JPS6168104A - Composite membrane having excellent affinity for living body - Google Patents

Composite membrane having excellent affinity for living body

Info

Publication number
JPS6168104A
JPS6168104A JP59188687A JP18868784A JPS6168104A JP S6168104 A JPS6168104 A JP S6168104A JP 59188687 A JP59188687 A JP 59188687A JP 18868784 A JP18868784 A JP 18868784A JP S6168104 A JPS6168104 A JP S6168104A
Authority
JP
Japan
Prior art keywords
membrane
copolymer
hydrophilic
condensed
monomolecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59188687A
Other languages
Japanese (ja)
Other versions
JPH0376971B2 (en
Inventor
Minoru Ueno
実 上野
Akio Omori
大森 昭夫
Hiroyuki Akasu
弘幸 赤須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59188687A priority Critical patent/JPS6168104A/en
Publication of JPS6168104A publication Critical patent/JPS6168104A/en
Publication of JPH0376971B2 publication Critical patent/JPH0376971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes

Abstract

PURPOSE:To obtain the titled composite membrane showing substance permeability and having excellent suitability for a living body by spreading a copolymer of a hydrophilic monomer and a hydrophobic monomer on a liquid surface to obtain a monomolecular condensed membrane, and laminating the membrane on a supporting body layer with the hydrophilic segment-rich surface as the surface. CONSTITUTION:A soln. of a copolymer of a hydrophilic monomer and a hydrophobic monomer, such as an ethylene-vinyl alcohol copolymer, is diffused and developed on a water surface 6, and then compressed by reducing the area of the water surface to form a monomolecular condensed membrane wherein the hydrophilic condensed segment 2 of the copolymer is embedded into water. Then the condensed membrane is transferred onto a supporting body of an ethylene-vinyl alcohol copolymer film, etc. The composite membrane thus obtained has excellent suitability for blood, and reveals high substance permeability in addition to the affinity for a living body, when a filter membrane or a permeable membrane is used as the supporting body layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合膜に関する。さらに詳しくは、親水性モノ
マーと疎水性モノマーとの共重合体を液面上に展延して
形成した単分子凝縮膜の親水性セグメントを多く有する
面を表面にして支持体層に積層してなる生体親和性、と
くに血液親和性に優れた医療用複合膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to composite membranes. More specifically, a monomolecular condensed film formed by spreading a copolymer of a hydrophilic monomer and a hydrophobic monomer on the liquid surface is laminated on a support layer with the side having many hydrophilic segments facing up. The present invention relates to a medical composite membrane that has excellent biocompatibility, particularly blood affinity.

〔従来の技術〕[Conventional technology]

近年、膜による分離技術の発達には目覚しいものかあシ
、そのうちいくつかは工業的規模で実用化されている。
In recent years, there has been remarkable progress in membrane separation technologies, some of which have been put into practical use on an industrial scale.

こうした発達の歴史を振り返ってみると、分離効率の向
上と膜の機械的、化学的、生物学的耐久性との両立を目
指して膜の複合構造化が進められている事がわかる。か
かる分離膜における複合膜は活性層と支持層とからなっ
ておシ、支持層が膜強度を維持し、活性層が透過性を支
配する。一般に活性層は薄い程、物質透過性が高いため
現在では数千〜数百オングストローム14)にまで薄層
化された超薄膜が用いられている。
Looking back at the history of this development, it can be seen that membranes have been made into composite structures with the aim of improving separation efficiency and improving membrane mechanical, chemical, and biological durability. The composite membrane in such a separation membrane consists of an active layer and a support layer, with the support layer maintaining membrane strength and the active layer controlling permeability. In general, the thinner the active layer is, the higher the permeability to substances, so ultra-thin films with a thickness of several thousand to several hundred angstroms14) are currently used.

この様な超薄膜の製法の1つとして、水面上に高分子の
非水溶性溶媒を展延して該溶液の超薄層を形成せしめ、
これを脱溶媒する、いわゆる水上キャスティング法があ
る。具体的には大面積の超薄層製造法として水面上に1
対の仕切棒を設置して該仕切棒で区切られた領域内に高
分子溶液を滴下するとともに、仕切棒の間隔を増大させ
る方法(特開昭51−89564号)、水よりも高密度
の溶媒を用い、水面下に設置した溶液溜内に回転ロール
などの可動面を通過させて溶液を水面上に強制展延する
方法(米国特許第3.767.737号)、水面上への
高分子溶液の展延を水相と溶液相との相対的な液面位置
制御によって行なう方法(特開昭58−92526号)
などが知られている。しかしながら、これ等の超薄膜は
逆浸透、液々分離、気体分離などの際の活性層として考
えられているため、本質的に均質で平滑な構造を有して
いるにすぎず、生体親和性に優れているとはいえない。
One method for producing such an ultra-thin film is to spread a polymeric water-insoluble solvent on the water surface to form an ultra-thin layer of the solution.
There is a so-called water casting method that removes the solvent. Specifically, as a large-area ultra-thin layer manufacturing method, 1 layer is placed on the water surface.
A method in which a pair of partition rods is installed and a polymer solution is dripped into the area separated by the partition rods, and the distance between the partition rods is increased (Japanese Patent Application Laid-open No. 51-89564), A method of forcibly spreading a solution onto the water surface by passing a movable surface such as a rotating roll through a solution reservoir set below the water surface using a solvent (U.S. Pat. No. 3,767,737); A method of spreading a molecular solution by controlling the relative liquid level positions of the aqueous phase and the solution phase (Japanese Patent Application Laid-Open No. 58-92526)
etc. are known. However, since these ultra-thin membranes are considered as active layers in reverse osmosis, liquid-liquid separation, gas separation, etc., they essentially have only a homogeneous and smooth structure and are biocompatible. It cannot be said that it is excellent.

また、特開昭57−159506号には活性層が架橋単
分子フィルムの分子よりなる複合膜が開示されている。
Furthermore, Japanese Patent Application Laid-Open No. 57-159506 discloses a composite membrane in which the active layer is composed of molecules of a crosslinked monomolecular film.

該膜は活性層が特定の配向性や構造を有している超薄層
である点では一段と進歩した膜といえるが、活性層表面
はやはシ均質、平滑な構造でしかなく、生体親和性とい
う点では不充分である。
This film can be said to be a much more advanced film in that the active layer is an ultra-thin layer with a specific orientation and structure, but the surface of the active layer is still only a homogeneous and smooth structure, making it biocompatible. Not enough in terms of sex.

一方、生体親和性という点からは、従来の医用シリコン
ゴム、ポリヒドロキグエチルメタクリレート、テフロン
等の材料に加え、親水性のボリエーテμウレタンと疎水
性のポリジメチμシロキサンのブレンドマーや、セグメ
ント化コポリエーテル−ウレタン−ウレア等が研究され
ている。特に、後の二者は親水性部と疎水性部のミクロ
f目分離構造をとっている事から、単にポリマーの一次
構造だけではなく、表面の高次構造も抗血栓性に対して
重要な因子となっている事が認められている(化学の領
域、と、 519 )。
On the other hand, in terms of biocompatibility, in addition to conventional materials such as medical silicone rubber, polyhydroxyethyl methacrylate, and Teflon, blenders of hydrophilic polyether μ urethane and hydrophobic polydimethyμ siloxane, and segmented copolymer Ether-urethane-urea, etc. are being studied. In particular, the latter two have a micro-f-separated structure of hydrophilic and hydrophobic parts, so not only the primary structure of the polymer but also the higher-order structure of the surface is important for antithrombotic properties. It is recognized that it is a factor (in the field of chemistry, 519).

また生体適合性の高い表面高次構造のもう1つの例とし
ては散漫層が挙げられる。(Polym。
Another example of a highly biocompatible surface structure is a diffuse layer. (Polym.

PrePrints、 Japan、 28.1542
 (1979) ) 。これは親水性のフレキシブルな
側鎖がポリマー表面から水中に、海草の様につきでて、
ゆらいでいる高次構造であり、その親水性層の分子運動
や電気的反撥力によシ高い血液適合性が示されると考え
られている。
PrePrints, Japan, 28.1542
(1979) ). This is because hydrophilic flexible side chains stick out from the polymer surface into the water like seaweed.
It has a fluctuating higher-order structure, and is thought to exhibit high blood compatibility due to the molecular movement and electrical repulsion of its hydrophilic layer.

以上述べた様な生体適合性の高い材料には、特殊な化学
構造(1次構造)によってその性質を発現するものと、
特定の立体的構造(高次構造)によってその性質を発現
するもの、あるいは両方の性質によって生体適合性を発
現するものがあるが、これらはいずれも血液チューブ、
血液バッグ、人工血管、人工心臓、カテーテルをはじめ
とする埋込用生体材料として開発されてきたものであシ
、該材料を薄層化して良好な物質透過性を示す、生体親
和性に優れた複合膜とした研究例はみあたらない。
The highly biocompatible materials mentioned above include those that express their properties through a special chemical structure (primary structure).
Some exhibit their properties due to a specific three-dimensional structure (higher-order structure), or exhibit biocompatibility due to both properties, but all of these are blood tubes,
It has been developed as an implantable biomaterial for blood bags, artificial blood vessels, artificial hearts, catheters, and other devices.The material has been made into a thin layer to exhibit good substance permeability and has excellent biocompatibility. There are no research examples of composite membranes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたように、従来の薄層化された超薄膜からなる
複合膜は生体親和性に劣シ、一方、上記の生体親和性材
料は物質透過性が劣り、これら両者の長所をうまく兼ね
備えた複合膜は未だ知られていないのが現状である。
As mentioned above, conventional composite membranes made of ultra-thin films have poor biocompatibility, while the above biocompatible materials have poor substance permeability. At present, composite membranes are still unknown.

本発明者らはこの様な状況に鑑みて、生体適合性に優れ
た超薄層を形成し、それを活性層として用いる事により
、物質透過性をも示しうる生体適合性に優れた複合膜を
得るべく鋭意検討した結果、意外にも親水性モノマーと
疎水性モノマーとの共重合体の溶液を水面上に拡散展開
させ、所定の表面圧力で圧縮して該共重合体の親水性セ
グメントが水中にもぐり込んだ態様の単分子凝縮膜を形
成した後、または形成しつつ該凝縮膜を水面に接した面
を表面にして支持体層上に移しとるか、または該共重合
体を非水溶媒面上に拡散展開させ、所定の表面圧力で圧
縮して該共重合体の疎水性セグメントが非水溶媒中にも
ぐシ込んだ態様の単分子凝縮膜を形成した後、または形
成しつつ該凝縮膜を非水溶媒面に接しない面を表面にし
て支持体層上に移しとることにより上記目的を満足する
複合膜を得ることができることを見出し、本発明に至っ
た。
In view of this situation, the present inventors formed an ultra-thin layer with excellent biocompatibility and used it as an active layer to create a composite membrane with excellent biocompatibility that can also exhibit substance permeability. As a result of intensive studies to obtain this, it was unexpectedly possible to spread a solution of a copolymer of a hydrophilic monomer and a hydrophobic monomer on the water surface and compress it with a predetermined surface pressure to release the hydrophilic segment of the copolymer. After forming a monomolecular condensed film submerged in water, or while forming it, transfer the condensed film onto a support layer with the surface in contact with the water surface facing up, or transfer the copolymer to a non-aqueous solvent. After or during the formation of a monomolecular condensed film in which the hydrophobic segments of the copolymer are dispersed and expanded on a surface and compressed with a predetermined surface pressure in an embodiment in which the hydrophobic segments of the copolymer are squeezed into a nonaqueous solvent, the condensation is performed. The inventors have discovered that a composite membrane that satisfies the above objectives can be obtained by transferring the membrane onto a support layer with the side not in contact with the non-aqueous solvent facing up, leading to the present invention.

〔問題を解決するための手段および作用〕本発明は親水
性層ツマ−と疎水性部ツマ−との  −共重合体を液面
上に展延して、単分子凝縮膜を形成し、該凝縮膜を親水
性セグメントを多く有する面を表面にして支持体層に積
層してなる複合膜であるが、該共重合体の共重合形式は
とくに限定されず、汎用的なランダムコポリマーが一般
に用いられる。ブロック共重合体やグラフト共重合体を
用いると本発明の効果は大きく、とくに、エチレン−ビ
ニルアルコール系共重合体は好ましい共重合体でおる。
[Means and effects for solving the problem] The present invention spreads a copolymer of a hydrophilic layer and a hydrophobic portion on a liquid surface to form a monomolecular condensed film, and Although this is a composite membrane formed by laminating a condensed membrane on a support layer with the side having many hydrophilic segments facing up, the copolymerization form of the copolymer is not particularly limited, and a general-purpose random copolymer is generally used. It will be done. The effects of the present invention are great when block copolymers and graft copolymers are used, and ethylene-vinyl alcohol copolymers are particularly preferred.

該共重合体に用いられる親水性層ツマ−としてハ、ビニ
ルアルコール、セルロース’I (D 水酸M を含む
ものや、アルデヒド基、エチレンオキサイド基等を含む
公知の中性親水洗上ツマ−があげられる。また、カルボ
キシμ基、硫酸基、亜硫酸基、硝酸基、亜硝酸基、リン
酸基、亜リン酸基、次亜リン酸基およびこれらのエステ
ル基を含む化ツマ−1あるいはこれらのイオンを含む水
中で負に電離可能な化ツマ−を用いることもできる。ア
ミノ晶、イミノ基等を含む水中で正に荷電しうるモノマ
ーも用いうるが、これ等は体液中の蛋白質などを吸着し
やすい性質を有するため、本発明の複合膜をかかる処理
に用いるときは、使用前に該活性中心を失活させておく
必要がある。活性中心の失活方法としては、例えばヘパ
リン等の負荷電物質との結合、各種酵素やホルモン、蛋
白、生理活性物質との結合などがある。また本発明の共
重合体に用いられる疎水性モノマーとしてはオレフィン
系、ジエン糸、アセチレン系、芳香族系、オルガノシロ
キサン系、)〜オロエチレン系などがあげられる。
Hydrophilic layer additives used in the copolymer include those containing vinyl alcohol, cellulose 'I (D hydroxyl M), and known neutral hydrophilic layer additives containing aldehyde groups, ethylene oxide groups, etc. In addition, compounds containing carboxy μ group, sulfate group, sulfite group, nitrate group, nitrite group, phosphoric acid group, phosphorous acid group, hypophosphorous acid group and ester groups thereof or It is also possible to use monomers that can be negatively ionized in water that contains ions. Monomers that can be positively charged in water that contain amino crystals, imino groups, etc. can also be used, but these can adsorb proteins in body fluids. When using the composite membrane of the present invention for such treatment, it is necessary to deactivate the active center before use.As a method for deactivating the active center, for example, loading with heparin, etc. Examples of the hydrophobic monomers used in the copolymer of the present invention include olefin-based, diene thread, acetylene-based, and aromatic-based monomers. , organosiloxane type, ) to oleethylene type.

本発明において、支持体層には、いわゆる孔を有してい
る濾過膜、透析膜などの各種の膜が用いられる。このよ
うなMとしては、該単分子凝縮膜と接触する表面の平均
孔径が100OA以下、好ましくは400八以下である
膜が望ましい。100OAよりも平均孔径が大きい膜を
用いると、単分子凝縮膜を該膜に移しとったときに欠陥
が生じ、選択透過性が損われやすい。また、該支持体層
には、実質的に孔のない構造を有する物質透過性のきわ
めて小さい、一般的にフィルム、シートと称せられるも
のも用いられる。実質的に孔のない構造とは、倍率10
万倍の走査電顕でも孔の存在が確認できない構aをいう
In the present invention, various membranes such as filtration membranes and dialysis membranes having so-called pores are used as the support layer. Such M is desirably a membrane in which the average pore diameter of the surface in contact with the monomolecular condensed membrane is 100 OA or less, preferably 400 OA or less. If a membrane with an average pore size larger than 100 OA is used, defects will occur when a monomolecular condensation membrane is transferred to the membrane, and the permselectivity will likely be impaired. Further, as the support layer, a material generally referred to as a film or sheet, which has a substantially pore-free structure and extremely low permeability to substances, is also used. A substantially pore-free structure is defined by a magnification of 10
This refers to a structure in which the presence of pores cannot be confirmed even with a scanning electron microscope at 10,000 times magnification.

本発明において、上記のフィルムやシートを支持体層と
して用いる場合の本発明の効果はそれらの表面を改質し
、高い生体親和性を付与する点にあるが、上記の各種の
膜を支持体層として用いる場合の効果は、単に膜表面の
改質のみにとどまらず、さらに、高い物質透過性を有す
る優れた生体親和性を与える点にある。従って、かかる
膜を支持体層に用いた場合には、効果がよシ一層明確に
発現する。さらに、特別な支持体層として、例えば同種
または異種物質の単分子膜やあるいはその累積膜を固定
した複合膜を用いることもできるし、中空糸膜を用いる
こともできる。本発明においてこれら支持体の厚みはと
くに規定されないが、実用的には数μ〜数mmの範囲で
用いられる。
In the present invention, when the above-mentioned films and sheets are used as a support layer, the effect of the present invention is to modify their surfaces and impart high biocompatibility. The effect when used as a layer is not only to modify the membrane surface, but also to provide excellent biocompatibility with high substance permeability. Therefore, when such a membrane is used as a support layer, the effect is more clearly expressed. Furthermore, as a special support layer, for example, a monomolecular film of the same or different materials or a composite film in which a cumulative film thereof is fixed can be used, or a hollow fiber membrane can also be used. Although the thickness of these supports is not particularly defined in the present invention, they are practically used in the range of several μ to several mm.

本発明の複合膜は、これらの支持体層と単分子膜N4層
とから構成されるが、該単分子凝縮層は単層で用いても
よいし、累積膜として複層で用いてもよい。しかしなが
ら、いずれの場合でも、親水性セグメントを多く有する
面を表面とすることが必要である。
The composite film of the present invention is composed of these support layers and the monomolecular N4 layer, but the monomolecular condensed layer may be used as a single layer or as a multilayer as a cumulative film. . However, in either case, it is necessary that the surface has a large number of hydrophilic segments.

次に本発明の複合膜を製造する方法について述べる。親
水性モノマーと疎水性モノマーの単分子凝縮膜は公知の
方法を利用して作製する事ができる。例えばラングミュ
ア−法によれば高分子共重合体をできるだけ非水溶性で
、かつ水よシも軽い溶剤に溶解し、その溶液を可動性仕
切棒を有する水面Hに展開する。溶媒が蒸発または溶解
しさると、水面上には共重合体の単分子膜が残るので、
該仕切棒を動かし、水面の面積を減少せしめ、該単分子
膜を水面上で圧縮する。圧縮率をあげていくと、親水性
七ツマー密度の高いところからセグメントの水中埋没が
始まり、最も親水性モノマー密度の高いところが水中に
、最も疎水性七ツマー密度の高いところが空中に突出し
た単分子凝縮膜が得られる。共重合体が親水性モノマー
と疎水性モノマーとよりなるブロック共重合体やグラフ
ト共重合体の場合には、親水性モノマーの長いセグメン
トが存在するため、効果が一層明確に現れる。
Next, a method for manufacturing the composite membrane of the present invention will be described. A monomolecular condensed film of a hydrophilic monomer and a hydrophobic monomer can be produced using a known method. For example, according to the Langmuir method, a polymer copolymer is dissolved in a solvent that is as insoluble in water as possible and light in water resistance, and the solution is spread on a water surface H having a movable partition rod. When the solvent evaporates or dissolves, a monomolecular film of the copolymer remains on the water surface.
The partition rod is moved to reduce the area of the water surface and compress the monolayer on the water surface. As the compression ratio is increased, the segment begins to be buried in water from the point where the hydrophilic monomer density is high, and the single molecule protrudes into the water where the hydrophilic monomer density is highest and where the hydrophobic monomer density is highest into the air. A condensed film is obtained. In the case where the copolymer is a block copolymer or a graft copolymer made of a hydrophilic monomer and a hydrophobic monomer, the effect appears more clearly because of the presence of long segments of the hydrophilic monomer.

また、非水溶媒を用いて上記操作を行えば、親水性七ツ
マー密度の高いところを空中に突出させることもできる
。このような単分子凝縮膜が水面上で作製される過程を
模式的に第2図〜第4図に示す。第2図は親水性モノマ
ーと疎水性モノマーからなる共重合体を水面に展延した
状態、第3図は圧縮することにより親水性セグメントが
水中に突出した状態、第4図は支持体層への結合した状
態の模式図である。また、第1図はこのような方法で製
造した本発明の複合膜の模式図である。
Furthermore, by performing the above operation using a non-aqueous solvent, it is also possible to make a region with a high hydrophilic heptamer density protrude into the air. The process by which such a monomolecular condensed film is produced on the water surface is schematically shown in FIGS. 2 to 4. Figure 2 shows the state in which a copolymer consisting of a hydrophilic monomer and a hydrophobic monomer is spread on the water surface, Figure 3 shows the state in which the hydrophilic segments protrude into the water by compression, and Figure 4 shows the state in which the copolymer consists of a hydrophilic monomer and a hydrophobic monomer. FIG. 2 is a schematic diagram of a combined state. Moreover, FIG. 1 is a schematic diagram of a composite membrane of the present invention manufactured by such a method.

親水性セグメントの突出程度は、共重合体の組成、構造
に応じた所定の圧縮率、温度を決めれば再現性よく制御
できる。得られた単分子凝縮膜の強度を上げるために水
中または水面上に予め塩類や、該共重合体と反応性を有
する物質を添加しておく事も有効な方法でおる。
The degree of protrusion of the hydrophilic segments can be controlled with good reproducibility by determining a predetermined compression ratio and temperature depending on the composition and structure of the copolymer. In order to increase the strength of the monomolecular condensed film obtained, it is also an effective method to add salts or substances reactive with the copolymer in advance into the water or on the water surface.

単分子凝縮膜を支持体上に移しとる方法は、フングミュ
アー・・プロジェット法、回転円筒法、水平付着法等の
公知の方法によることができる。
The monomolecular condensed film can be transferred onto the support by known methods such as the Fungmuir-Prodgett method, the rotating cylinder method, and the horizontal deposition method.

以上の様にして得られた複合膜は単分子凝縮膜からなる
表面層と支持層間の結合が用途によっては充分でない場
合もある。それ故、光架橋、放射線架橋、化学反応など
の公知の技術を用いて該単分子凝縮膜を支持層に強固に
結合させる事も実用上有効である。
In the composite membrane obtained as described above, the bond between the surface layer consisting of a monomolecular condensed membrane and the support layer may not be sufficient depending on the application. Therefore, it is also practically effective to firmly bond the monomolecular condensed film to the support layer using known techniques such as photocrosslinking, radiation crosslinking, and chemical reaction.

本発明の複合膜が何故に優れた生体親和性を示すのか、
これを完全に明確にすることはできないが、本発明の複
合膜は、表面が第1図に示したように、従来の均質、平
滑な構造と異なシ、単分子凝縮膜が突出した親水性セグ
メントを有するいわゆる散漫N構造となっているため、
該層が動くことによって接近してくる血液凝固性物質を
排除し、さらに該層にアルブミンが吸着されることによ
って層の表面が被覆され、血小板、血球等の付着が少な
くなるものと考えられる。
Why does the composite membrane of the present invention exhibit excellent biocompatibility?
Although this cannot be made completely clear, the surface of the composite membrane of the present invention differs from the conventional homogeneous and smooth structure as shown in Figure 1, and the monomolecular condensed membrane has a prominent hydrophilic structure. Because it has a so-called diffuse N structure with segments,
It is thought that the movement of the layer eliminates approaching blood coagulant substances, and that albumin is adsorbed to the layer, thereby covering the surface of the layer and reducing the adhesion of platelets, blood cells, etc.

次に、実施例によって本発明を具体的に説明するが、本
発明はこれら実施例により何ら限定されるものではない
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way.

〔実施例1〕 エチレン含fk32モ〜%、ケン化度99.sモル%の
エチレン−ビニルアμコーp共重合体ヲベンゼンとジメ
チルスルホキシドの混合溶媒に溶解し、その溶液を室温
下で蒸留水上に滴下、拡散展開させて単分子凝縮膜を形
成した。1時間放置後、表面圧20 dyne/cmに
なるまで該単分子膜を圧縮した。第5図に示すごとく、
エチレン−ビニルアμコーμ共重合体の表面圧−面積曲
線によれば、該共重合体は表面圧が10 dyne/a
m以下では液体膨張膜、15 dyne/am以下では
液体凝縮膜となっている。
[Example 1] Ethylene content fk 32 mo~%, saponification degree 99. s mol % of the ethylene-vinyl acop copolymer was dissolved in a mixed solvent of benzene and dimethyl sulfoxide, and the solution was dropped onto distilled water at room temperature and diffused to form a monomolecular condensed film. After standing for 1 hour, the monomolecular film was compressed until the surface pressure reached 20 dyne/cm. As shown in Figure 5,
According to the surface pressure-area curve of the ethylene-vinyl alcohol μ copolymer, the copolymer has a surface pressure of 10 dyne/a.
Below 15 dyne/am, it becomes a liquid expansion film, and below 15 dyne/am, it becomes a liquid condensation film.

この凝縮膜の状態の七ツマー当シの占有面積は約2・5
Aであシ、分子模型による化ツマ−の占有面積約11A
 に比較して極めて小さく、明らかに親水性セグメント
の水中への埋没、あるいは疎水性セグメントの空中への
フォールディングが起っている。次に、この単分子凝縮
膜上に清浄なエチレン−ビニμアルコーμ共重合体フィ
ルムを静かに乗せ、水平付着法により該単分子凝縮膜を
支持体フィルム上に移しとった。
The area occupied by this condensed film is approximately 2.5
A: The area occupied by the molecular model is approximately 11A.
The hydrophilic segment is clearly buried in the water, or the hydrophobic segment is folded into the air. Next, a clean ethylene-viny μ-alcohol μ copolymer film was gently placed on the monomolecular condensed film, and the monomolecular condensed film was transferred onto the support film by a horizontal adhesion method.

この様にして得られた複合膜を内容積1.5 ccのセ
ル内に装着し、犬の新鮮面を注入、気密状態で10分間
保持した後、血液を捨て、リン酸バッファーでリンスし
、グルタルアルデヒドで固定し、次いで該複合膜の表面
をt顕観察したところ、血小板の付着は少なく、かつ血
小板の形態変化も殆んど認められなかった。
The composite membrane thus obtained was placed in a cell with an internal volume of 1.5 cc, the fresh side of the dog was injected, and the cell was kept airtight for 10 minutes, the blood was discarded, and the cell was rinsed with phosphate buffer. When the surface of the composite membrane was fixed with glutaraldehyde and then subjected to t-microscopic observation, it was found that there was little adhesion of platelets and almost no change in the morphology of the platelets was observed.

以上の結果から本発明の複合膜は優れた血液適合性を有
している事が明らかである。
From the above results, it is clear that the composite membrane of the present invention has excellent blood compatibility.

〔実施例2〕 支持体層として表面の平均孔径が約300^(走査電顕
観察による)のエチレン−ビニルアルコール膜を用い、
フングミュア・プロジェット法で単分子凝縮膜を支持体
上に移しとった外は実施例1と同様にして複合膜を得、
血小板粘着挙動を調べたところ、血小板の付着数は少な
く、かっ血小板の形態変化も殆んど認められなかった。
[Example 2] An ethylene-vinyl alcohol film with an average surface pore size of about 300^ (as determined by scanning electron microscopy) was used as the support layer,
A composite membrane was obtained in the same manner as in Example 1 except that the monomolecular condensed membrane was transferred onto a support by the Hungmuir-Prodgett method,
When the platelet adhesion behavior was investigated, the number of platelets attached was small, and almost no change in platelet morphology was observed.

またこの複合膜の透水性、アルブミン阻止率を測定した
ところ表−1の様になった。W4表−1には比較のため
、該支持体層のみを用いて測定した結果も併せて記載し
た。この結果にょシ、本発明の複合膜は優れた血液親和
性と高い選択透過性を示す複合膜であることが明らかで
ある。
Furthermore, the water permeability and albumin rejection rate of this composite membrane were measured, and the results were as shown in Table 1. For comparison, W4 Table-1 also includes the results measured using only the support layer. As a result, it is clear that the composite membrane of the present invention exhibits excellent blood affinity and high permselectivity.

表  −1 〔発明の効果〕 本発明によシ、親水性上ツマ−と疎水性モノマーとの共
重合体の単分子凝縮膜の親水性セグメントを多く有する
面を表面にして支持体層に積層してなる複合膜を供給す
ることができる。該複合膜の支持体層として実質的に無
孔の物質透過性を示さない、いわゆるフィルムやシート
を用いた場合には良好な生体親和性、とくに優れた血液
適合性を発現する。
Table 1 [Effects of the Invention] According to the present invention, a monomolecular condensed film of a copolymer of a hydrophilic monomer and a hydrophobic monomer is laminated on a support layer with the side having many hydrophilic segments facing up. It is possible to supply a composite membrane made of When a so-called film or sheet that is substantially non-porous and exhibits no substance permeability is used as the support layer of the composite membrane, it exhibits good biocompatibility, particularly excellent blood compatibility.

また、該支持体層として濾過膜や透析膜に代表されるい
わゆる孔のある膜を用いた場合には優れた生体親和性に
加え、高い物質透過性を発現する。
Furthermore, when a so-called porous membrane such as a filtration membrane or a dialysis membrane is used as the support layer, it exhibits not only excellent biocompatibility but also high substance permeability.

本発明の複合膜は人工腎臓、人工肺等の人工臓器、血液
チューブ、血液バッグ、人工血管等の埋込用生体材料、
医療用センサーの検出端等の医療用途に広く使用される
The composite membrane of the present invention can be used for biomaterials for implantation in artificial organs such as artificial kidneys and artificial lungs, blood tubes, blood bags, and artificial blood vessels.
Widely used in medical applications such as the detection end of medical sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の複合膜を示す模式図である。 第2図は、親水性モノマーと疎水性モノマーからなる共
重合体を水面に展延した状態、第3図は圧縮することに
より親水性セグメントが水中に突出した状態、第4図は
支持体層への結合した状態の模式図である。第5図は、
実施例で用いられたエチレン−ビニルアルコ−μ共重合
体の表面圧−面積を示す曲線である。 1・・・・・・・・・親水性セグメントを多く有する面
を表面とした単分子凝縮膜
FIG. 1 is a schematic diagram showing a composite membrane of the present invention. Figure 2 shows the state in which a copolymer consisting of a hydrophilic monomer and a hydrophobic monomer is spread on the water surface, Figure 3 shows the state in which hydrophilic segments protrude into the water by compression, and Figure 4 shows the support layer. FIG. Figure 5 shows
It is a curve showing the surface pressure-area of the ethylene-vinyl alcohol-μ copolymer used in Examples. 1. Monomolecular condensed film with a surface having many hydrophilic segments

Claims (1)

【特許請求の範囲】[Claims] 親水性モノマーと疎水性モノマーとの共重合体を液面上
に展延して、一表面が親水性セグメントを多く有し、他
表面が疎水性セグメントを多く有する単分子凝縮膜を形
成し、該凝縮膜を親水性セグメントを多く有する面を表
面にして支持体層に積層してなる複合膜。
A copolymer of a hydrophilic monomer and a hydrophobic monomer is spread on the liquid surface to form a monomolecular condensed film having many hydrophilic segments on one surface and many hydrophobic segments on the other surface, A composite membrane formed by laminating the condensed membrane on a support layer with the side having many hydrophilic segments facing up.
JP59188687A 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body Granted JPS6168104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188687A JPS6168104A (en) 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188687A JPS6168104A (en) 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body

Publications (2)

Publication Number Publication Date
JPS6168104A true JPS6168104A (en) 1986-04-08
JPH0376971B2 JPH0376971B2 (en) 1991-12-09

Family

ID=16228076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188687A Granted JPS6168104A (en) 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body

Country Status (1)

Country Link
JP (1) JPS6168104A (en)

Also Published As

Publication number Publication date
JPH0376971B2 (en) 1991-12-09

Similar Documents

Publication Publication Date Title
US5084173A (en) Hydrophilic composite porous membrane, a method of producing the plasma separator
TWI470014B (en) Membrane-based apparatus and associated method
US5028332A (en) Hydrophilic material and method of manufacturing
AU716543B2 (en) Immobilization of chemical species in crosslinked matrices
US5202025A (en) Porous membrane and method for preparing the same
US5807636A (en) Durable hydrophilic surface coatings
EP0203459B1 (en) A hydrophilic composite porous membrane, a method of producing the same and a plasma separator
JP5558716B2 (en) Ultra-thin photopolymer coating and use thereof
US4073733A (en) PVA membrane and method for preparing the same
JPS62262705A (en) Hydrophilic porous membrane, its production and serum separator using said membrane
JPWO2002009857A1 (en) Modified hollow fiber membrane
TW200803968A (en) Membrane-based article and associated method
US5240615A (en) Composite membrane composed of microporous polyvinylidene difluoride membrane laminated to porous support and process for its preparation
Tighe The role of permeability and related properties in the design of synthetic hydrogels for biomedical applications
US4134837A (en) Ethylene-vinyl alcohol copolymer membranes having improved permeability characteristics and a method for producing the same
CA1073822A (en) Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same
CN105727771A (en) Heparinoid-modified polyvinyl alcohol hydrogel thin nano-compound hematodialysis film and preparation method thereof
EP2803404B1 (en) High throughput membrane with channels formed by leaching
KR20010078245A (en) Hollow fiber membrane and process for producing the same
WO2018062451A1 (en) Separation membrane module
JPS6168104A (en) Composite membrane having excellent affinity for living body
Zong et al. Fabrication and biocompatibility of cell outer membrane mimetic surfaces
JPH0135681B2 (en)
EP0534014A1 (en) Non-adhesive biocompatible surface
Sharma et al. Introduction of surface functional groups onto biomaterials by glow discharges