JPH0376971B2 - - Google Patents

Info

Publication number
JPH0376971B2
JPH0376971B2 JP59188687A JP18868784A JPH0376971B2 JP H0376971 B2 JPH0376971 B2 JP H0376971B2 JP 59188687 A JP59188687 A JP 59188687A JP 18868784 A JP18868784 A JP 18868784A JP H0376971 B2 JPH0376971 B2 JP H0376971B2
Authority
JP
Japan
Prior art keywords
membrane
monomolecular
film
hydrophilic
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188687A
Other languages
Japanese (ja)
Other versions
JPS6168104A (en
Inventor
Minoru Ueno
Akio Oomori
Hiroyuki Akasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59188687A priority Critical patent/JPS6168104A/en
Publication of JPS6168104A publication Critical patent/JPS6168104A/en
Publication of JPH0376971B2 publication Critical patent/JPH0376971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は複合膜に関する。さらに詳しくは、親
水性モノマーと疎水性モノマーとの共重合体を液
面上に展延して形成した単分子凝縮膜の親水性セ
グメントを多く有する面を表面にして支持体層に
積層してなる生体親和性、とくに血液親和性に優
れた医療用複合膜に関する。 〔従来の技術〕 近年、膜による分離技術の発達には目覚しいも
のがあり、そのうちいくつかは工業的規模で実用
化されている。こうした発達の歴史を振り返つて
みると、分離効率の向上と膜の機械的、化学的、
生物学的耐久性との両立を目指して膜の複合構造
化が進められている事がわかる。かかる分離膜に
おける複合膜は活性層と支持層とからなつてお
り、支持層が膜強度を維持し、活性層が透過性を
支配する。一般に活性層は薄い程、物質透過性が
高いため現在では数千〜数百オングストロームÅ
にまで薄層化された超薄膜が用いられている。 この様な超薄膜の製法の1つとして、水面上に
高分子の非水溶性溶媒を展延して該溶液の超薄層
を形成せしめ、これを脱溶媒する、いわゆる水上
キヤステイング法がある。具体的には大面積の超
薄層製造法として水面上に1対の仕切棒を設置し
て該仕切棒で区切られた領域内に高分子溶液を滴
下するとともに、仕切棒の間隔を増大させる方法
(特開昭51−89564号)、水よりも高密度の溶媒を
用い、水面下に設置した溶液溜内に回転ロールな
どの可動面を通過させて溶液を水面上に強制展延
する方法(米国特許第3767737号)、水面上への高
分子溶液の展延を水相と溶液相との相対的な液面
位置制御によつて行なう方法(特開昭58−92526
号)などが知られている。しかしながら、これ等
の超薄膜は逆浸透、液々分離、気体分離などの際
の活性層として考えられているため、本質的に均
質で平滑な構造を有しているにすぎず、生体親和
性に優れているとはいえない。また、特開昭57−
159506号には活性層が架橋単分子フイルムの分子
よりなる複合膜が開示されている。該膜は活性層
が特定の配向性や構造を有している超薄層である
点では一段と進歩した膜といえるが、活性層表面
はやはり均質、平滑な構造でしかなく、生体親和
性という点では不充分である。 一方、生体親和性という点からは、従来の医用
シリコンゴム、ポリヒドロキシエチルメタクリレ
ート、テフロン等の材料に加え、親水性のポリエ
ーテルウレタンと疎水性のポリジメチルシロキサ
ンのブレンドマーや、セグメント化コポリエーテ
ル−ウレタン−ウレア等が研究されている。特
に、後の二者は親水性部と疎水性部のミクロ相分
離構造をとつている事から、単にポリマーの一次
構造だけではなく、表面の高次構造も抗血栓性に
対して重要な因子となつている事が認められてい
る(化学の領域、34,519)。 また生体適合性の高い表面高次構造のもう1つ
の例としては散慢層が挙げられる。(Polym.
PrePrints,Japan,28,1542(1979))。これは親
水性のフレキシブルな側鎖がポリマー表面から水
中に、海草の様につきでて、ゆらいでいる高次構
造であり、その親水性層の分子運動や電気的反撥
力により高い血液適合性が示されると考えられて
いる。 以上述べた様に生体適合性の高い材料には、特
殊な化学構造(1次構造)によつてその性質を発
現するものと、特定の立体的構造(高次構造)に
よつてその性質を発現するもの、あるいは両方の
性質によつて生体適合性を発現するものがある
が、これらはいずれも血液チユーブ、血液バツ
グ、人工血管、人工心臓、カテーテルをはじめと
する埋込用生体材料として開発されてきたもので
あり、該材料を薄層化して良好な物質透過性を示
す、生体親和性に優れた複合膜とした研究例はみ
あたらない。 〔発明が解決しようとする問題点〕 以上述べたように、従来の薄層化された超薄膜
からなる複合膜は生体親和性に劣り、一方、上記
の生体親和性材料は物質透過性が劣り、これら両
者の長所をうまく兼ね備えた複合膜は未だ知られ
ていないのが現状である。 本発明者らはこの様な状況に鑑みて、生体適合
性に優れた超薄層を形成し、それを活性層として
用いる事により、物質透過性をも示しうる生体適
合性に優れた複合膜を得るべく鋭意検討した結
果、意外にも親水性モノマーと疎水性モノマーと
の共重合体の溶液を水面上に拡散展開させ、所定
の表面圧力で圧縮して該共重合体の親水性セグメ
ントが水中にもぐり込んだ態様の単分子凝縮膜を
形成した後、または成形しつつ該凝縮膜を水面に
接した面を表面にして支持体層上に移しとるか、
または該共重合体を非水溶媒面上に拡散展開さ
せ、所定の表面圧力で圧縮して該共重合体の疎水
性セグメントが非水溶媒中にもぐり込んだ態様の
単分子凝縮膜を形成した後、または形成しつつ該
凝縮膜を非水溶媒面に接しない面を表面にして支
持体層上に移しとることにより上記目的を満足す
る複合膜を得ることができることを見出し、本発
明に至つた。 〔問題を解決するための手段および作用〕 本発明は親水性モノマーと疎水性モノマーとの
共重合体を液面上に展延して、単分子凝縮膜を形
成し、該凝縮膜を親水性セグメントを多く有する
面を表面にして支持体層に積層してなる複合膜で
あるが、該共重合体の共重合形式はとくに限定さ
れず、汎用的なランダムコポリマーが一般に用い
られる。ブロツク共重合体やグラフト共重合体を
用いると本発明の効果は大きく、とくに、エチレ
ン−ビニルアルコール系共重合体は好ましい共重
合体である。 該共重合体に用いられる親水性モノマーとして
は、ビニルアルコール、セルロース等の水酸基を
含むものや、アルデヒド基、エチレンオキサイド
基等を含む公知の中性親水性モノマーがあげられ
る。また、カルボキシル基、硫酸基、亜硫酸基、
硝酸基、亜硝酸基、リン酸基、亜リン酸基、次亜
リン酸基およびこれらのエステル基を含むモノマ
ー、あるいはこれらのイオンを含む水中で負に電
離可能なモノマーを用いることもできる。アミノ
基、イミノ基等を含む水中で正に荷電しうるモノ
マーも用いうるが、これ等は体液中の蛋白質など
を吸着しやすい性質を有するため、本発明の複合
膜をかかる処理に用いるときは、使用前に該活性
中心を失活させておく必要がある。活性中心の失
活方法としては、例えばヘパリン等の負荷電物質
との結合、各種酵素やホルモン、蛋白、生理活性
物質との結合などがある。また本発明の共重合体
に用いられる疎水性モノマーとしてはオレフイン
系、ジエン系、アセチレン系、芳香族系、オルガ
ノシロキサン系、フルオロエチレン系などがあげ
られる。 本発明において、支持体層には、いわゆる孔を
有している過膜、透析膜などの各種の膜が用い
られる。このような膜としては、該単分子凝縮膜
と接触する表面の平均孔径が1000Å以下、好まし
くは400Å以下である膜が望ましい。1000Åより
も平均孔径が大きい膜を用いると、単分子凝縮膜
を該膜に移しとつたときに欠陥が生じ、選択透過
性が損われやすい。また、該支持体層には、実質
的に孔のない構造を有する物質透過性のきわめて
小さい、一般的にフイルム、シートと称せられる
ものも用いられる。実質的に孔のない構造とは、
倍率10万倍の走査電顕でも孔の存在が確認できな
い構造をいう。 本発明において、上記のフイルムやシートを支
持体層として用いる場合の本発明の効果はそれら
の表面を改質し、高い生体親和性を付与する点に
あるが、上記の各種の膜を支持体層として用いる
場合の効果は、単に膜表面の改質のみにとどまら
ず、さらに、高い物質透過性を有する優れた生体
親和性を与える点にある。従つて、かかる膜を支
持体層に用いた場合には、効果がより一層明確に
発現する。さらに、特別な支持体層として、例え
ば同種または異種物質の単分子膜やあるいはその
累積膜を固定した複合膜を用いることもできる
し、中空糸膜を用いることもできる。本発明にお
いてこれら支持体の厚みはとくに規定されない
が、実用的には数μ〜数mmの範囲で用いられる。 本発明の複合膜は、これらの支持体層と単分子
凝縮層とから構成されるが、該単分子凝縮層は単
層で用いてもよいし、累積膜として複層で用いて
もよい。しかしながら、いずれの場合でも、親水
性セグメントを多く有する面を表面とすることが
必要である。 次に本発明の複合膜を製造する方法について述
べる。親水性モノマーと疎水性モノマーの単分子
凝縮膜は公知の方法を利用して作製する事ができ
る。例えばラングミユアー法によれば高分子共重
合体をできるだけ非水溶性で、かつ水よりも軽い
溶剤に溶解し、その溶液を可動性仕切棒を有する
水面上に展開する。溶媒が蒸発または溶解しさる
と、水面上には共重合体の単分子膜が残るので、
該仕切棒を動かし、水面の面積を減少せしめ、該
単分子膜を水面上で圧縮する。圧縮率をあげてい
くと、親水性モノマー密度の高いところからセグ
メントの水中埋没が始まり、最も親水性モノマー
密度の高いところが水中に、最も疎水性モノマー
密度の高いところが空中に突出した単分子凝縮膜
が得られる。共重合体が親水性モノマーと疎水性
モノマーとよりなるブロツク共重合体やグラフト
共重合体の場合には、親水性モノマーの長いセグ
メントが存在するため、効果が一層明確に現れ
る。また、非水溶媒を用いて上記操作を行えば、
親水性モノマー密度の高いところを空中に突出さ
せることもできる。このような単分子凝縮膜が水
面上で作製される過程を模式的に第2図〜第4図
に示す。第2図は親水性モノマーと疎水性モノマ
ーからなる共重合体を水面に展延した状態、第3
図は圧縮することにより親水性セグメントが水中
に突出した状態、第4図は支持体層への結合した
状態の模式図である。また、第1図はこのような
方法で製造した本発明の複合膜の模式図である。 親水性セグメントの突出程度は、共重合体の組
成、構造に応じた所定の圧縮率、温度を決めれば
再現性よく制御できる。得られた単分子凝縮膜の
強度を上げるために水中または水面上に予め塩類
や、該共重合体と反応性を有する物質を添加して
おく事も有効な方法である。 単分子凝縮膜を支持体上に移しとる方法は、ラ
ングミユアー・ブロジエツト法、回転円筒法、水
平付着法等の公知の方法によることができる。 以上の様にして得られた複合膜は単分子凝縮膜
からなる表面層と支持層間の結合が用途によつて
は充分でない場合もある。それ故、光架橋、放射
線架橋、化学反応などの公知の技術を用いて該単
分子凝縮膜を支持層に強固に結合させる事も実用
上有効である。 本発明の複合膜が何故に優れた生体親和性を示
すのか、これを完全に明確にすることはできない
が、本発明の複合膜は、表面が第1図に示したよ
うに、従来の均質、平滑な構造と異なり、単分子
凝縮膜が突出した親水性セグメントを有するいわ
ゆる散慢層構造となつているため、該層が動くこ
とによつて接近してくる血液凝固性物質を排除
し、さらに該層にアルブミンが吸着されることに
よつて層の表面が被覆され、血小板、血球等の付
着が少なくなるものと考えられる。 次に、実施例によつて本発明を具体的に説明す
るが、本発明はこれら実施例により何ら限定され
るものではない。 実施例 1 エチレン含量32モル%、ケン化度99.8モル%の
エチレン−ビニルアルコール共重合体をベンゼン
とジメチルスルホキシドの混合溶媒に溶解し、そ
の溶液を室温下で蒸留水上に滴下、拡散展開させ
て単分子凝縮膜を形成した。1時間放置後、表面
圧20dyne/cmになるまで該単分子膜を圧縮した。
第5図に示すごとく、エチレン−ビニルアルコー
ル共重合体の表面圧−面積曲線によれば、該共重
合体は表面圧が10dyne/cm以下では液体膨張膜、
15dyne/cm以下では液体凝縮膜となつている。
この凝縮膜の状態のモノマー当りの占有面積は約
2.5Å2であり、分子模型によるモノマーの占有面
積約11Å2に比較して極めて小さく、明らかに親
水性セグメントの水中への埋没、あるいは疎水性
セグメントの空中へのフオールデイングが起つて
いる。次に、この単分子凝縮膜上に清浄なエチレ
ン−ビニルアルコール共重合体フイルムを静かに
乗せ、水平付着法により該単分子凝縮膜を支持体
フイルム上に移しとつた。 この様にして得られた複合膜を内容積1.5c.c.の
セル内に装着し、犬の新鮮血を注入、気密状態で
10分間保持した後、血液を捨て、リン酸バツフア
ーでリンスし、グルタルアルデヒドで固定し、次
いで該複合膜の表面を電顕観察したところ、血小
板の付着は少なく、かつ血小板の形態変化も殆ん
ど認められなかつた。 以上の結果から本発明の複合膜は優れた血液適
合性を有している事が明らかである。 実施例 2 支持体層として表面の平均孔径が約300Å(走
査電顕観察による)のエチレン−ビニルアルコー
ル膜を用い、ラングミユア・ブロジエツト法で単
分子凝縮膜を支持体上に移しとつた外は実施例1
と同様にして複合膜を得、血小板粘着挙動を調べ
たところ、血小板の付着数は少なく、かつ血小板
の形態変化も殆んど認められなかつた。 またこの複合膜の透水性、アルブミン阻止率を
測定したところ表−1の様になつた。表−1には
比較のため、該支持体層のみを用いて測定した結
果も併せて記載した。この結果により、本発明の
複合膜は優れた血液親和性と高い選択透過性を示
す複合膜であることが明らかである。
[Industrial Field of Application] The present invention relates to a composite membrane. More specifically, a monomolecular condensed film formed by spreading a copolymer of a hydrophilic monomer and a hydrophobic monomer on the liquid surface is laminated on a support layer with the side having many hydrophilic segments facing up. The present invention relates to a medical composite membrane that has excellent biocompatibility, particularly blood affinity. [Prior Art] In recent years, there has been remarkable progress in separation techniques using membranes, and some of them have been put into practical use on an industrial scale. Looking back at the history of these developments, we can see that improvements in separation efficiency and membrane mechanical, chemical,
It can be seen that the composite structure of membranes is being developed with the aim of achieving both biological durability and biological durability. The composite membrane in such a separation membrane consists of an active layer and a support layer, with the support layer maintaining membrane strength and the active layer controlling permeability. In general, the thinner the active layer is, the higher its permeability to substances;
Ultra-thin films are used. One of the methods for manufacturing such ultra-thin films is the so-called on-water casting method, in which a non-aqueous polymeric solvent is spread on the water surface to form an ultra-thin layer of the solution, and this is then removed. . Specifically, as a large-area ultra-thin layer manufacturing method, a pair of partition rods is installed above the water surface, and a polymer solution is dripped into the area separated by the partition rods, and the distance between the partition rods is increased. method (Japanese Patent Application Laid-Open No. 51-89564), a method in which a solvent with a higher density than water is used and the solution is forcefully spread on the water surface by passing a movable surface such as a rotating roll through a solution reservoir installed below the water surface. (U.S. Pat. No. 3,767,737), a method of spreading a polymer solution on the water surface by controlling the relative liquid surface position of the aqueous phase and the solution phase (Japanese Patent Laid-Open No. 58-92526)
No.) etc. are known. However, since these ultra-thin membranes are considered as active layers in reverse osmosis, liquid-liquid separation, gas separation, etc., they essentially have only a homogeneous and smooth structure and are not biocompatible. It cannot be said that it is excellent. Also, JP-A-57-
No. 159506 discloses a composite membrane in which the active layer is composed of molecules of a crosslinked monomolecular film. Although this film can be said to be a much more advanced film in that the active layer is an ultra-thin layer with a specific orientation and structure, the surface of the active layer is still only a homogeneous and smooth structure, and it has poor biocompatibility. It is insufficient in this respect. On the other hand, in terms of biocompatibility, in addition to conventional materials such as medical silicone rubber, polyhydroxyethyl methacrylate, and Teflon, blenders of hydrophilic polyether urethane and hydrophobic polydimethylsiloxane, and segmented copolyether -Urethane-Urea etc. are being studied. In particular, since the latter two have a microphase-separated structure of hydrophilic and hydrophobic parts, not only the primary structure of the polymer but also the higher-order structure of the surface is an important factor for antithrombotic properties. It is recognized that this is the case (Region of Chemistry, 34, 519). Another example of a highly biocompatible surface structure is a scattering layer. (Polym.
PrePrints, Japan, 28, 1542 (1979)). This is a higher-order structure in which flexible hydrophilic side chains protrude from the polymer surface into the water like seaweed, and have high blood compatibility due to the molecular movement and electrical repulsion of the hydrophilic layer. It is believed that it will be shown. As mentioned above, there are materials with high biocompatibility that exhibit their properties through a special chemical structure (primary structure) and those that exhibit their properties through a specific three-dimensional structure (higher-order structure). Some exhibit biocompatibility due to the above properties or both properties, and all of these have been developed as implantable biomaterials such as blood tubes, blood bags, artificial blood vessels, artificial hearts, and catheters. However, there have been no research examples of thinning the material to create a composite membrane with good substance permeability and excellent biocompatibility. [Problems to be solved by the invention] As mentioned above, conventional composite membranes made of ultra-thin films have poor biocompatibility, while the above-mentioned biocompatible materials have poor substance permeability. However, at present, a composite membrane that successfully combines the advantages of both is not yet known. In view of this situation, the present inventors formed an ultra-thin layer with excellent biocompatibility and used it as an active layer to create a composite membrane with excellent biocompatibility that can also exhibit substance permeability. As a result of intensive studies to obtain this, it was unexpectedly possible to spread a solution of a copolymer of a hydrophilic monomer and a hydrophobic monomer on the water surface and compress it with a predetermined surface pressure to release the hydrophilic segment of the copolymer. After forming a monomolecular condensed film submerged in water, or during molding, transfer the condensed film onto a support layer with the surface in contact with the water surface facing up, or
Alternatively, after the copolymer is diffused and developed on the non-aqueous solvent surface and compressed with a predetermined surface pressure to form a monomolecular condensed film in which the hydrophobic segments of the copolymer have penetrated into the non-aqueous solvent. The present inventors have discovered that it is possible to obtain a composite membrane that satisfies the above objectives by forming the condensed membrane and transferring the condensed membrane onto a support layer with the side not in contact with the non-aqueous solvent surface as the surface, and have thus arrived at the present invention. . [Means and effects for solving the problem] The present invention spreads a copolymer of a hydrophilic monomer and a hydrophobic monomer on a liquid surface to form a monomolecular condensed film, and makes the condensed film hydrophilic. Although this is a composite membrane formed by laminating a support layer with the surface having many segments facing up, the copolymerization type of the copolymer is not particularly limited, and a general-purpose random copolymer is generally used. The effects of the present invention are great when block copolymers and graft copolymers are used, and ethylene-vinyl alcohol copolymers are particularly preferred. Examples of the hydrophilic monomer used in the copolymer include those containing a hydroxyl group such as vinyl alcohol and cellulose, and known neutral hydrophilic monomers containing an aldehyde group, an ethylene oxide group, and the like. In addition, carboxyl groups, sulfate groups, sulfite groups,
It is also possible to use monomers containing nitrate groups, nitrite groups, phosphoric acid groups, phosphorous acid groups, hypophosphorous acid groups, and ester groups thereof, or monomers containing these ions that can be negatively ionized in water. Monomers containing amino groups, imino groups, etc. that can be positively charged in water can also be used, but since these have the property of easily adsorbing proteins in body fluids, when using the composite membrane of the present invention for such treatment, , it is necessary to inactivate the active center before use. Examples of methods for deactivating the active center include binding with a negatively charged substance such as heparin, binding with various enzymes, hormones, proteins, and physiologically active substances. Hydrophobic monomers used in the copolymer of the present invention include olefin, diene, acetylene, aromatic, organosiloxane, and fluoroethylene monomers. In the present invention, various membranes having so-called pores, such as membranes and dialysis membranes, are used as the support layer. Such a membrane is desirably a membrane whose surface in contact with the monomolecular condensed membrane has an average pore diameter of 1000 Å or less, preferably 400 Å or less. If a membrane with an average pore diameter larger than 1000 Å is used, defects will occur when a monomolecular condensation membrane is transferred to the membrane, and permselectivity will likely be impaired. Further, as the support layer, a material generally referred to as a film or sheet, which has a substantially pore-free structure and extremely low permeability to substances, is also used. A virtually pore-free structure means
A structure in which the presence of pores cannot be confirmed even with a scanning electron microscope at a magnification of 100,000 times. In the present invention, when the above films and sheets are used as a support layer, the effect of the present invention is to modify their surfaces and impart high biocompatibility. When used as a layer, the effect is not only to simply modify the membrane surface, but also to provide excellent biocompatibility with high substance permeability. Therefore, when such a membrane is used as a support layer, the effect is more clearly expressed. Further, as a special support layer, for example, a monomolecular film of the same or different materials or a composite film in which a cumulative film thereof is fixed can be used, or a hollow fiber membrane can also be used. Although the thickness of these supports is not particularly defined in the present invention, they are practically used in the range of several μ to several mm. The composite membrane of the present invention is composed of these support layers and a monomolecular condensed layer, and the monomolecular condensed layer may be used as a single layer or as a multilayer as a cumulative membrane. However, in either case, it is necessary that the surface has a large number of hydrophilic segments. Next, a method for manufacturing the composite membrane of the present invention will be described. A monomolecular condensed film of a hydrophilic monomer and a hydrophobic monomer can be produced using a known method. For example, according to the Langmiuer method, a polymer copolymer is dissolved in a solvent that is as insoluble as possible and lighter than water, and the solution is spread on a water surface having a movable partition rod. When the solvent evaporates or dissolves, a monomolecular film of the copolymer remains on the water surface.
The partition rod is moved to reduce the area of the water surface and compress the monolayer on the water surface. As the compression rate is increased, the segments begin to be buried in water from the areas with the highest hydrophilic monomer density, forming a monomolecular condensed film in which the areas with the highest hydrophilic monomer density protrude into the water and the areas with the highest hydrophobic monomer density protrude into the air. is obtained. In the case where the copolymer is a block copolymer or a graft copolymer made of a hydrophilic monomer and a hydrophobic monomer, the effect appears more clearly because of the presence of long segments of the hydrophilic monomer. Also, if the above operation is performed using a non-aqueous solvent,
It is also possible to make the areas with high hydrophilic monomer density protrude into the air. The process by which such a monomolecular condensed film is produced on the water surface is schematically shown in FIGS. 2 to 4. Figure 2 shows a state in which a copolymer consisting of a hydrophilic monomer and a hydrophobic monomer is spread on the water surface;
The figure shows a state in which the hydrophilic segment protrudes into water by compression, and FIG. 4 is a schematic diagram in a state in which it is bonded to a support layer. Moreover, FIG. 1 is a schematic diagram of a composite membrane of the present invention manufactured by such a method. The degree of protrusion of the hydrophilic segments can be controlled with good reproducibility by determining a predetermined compression ratio and temperature depending on the composition and structure of the copolymer. In order to increase the strength of the obtained monomolecular condensed film, it is also an effective method to add salts or substances reactive with the copolymer in advance into the water or on the water surface. The monomolecular condensed film can be transferred onto the support by known methods such as the Langmuir-Blodget method, the rotating cylinder method, and the horizontal deposition method. In the composite membrane obtained as described above, the bond between the surface layer consisting of a monomolecular condensed membrane and the support layer may not be sufficient depending on the application. Therefore, it is also practically effective to firmly bond the monomolecular condensed film to the support layer using known techniques such as photocrosslinking, radiation crosslinking, and chemical reaction. Although it is not completely clear why the composite membrane of the present invention exhibits excellent biocompatibility, the composite membrane of the present invention has a surface that is similar to the conventional homogeneous surface as shown in FIG. Unlike a smooth structure, the monomolecular condensed film has a so-called scattering layer structure with protruding hydrophilic segments, so the movement of this layer eliminates approaching blood coagulants, Furthermore, it is considered that albumin is adsorbed onto the layer, thereby covering the surface of the layer, thereby reducing the adhesion of platelets, blood cells, and the like. Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 An ethylene-vinyl alcohol copolymer with an ethylene content of 32 mol% and a degree of saponification of 99.8 mol% was dissolved in a mixed solvent of benzene and dimethyl sulfoxide, and the solution was dropped onto distilled water at room temperature and allowed to diffuse. A monomolecular condensed film was formed. After standing for 1 hour, the monomolecular film was compressed to a surface pressure of 20 dyne/cm.
As shown in Figure 5, according to the surface pressure-area curve of the ethylene-vinyl alcohol copolymer, the copolymer becomes a liquid expanding membrane when the surface pressure is 10 dyne/cm or less.
Below 15 dyne/cm, it becomes a liquid condensation film.
The occupied area per monomer in this condensed film state is approximately
The area is 2.5 Å 2 , which is extremely small compared to the approximately 11 Å 2 occupied area of the monomer according to the molecular model, and it is clear that the hydrophilic segment is buried in water or the hydrophobic segment is folded into the air. Next, a clean ethylene-vinyl alcohol copolymer film was gently placed on this monomolecular condensation film, and the monomolecular condensation film was transferred onto a support film by a horizontal adhesion method. The composite membrane obtained in this way was placed inside a cell with an internal volume of 1.5 cc, and fresh dog blood was injected into it in an airtight state.
After holding for 10 minutes, the blood was discarded, rinsed with phosphate buffer, fixed with glutaraldehyde, and then electron microscopic observation of the surface of the composite membrane revealed that there was little adhesion of platelets and almost no change in platelet morphology. It was not recognized at all. From the above results, it is clear that the composite membrane of the present invention has excellent blood compatibility. Example 2 An ethylene-vinyl alcohol film with a surface average pore diameter of approximately 300 Å (according to scanning electron microscopy) was used as the support layer, and a monomolecular condensation film was transferred onto the support by the Langmiur-Blodget method. Example 1
A composite membrane was obtained in the same manner as above, and the platelet adhesion behavior was examined. As a result, the number of platelets attached was small, and almost no change in platelet morphology was observed. Furthermore, the water permeability and albumin rejection rate of this composite membrane were measured, and the results were as shown in Table 1. For comparison, Table 1 also shows the results measured using only the support layer. From these results, it is clear that the composite membrane of the present invention exhibits excellent blood affinity and high permselectivity.

〔発明の効果〕〔Effect of the invention〕

本発明により、親水性モノマーと疎水性モノマ
ーとの共重合体の単分子凝縮膜の親水性セグメン
トを多く有する面を表面にして支持体層に積層し
てなる複合膜を供給することができる。該複合膜
の支持体層として実質的に無孔の物質透過性を示
さない、いわゆるフイルムやシートを用いた場合
には良好な生体親和性、とくに優れた血液適合性
を発現する。 また、該支持体層として過膜や透析膜に代表
されるいわゆる孔のある膜を用いた場合には優れ
た生体親和性に加え、高い物質透過性を発現す
る。本発明の複合膜は人工腎臓、人工肺等の人工
臓器、血液チユーブ、血液バツグ、人工血管等の
埋込用生体材料、医療用センサーの検出端等の医
療用途に広く使用される。
According to the present invention, a composite membrane can be provided in which a monomolecular condensed membrane of a copolymer of a hydrophilic monomer and a hydrophobic monomer is laminated on a support layer with the surface having many hydrophilic segments facing the surface. When a so-called film or sheet that is substantially non-porous and exhibits no substance permeability is used as the support layer of the composite membrane, it exhibits good biocompatibility, particularly excellent blood compatibility. Furthermore, when a membrane with so-called pores, such as a permeable membrane or a dialysis membrane, is used as the support layer, it exhibits not only excellent biocompatibility but also high substance permeability. The composite membrane of the present invention is widely used in medical applications such as artificial organs such as artificial kidneys and artificial lungs, biomaterials for implantation such as blood tubes, blood bags, and artificial blood vessels, and detection ends of medical sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の複合膜を示す模式図であ
る。第2図は、親水性モノマーと疎水性モノマー
からなる共重合体を水面に展延した状態、第3図
は圧縮することにより親水性セグメントが水中に
突出した状態、第4図は支持体層への結合した状
態の模式図である。第5図は、実施例で用いられ
たエチレン−ビニルアルコール共重合体の表面圧
−面積を示す曲線である。 1…親水性セグメントを多く有する面を表面と
した単分子凝縮膜、2…突出した親水性セグメン
ト、3…支持体層、4…親水基、5…疎水基、6
…水面。
FIG. 1 is a schematic diagram showing a composite membrane of the present invention. Figure 2 shows the state in which a copolymer consisting of a hydrophilic monomer and a hydrophobic monomer is spread on the water surface, Figure 3 shows the state in which hydrophilic segments protrude into the water by compression, and Figure 4 shows the support layer. FIG. FIG. 5 is a curve showing the surface pressure-area of the ethylene-vinyl alcohol copolymer used in the examples. 1... Monomolecular condensed film whose surface has a surface having many hydrophilic segments, 2... Protruding hydrophilic segments, 3... Support layer, 4... Hydrophilic group, 5... Hydrophobic group, 6
...Water surface.

Claims (1)

【特許請求の範囲】[Claims] 1 親水性モノマーと疎水性モノマーとの共重合
体を液面上に展延して、一表面が親水性セグメン
トを多く有し、他表面が疎水性セグメントを多く
有する単分子凝縮膜を形成し、該凝縮膜を親水性
セグメントを多く有する面を表面にして支持体層
に積層してなる複合膜。
1 A copolymer of a hydrophilic monomer and a hydrophobic monomer is spread on the liquid surface to form a monomolecular condensed film with many hydrophilic segments on one surface and many hydrophobic segments on the other surface. , a composite membrane formed by laminating the condensed membrane on a support layer with the side having many hydrophilic segments facing up.
JP59188687A 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body Granted JPS6168104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188687A JPS6168104A (en) 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188687A JPS6168104A (en) 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body

Publications (2)

Publication Number Publication Date
JPS6168104A JPS6168104A (en) 1986-04-08
JPH0376971B2 true JPH0376971B2 (en) 1991-12-09

Family

ID=16228076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188687A Granted JPS6168104A (en) 1984-09-07 1984-09-07 Composite membrane having excellent affinity for living body

Country Status (1)

Country Link
JP (1) JPS6168104A (en)

Also Published As

Publication number Publication date
JPS6168104A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
US5084173A (en) Hydrophilic composite porous membrane, a method of producing the plasma separator
AU716543B2 (en) Immobilization of chemical species in crosslinked matrices
EP0352199B1 (en) Hydrophilic material and method of manufacturing the same
US5807636A (en) Durable hydrophilic surface coatings
Iwasaki et al. Phosphorylcholine-containing polymers for biomedical applications
TWI470014B (en) Membrane-based apparatus and associated method
US5202025A (en) Porous membrane and method for preparing the same
EP0203459B1 (en) A hydrophilic composite porous membrane, a method of producing the same and a plasma separator
AU633449B2 (en) Process for surface modifying a support membrane
JP2008508998A5 (en)
TW200803968A (en) Membrane-based article and associated method
JPH03136838A (en) Membrane having hydrophilic surface
US4134837A (en) Ethylene-vinyl alcohol copolymer membranes having improved permeability characteristics and a method for producing the same
US5240615A (en) Composite membrane composed of microporous polyvinylidene difluoride membrane laminated to porous support and process for its preparation
CA1073822A (en) Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same
JPH0376971B2 (en)
WO2018062451A1 (en) Separation membrane module
Zong et al. Fabrication and biocompatibility of cell outer membrane mimetic surfaces
JPH0135681B2 (en)
JP2019130481A (en) Hydrophilic porous membrane manufacturing method
JPH0429409B2 (en)
Thomes The influence on protein adsorption of surface chemistry and surface roughness produced via the pulsed plasma technique
EP0534014A1 (en) Non-adhesive biocompatible surface
JPH06287335A (en) Hydrogel and its production
Jain et al. Investigation of Water Sorption and Blood Compatible Behaviors of Polyethylene Glycol (PEG)—Plasticized Membranes of Poly (Vinyl Alcohol-g-Acrylonitrile)