion element array for focus detection. This is due to the fact that the pitch is finer than the arrangement pitch of the photoelectric conversion units.

それ故上述の条件が変われば、焦点検出用光電変換素子
に対するカットすべき空間周波数の方が撮像素子に対す
るそれよりも高いことも或いは同一周波数であることも
あり得る。
Therefore, if the above-mentioned conditions change, the spatial frequency to be cut for the photoelectric conversion element for focus detection may be higher than that for the image sensor, or may be the same frequency.

(発明の目的ン 本発明は上述に鑑み、撮像素子と焦点検出用光電変換素
子の空間ローパスフィルターを各々設けることなく単一
の部材とすることによって構造の簡素化を計ることを目
的とする。
(Object of the Invention) In view of the above, an object of the present invention is to simplify the structure by making the image pickup device and the focus detection photoelectric conversion device a single member without providing spatial low-pass filters for each.

(発明の概要) 本発明は焦点検出装置に光束を導く為に用いられるビー
ムスプリッタ−のビームスブリット面の全面を規則的或
いは不規則的形状の多数の微小反射面或いは微小透光部
の集合にて形成することによって該ビームスプリッタ−
によって分けられる2つの光束それぞれに対して必要な
空間フィルター特性を与えることを技術的要点としてい
る。
(Summary of the Invention) The present invention consists of a beam splitting surface of a beam splitter used for guiding a light beam to a focus detection device, in which the entire surface is made up of a large number of regularly or irregularly shaped microscopic reflective surfaces or microscopic transparent parts. The beam splitter is formed by
The technical point is to provide the necessary spatial filter characteristics to each of the two luminous fluxes separated by.

(実施例) 第1図は本発明を4群ズームレンズに適用した実施例の
光学系を示す図である。1は合焦系、2は変倍系、3は
補正系、4はマスター系、4aはマスター系第1群、4
bはマスター系第2群、5はビームスプリッタ−16は
絞り、7はモザイクフィルターを備えた固体撮像素子、
8は焦点検出用結像系、9は焦点検出素子で光電変換素
子が一次元的に配列された光電変換素子アレイである。
(Example) FIG. 1 is a diagram showing an optical system of an example in which the present invention is applied to a four-group zoom lens. 1 is a focusing system, 2 is a variable power system, 3 is a correction system, 4 is a master system, 4a is a master system first group, 4
b is the master system second group, 5 is the beam splitter, 16 is the aperture, 7 is the solid-state image sensor equipped with a mosaic filter,
8 is a focus detection imaging system, and 9 is a focus detection element, which is a photoelectric conversion element array in which photoelectric conversion elements are arranged one-dimensionally.

L、は被写体からの光束でL2はビームスプリッター5
によって分けられた一方の光束で固体撮像素子7へ至る
。L、はビームスプリッタ−5によって分けられた他方
の光束で焦点検出素子9へ至る。前記光束L l、 L
 t 、L−は光学中心を通る光線にて代表して記す。
L, is the light flux from the subject, and L2 is the beam splitter 5
One of the luminous fluxes separated by , reaches the solid-state image sensor 7 . L is the other beam split by the beam splitter 5 and reaches the focus detection element 9. The luminous flux L l, L
t and L- are represented by a ray passing through the optical center.

第2図第3図はビームスプリッタ−5のビームスブリッ
ト面5aに施された微小反射面の状態を示す図であって
20.30は微小反射面でありこれによって焦点検出素
子9への光束り、が得られる。21.31は透光部であ
ってここを通過する光線が固体撮像素子7への光束L2
が得られる。
2 and 3 are diagrams showing the state of the minute reflection surface provided on the beam splitting surface 5a of the beam splitter 5. Reference numeral 20.30 is the minute reflection surface, which directs the light beam to the focus detection element 9. , is obtained. 21. 31 is a light-transmitting part, and the light beam passing through this part is the light flux L2 to the solid-state image sensor 7.
is obtained.

第2図に示す実施例は円形の微小反射面2oがランダム
に配置されたものであって、微小反射面20の半径と各
微小反射面の間隔とによって光束L v 、 L sに
各々所望の空間周波数の制限即ち高域のカットが実現さ
れる。この場合被写体のあらゆj1′     る方向
の高域空間周波数が一様に制限されることとなる。
In the embodiment shown in FIG. 2, circular minute reflecting surfaces 2o are randomly arranged, and the luminous fluxes L v and L s have the desired intensity depending on the radius of the minute reflecting surfaces 20 and the interval between the minute reflecting surfaces 20. Spatial frequency limitation, ie, cutting of high frequencies, is achieved. In this case, high spatial frequencies in all directions of the object are uniformly limited.

尚、第2図に示す実施例とは逆に透過面が円形の微小透
光面でそ、の他の部分が反射面であっても良い。又、前
記微小反射面酸いは微小透光面は必ずしも円形でなくて
も任意の形状を採用し得る。
Incidentally, contrary to the embodiment shown in FIG. 2, the transmitting surface may be a circular minute light transmitting surface, and the other portion may be a reflecting surface. Further, the minute reflective surface or the minute transparent surface does not necessarily have to be circular, but may have any shape.

第3図に示す実施例は細線状の微小反射面が一定間隔で
ストライプ状に配列されたものであって該細線状微小反
射面の巾と間隔とを適宜1こ選定することによって光束
L2、及びり、に各々所望の空間周波数の制限特性が得
られる。尚この実施例は水平方向(細線状微小反射面の
長手方向)には空間周波数の制限特性は無く、垂直方向
にのみ空間周波数の制限特性が現われるものであること
から例えば撮像管を用いた白黒ビデオカメラや3管式カ
ラービデオカメラ等の有限本数の水平走査線によって定
まる空間周波数成分の除去に適用することができる。
In the embodiment shown in FIG. 3, thin line-shaped minute reflection surfaces are arranged in a stripe shape at regular intervals, and by appropriately selecting the width and interval of the thin line-shaped minute reflection surfaces, the luminous flux L2, Desired spatial frequency limiting characteristics can be obtained in each case. Note that in this example, there is no spatial frequency limiting characteristic in the horizontal direction (longitudinal direction of the thin line-like minute reflective surface), and the spatial frequency limiting characteristic appears only in the vertical direction. It can be applied to the removal of spatial frequency components determined by a finite number of horizontal scanning lines in video cameras, three-tube color video cameras, and the like.

次1ζ、本発明のより具体的実施例を数値とともに示す
。焦点検出用光電変換素子アレイとして米国ハネウェル
社製TCL (f″nrough The (:ame
ralens Autofocus  3ystem)
、マスター系第2群の焦点距離/’q26mm、焦点検
出用結像系8の焦点距離t !=; 52皿、撮像素子
のストライプフィルターのパターンピッチ約3011m
、前記TCLの光電変換部配列ピッチ0.1875 m
m (4,5mmの長さの中に24ケのレンズアレイが
並んでいる)のものを用いた場合に良好な結果を得た実
施例であってビームスブリット面5aは第4図に示す如
くとなっている。第4図はビームスプリッタ−5を入射
光方向より見た図であってビームスブリット面5aは入
射光軸に対して4ぎ傾斜して設定され、入射光方向より
見たビームスプリッタ−5の縦横寸法)はA=26mm
、B = 25.74 mmcはアルミニウムドツトの
ランダムパターンが蒸着されている領域で短径DL=、
16.7mm、長径E=23.6mmであってこの領域
にドツト数4,400.ドツトの直径最大207μm、
最小185μm、平均195μmのランダムパターンで
ある。
Next, a more specific embodiment of the present invention will be shown together with numerical values. As a photoelectric conversion element array for focus detection, TCL (f″nrough The (:ame
ralens autofocus 3system)
, the focal length of the second group of the master system /'q26mm, the focal length of the focus detection imaging system 8 ! =; 52 dishes, pattern pitch of stripe filter of image sensor approximately 3011m
, the photoelectric conversion part arrangement pitch of the TCL is 0.1875 m
This is an example in which good results were obtained when using a lens array of 24 lenses lined up within a length of 4.5 mm, and the beam split surface 5a was as shown in FIG. It becomes. FIG. 4 is a diagram of the beam splitter 5 viewed from the direction of incident light, and the beam splitter surface 5a is set to be inclined at an angle of 4 with respect to the incident optical axis. Dimensions) are A=26mm
, B = 25.74 mmc is the region where the random pattern of aluminum dots is deposited, and the short axis DL =,
16.7mm, major axis E=23.6mm, and the number of dots in this area is 4,400. Dot diameter maximum 207μm,
It is a random pattern with a minimum of 185 μm and an average of 195 μm.

尚、被写体光束は前記領域Cよりわずかに広い領域を通
過する様になっており、その光束の通過(T)及び反射
(R)の割合はT=70%、R;3096である。
Incidentally, the subject light flux is configured to pass through an area slightly wider than the area C, and the ratio of passage (T) and reflection (R) of the light flux is T=70% and R: 3096.

(発明の効果) 以上説明した様に本発明によればビームスプリッタ−の
スプリット面を多数の微小形状の反射又は透光面の離散
的配置としたので分割される光束のそれぞれに所望の空
間周波数の高域除去特性を1つの部材で与えることがで
き、この為焦点検出用光電素子アレイ用の空間周波数制
限手段例えば光学フィルターや信号系に挿入される高域
カットフィルターと撮像素子の空間周波数制限手段例え
ば水晶フィルターをそれぞれに設ける必要がなく構造が
簡単となる。
(Effects of the Invention) As explained above, according to the present invention, the splitting surface of the beam splitter is made of a discrete arrangement of reflecting or transparent surfaces with a large number of minute shapes, so that each of the split luminous flux has a desired spatial frequency. A single member can provide high-frequency removal characteristics, and for this reason, spatial frequency limiting means for focus detection photoelectric element arrays, such as optical filters, high-frequency cut filters inserted in signal systems, and spatial frequency limiting of image pickup devices. It is not necessary to provide each means, for example, a crystal filter, and the structure becomes simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系を示す図、第2図及
び第3図は本発明の実施例によるビームスブリット面の
状態を示す図、第4図は実施例によるビームスブリット
面を示す図である。 (主要部分の符号の説明) 5・・・ビームスプリッタ−15a・・・ビームスブリ
ット面、
FIG. 1 is a diagram showing an optical system according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the state of a beam split surface according to an embodiment of the present invention, and FIG. 4 is a diagram showing a beam split surface according to an embodiment. FIG. (Explanation of symbols of main parts) 5... Beam splitter-15a... Beam split surface,

Claims (1)

【特許請求の範囲】 1)撮像素子と、該撮像素子へ被写体像を結像する撮像
光学系と、該撮像光学系の一部を通過した被写体像の光
束を2つに分割するビームスプリッターと、該ビームス
プリッターによって分割された光束の一方を複数の光電
変換部が配列されてなる焦点検出用光電変換素子アレイ
に導いて被写体像を結像させるTTL焦点検出装置とよ
りなる撮像装置に於いて、前記ビームスプリッターのス
プリット面を多数の微小形状の反射面又は透光面の離散
的配置により構成したことを特徴とするTTL焦点検出
装置を有する撮像装置。 2)前記微小形状の反射面又は透光面は略円形形状であ
ることを特徴とする特許請求の範囲第1項記載のTTL
焦点検出装置を有する撮像装置。 3)前記微小形状の反射面は細線形状であることを特徴
とする特許請求の範囲第1項記載のTTL焦点検出装置
を有する撮像装置。
[Scope of Claims] 1) An imaging device, an imaging optical system that forms a subject image on the imaging device, and a beam splitter that splits into two a luminous flux of the subject image that has passed through a part of the imaging optical system. , an imaging device comprising a TTL focus detection device that guides one of the light beams split by the beam splitter to a focus detection photoelectric conversion element array including a plurality of photoelectric conversion units arranged to form a subject image. . An imaging device having a TTL focus detection device, characterized in that the split surface of the beam splitter is constituted by a discrete arrangement of a large number of microscopic reflecting surfaces or transparent surfaces. 2) The TTL according to claim 1, wherein the micro-shaped reflective surface or transparent surface has a substantially circular shape.
An imaging device having a focus detection device. 3) An imaging device having a TTL focus detection device according to claim 1, wherein the microscopic reflecting surface has a thin line shape.
JP59191997A 1984-09-13 1984-09-13 Image pickup device with ttl focus detector Pending JPS6169012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191997A JPS6169012A (en) 1984-09-13 1984-09-13 Image pickup device with ttl focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191997A JPS6169012A (en) 1984-09-13 1984-09-13 Image pickup device with ttl focus detector

Publications (1)

Publication Number Publication Date
JPS6169012A true JPS6169012A (en) 1986-04-09

Family

ID=16283891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191997A Pending JPS6169012A (en) 1984-09-13 1984-09-13 Image pickup device with ttl focus detector

Country Status (1)

Country Link
JP (1) JPS6169012A (en)

Similar Documents

Publication Publication Date Title
JPH01155308A (en) Focus detecting device
JP2007528028A (en) Optical system for generating images with different focus
US20020140838A1 (en) Focusing state determining apparatus
US4659917A (en) Focus detector having first and second non-overlapping sensor series
US4586786A (en) Area beam type splitter
AU627134B2 (en) A beam splitter for color imaging apparatus
US11378785B2 (en) Monocentric reception arrangement
JPS6169012A (en) Image pickup device with ttl focus detector
JP4011676B2 (en) Focus detection device
EP0140529B1 (en) Imaging apparatus
AU2006267263A1 (en) 3-dimensional image detector
JPH10311945A (en) Focus detector
US9671281B2 (en) Imaging systems with digital micromirror devices (DMD)
NL8700059A (en) ZOOM LENS FOR AN ELECTRONIC CAMERA.
JP2929655B2 (en) Color separation prism and multi-plate imaging apparatus using the prism
JP3398163B2 (en) Image reading device
JP2017026814A (en) Imaging optical system and imaging system
US6486459B1 (en) Color beam splitter using air-spaced prisms
JPH01266503A (en) Focus detecting device
CN118176459A (en) Optical device and imaging device
JPH08256282A (en) Image pickup device
JPH01123214A (en) Image pickup optical system
JPH03179868A (en) Color picture reader
JPH0222613A (en) Focal point detecting device
JPH03234160A (en) Image pickup device