JPS6167973A - Cryogenic container - Google Patents

Cryogenic container

Info

Publication number
JPS6167973A
JPS6167973A JP59189560A JP18956084A JPS6167973A JP S6167973 A JPS6167973 A JP S6167973A JP 59189560 A JP59189560 A JP 59189560A JP 18956084 A JP18956084 A JP 18956084A JP S6167973 A JPS6167973 A JP S6167973A
Authority
JP
Japan
Prior art keywords
heat
inner tank
heat insulating
insulating support
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59189560A
Other languages
Japanese (ja)
Inventor
Takamasa Fujinaga
藤永 高正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59189560A priority Critical patent/JPS6167973A/en
Publication of JPS6167973A publication Critical patent/JPS6167973A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Abstract

PURPOSE:To obtain the cryogenic container having a high rigidity and of less heat invasion by interposing concentric heat-insulation supporting members when surrounding an inner tank for containing cryogenic medium by an outer tank for vacuum heat insulation. CONSTITUTION:When an inner tank 1 containing a superconductive coil 2 and a liquid helium 3 is surrounded by an outer tank 4 through a cylindrical radiation screening plate 5, the concentric heat-insulation supporting members 7 and 8 are arranged between the inner tank 1 and the screening plate 5, and the screening plate 5 and the outer tank 4 respectively. At this time, as the supporting members 7 and 8 are made of the same material and into the same shape, the description is referred to only the member 7. For the material of the supporting member 7, a reinforced plastic is used, which is made by using a low heat conduction metal such as titanium alloy, stainless steel, or glass fiber, carbon fiber and etc. as a base in which an epoxy resin, polyester resin or the like is impregnated and solidified. There members are provided with load transmission parts and heat transmission parts through plural longitudinal long slits 10 and these are fixed by pins through the pin holes 9.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超電導磁石を収納し極低温に保持するための極
低温容器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to improvements in cryogenic containers for housing superconducting magnets and maintaining them at cryogenic temperatures.

〔発明の背景〕[Background of the invention]

成る種の合金、金属間化合物、例えば、Nb−T i 
、 Nbs an 、 Vs Ga等の超電導物質を極
低温(通常液体ヘリウムの温度である絶対温度4.2°
K)に保持することにより、その電気抵抗が零となる、
いわゆる、超電導現象を応用し、核融合装置用、高エネ
ルギ物理学研究用、磁気浮上列車用、物性研究用等の磁
界発生装置への適用が研究、開発されている。
alloys, intermetallic compounds, such as Nb-Ti
, Nbs an , Vs Ga, and other superconducting materials are heated to extremely low temperatures (usually at an absolute temperature of 4.2°, which is the temperature of liquid helium).
K), its electrical resistance becomes zero,
Application of the so-called superconductivity phenomenon to magnetic field generation devices for nuclear fusion devices, high-energy physics research, magnetic levitation trains, physical property research, etc. is being researched and developed.

超電導磁界発生装置に使用される極低温容器は、断熱性
を高めるため、超電導コイル及び冷却用冷媒(液体ヘリ
ウム)を収納する内槽と、真空断熱層を形成する外槽と
、内槽と外槽との中間にあって放射熱を遮蔽する放射熱
遮蔽板と、内槽を外槽から断熱的に支持する断熱支持体
とから構成される。
The cryogenic container used in a superconducting magnetic field generator has an inner tank that stores the superconducting coil and cooling refrigerant (liquid helium), an outer tank that forms a vacuum insulation layer, and an inner tank and an outer tank to improve insulation. It is composed of a radiant heat shielding plate that is located between the tank and the radiant heat shielding plate, and a heat insulating support that adiabatically supports the inner tank from the outer tank.

極低温を保持するための液体ヘリウムは、蒸発潜熱が極
めて小さく、わずかな熱で蒸発してしまい、再び液体ヘ
リウムとするための冷凍動力は蒸発時の熱量の千倍程度
を必要とするので、断熱支特休の断熱性能を高めなけれ
ばならない。
Liquid helium, which is used to maintain extremely low temperatures, has an extremely small latent heat of vaporization and evaporates with just a small amount of heat, and the refrigerating power required to reconvert it to liquid helium is approximately 1,000 times the amount of heat during evaporation. The insulation performance of the insulation support holiday must be improved.

断熱支持体を伝わって外槽より内槽へ侵入する熱は、断
熱支持体の長さに反比例し、断熱支持体の断面積に比例
する。即ち。
The heat that penetrates from the outer tank into the inner tank through the heat insulating support is inversely proportional to the length of the heat insulating support and proportional to the cross-sectional area of the heat insulating support. That is.

Q=K   (T2  T1 ) ここで、Q:侵入熱量 A:断熱支持体の断面積 を二断熱支持体の長さ T2:外槽の温度 Tド内槽の温度 に:断熱支持体の熱伝導率 である。従来の極低温容器に用いられる断熱支持体は、
(1)式におけるAを小さく、tを長くするため、第4
図および第5図で示すような構造となっていた。第4図
は、従来の極低温容器の縦断面、第5図は第4図のII
−II矢視断面を示す。内槽lには超電導コイル2およ
び液体ヘリウム3が収納されている。外槽4と内槽1と
の間には放射遮蔽板5が設置されている。内槽1の重力
方向の支持は、断熱支持体6aにより行なわれ、内槽1
の水平方向の支持は、断熱支持体6bにより行なわれて
いる。
Q=K (T2 T1) Here, Q: Amount of heat intrusion A: Cross-sectional area of the heat insulating support 2 Length of the heat insulating support T2: Temperature of the outer tank T Temperature of the inner tank: Heat conduction of the heat insulating support rate. The insulating supports used in conventional cryogenic containers are
In order to make A small and t long in equation (1), the fourth
The structure was as shown in Fig. 5 and Fig. 5. Figure 4 is a longitudinal section of a conventional cryogenic container, and Figure 5 is II of Figure 4.
-II shows a cross section in the direction of the arrow. A superconducting coil 2 and liquid helium 3 are housed in the inner tank l. A radiation shielding plate 5 is installed between the outer tank 4 and the inner tank 1. The inner tank 1 is supported in the direction of gravity by a heat insulating support 6a.
horizontal support is provided by a heat insulating support 6b.

断熱支持体6a、6bは、熱侵入を小さくするため、細
い棒状となっている。棒状の部材は、そ9軸に平行な引
張り力に対する許容荷重に比べ、軸に平行な圧縮力、ま
たは、軸に直角な曲げカに対する許容荷重は極めて小さ
い。このため、第6図に示すように、例えば、矢印Bに
示すような水平方向の振動荷重を受けたとき、荷重支持
体6bは、鎖線6cで示すもとの形状から、実線で示す
形状への変形を生じ、振動荷重の大きさや、振動を受け
ている時間の長さによっては、断熱支持体6bが破損す
るおそれがあった。(特開昭55−48185号公報) 〔発明の目的〕 本発明の目的は、どの様な方向の荷重に対しても剛性が
高く、且つ、低熱侵入の断熱荷重支持体を提供すること
にある。
The heat insulating supports 6a, 6b are shaped like thin rods in order to reduce heat intrusion. A rod-shaped member has an extremely small allowable load for a compressive force parallel to the axis or a bending force perpendicular to the axis, compared to a allowable load for a tensile force parallel to the axis. Therefore, as shown in FIG. 6, for example, when receiving a horizontal vibration load as shown by arrow B, the load support 6b changes from the original shape shown by the chain line 6c to the shape shown by the solid line. The heat insulating support 6b may be damaged depending on the magnitude of the vibration load and the length of time the support body 6b is subjected to vibration. (Japanese Unexamined Patent Publication No. 55-48185) [Object of the Invention] An object of the present invention is to provide an adiabatic load support that has high rigidity against loads in any direction and has low heat penetration. .

〔発明の概要〕[Summary of the invention]

本発明は、軸方向に平行な長孔をもつ円筒を断熱支持体
として使用したことを特徴とする。
The present invention is characterized in that a cylinder having long holes parallel to the axial direction is used as the heat insulating support.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を鳩1図ないし第3図を用いて説明する
。第1図は断熱支持体の外観を示す。円@7には、軸方
向に平行な長孔10と、内槽、外槽、または、円筒を同
心状に組み合わせるための孔9が加工されている。
Embodiments of the present invention will be explained using FIGS. 1 to 3. FIG. 1 shows the external appearance of the heat insulating support. A long hole 10 parallel to the axial direction and a hole 9 for concentrically combining an inner tank, an outer tank, or a cylinder are machined in the circle @7.

第2図は、第1図に示す様な円筒を二個用いた例を示す
。M3図は第2図の■−■矢視断面図である。内槽1に
断熱支持体7aが固定ビン8aで固定されている。外槽
4に断熱支持体7bが固定ビ/8bで固定されている。
FIG. 2 shows an example in which two cylinders as shown in FIG. 1 are used. FIG. M3 is a sectional view taken along the line ■-■ in FIG. 2. A heat insulating support 7a is fixed to the inner tank 1 with a fixing pin 8a. A heat insulating support 7b is fixed to the outer tank 4 with fixing bolts/8b.

断熱支持体7a。Heat insulating support 7a.

7bは連結部材7Cおよび連結ピン7cで連結される。7b are connected by a connecting member 7C and a connecting pin 7c.

尚、この断熱支持体7aは、ステンレス鋼。Note that this heat insulating support 7a is made of stainless steel.

チタニウム合金等の低熱伝導性金属、又はガラス繊維、
炭素繊維等の繊維を基材とし、エポキシ樹脂、ポリエス
テル樹脂等の合成樹脂を含浸、固化した繊維強化プラス
チック(PR,P)である。
Low thermal conductivity metal such as titanium alloy, or glass fiber,
It is a fiber-reinforced plastic (PR, P) that uses fibers such as carbon fiber as a base material and is impregnated and solidified with synthetic resins such as epoxy resin and polyester resin.

本発明による断熱支持体は、従来の断熱支持体に比べ、
内槽への熱侵入を小さくシ、剛性が大きいという特徴を
もつ。以下、具体的寸法を使用して説明する。第4図に
おける断熱支持体は直径6間、長さく記号t1で示す寸
法)40+a+、員数は八本である。剛性(断面二次モ
ーメント)は。
Compared to conventional heat insulating supports, the heat insulating support according to the present invention has the following advantages:
It is characterized by low heat intrusion into the inner tank and high rigidity. Hereinafter, explanation will be given using specific dimensions. The heat insulating support in FIG. 4 has a diameter of 6 cm, a length of 40+a+ indicated by the symbol t1, and eight members. The stiffness (secondary moment of area) is.

63.611+14、断面積は28.3sがである。第
1図における本発明の断熱支持体において、荷重伝達部
11の断面積を、断熱支持体6aの断面積とほぼ同じ2
8m”(幅14m、厚さ2 tax )とすると。
63.611+14, and the cross-sectional area is 28.3s. In the heat insulating support of the present invention shown in FIG.
8m" (width 14m, thickness 2 tax).

剛性(断面二次モーメント)は、457.3m’となり
、断熱支持体6aの約七倍となる。伝達長さく第1図の
記号t!で示す寸法の二倍となる)は200m、伝達が
行なわれる部分の員数は子穴個所となる。(1)式のA
ltは従来の断熱支持体6aでは5.66 、本発明で
は224となり、熱侵入は約1/z5になる。
The rigidity (secondary moment of area) is 457.3 m', which is about seven times that of the heat insulating support 6a. Transmission length symbol t in Figure 1! (double the dimension shown in ) is 200 m, and the number of parts where transmission takes place is the number of holes. A in equation (1)
lt is 5.66 in the conventional heat insulating support 6a and 224 in the present invention, and the heat penetration is approximately 1/z5.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、剛性がすぐれ、且つ、熱侵入が小さい
極低温容器が得られる。
According to the present invention, a cryogenic container with excellent rigidity and low heat penetration can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断熱荷重支持体を示す図、
第2図は本発明を実施した極低温容器の縦断面、第3図
は第2図の■−■矢視断面図、第4図は従来の極低温容
器の縦断面図、第5図は第4図の■−■矢視断面図、第
6図は従来の極低温容器の変形を示す図である。 7・・・円筒、9・・・固定のための穴、10・・・長
孔、11・・・荷重伝達部、熱伝導部。
FIG. 1 is a diagram showing an adiabatic load support according to an embodiment of the present invention;
Fig. 2 is a longitudinal section of a cryogenic container in which the present invention is implemented, Fig. 3 is a sectional view taken along arrows -■ in Fig. 2, Fig. 4 is a longitudinal sectional view of a conventional cryogenic container, and Fig. 5 is a longitudinal sectional view of a cryogenic container according to the present invention. FIG. 4 is a sectional view taken along the line ■--■, and FIG. 6 is a diagram showing a modification of the conventional cryogenic container. 7...Cylinder, 9...Hole for fixing, 10...Long hole, 11...Load transmission part, heat conduction part.

Claims (1)

【特許請求の範囲】 1、極低温冷媒を収納する内槽と、この内槽を包囲し真
空断熱を行なう外槽と、前記内槽を前記外槽から熱的に
絶縁する断熱支持体から成り、前記断熱支持体は前記内
槽を包囲するようにほゞ同心円状に配置された円筒で構
成することを特徴とする極低温容器。 2、特許請求の範囲第1項において、 断熱支持体は低熱伝導性金属、または繊維強化プラスチ
ックであることを特徴とする極低温容器。 3、特許請求の範囲第1項において、 前記断熱支持体は、前記円筒の軸方向にほゞ平行な長孔
または長孔に類似した複数個の孔が加工されていること
を特徴とする極低温容器。
[Scope of Claims] 1. Consisting of an inner tank that stores a cryogenic refrigerant, an outer tank that surrounds this inner tank and performs vacuum insulation, and a heat insulating support that thermally insulates the inner tank from the outer tank. . A cryogenic container, wherein the heat insulating support is comprised of cylinders arranged substantially concentrically so as to surround the inner tank. 2. The cryogenic container according to claim 1, wherein the heat insulating support is a low thermal conductivity metal or fiber-reinforced plastic. 3. In claim 1, the heat insulating support is formed with a long hole or a plurality of holes similar to the long hole that are substantially parallel to the axial direction of the cylinder. cryogenic container.
JP59189560A 1984-09-12 1984-09-12 Cryogenic container Pending JPS6167973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189560A JPS6167973A (en) 1984-09-12 1984-09-12 Cryogenic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189560A JPS6167973A (en) 1984-09-12 1984-09-12 Cryogenic container

Publications (1)

Publication Number Publication Date
JPS6167973A true JPS6167973A (en) 1986-04-08

Family

ID=16243370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189560A Pending JPS6167973A (en) 1984-09-12 1984-09-12 Cryogenic container

Country Status (1)

Country Link
JP (1) JPS6167973A (en)

Similar Documents

Publication Publication Date Title
US5291169A (en) Open architecture magnetic resonance imaging superconducting magnet assembly
US4516405A (en) Supporting tie configuration for cryostat for cold shipment of NMR magnet
US3368087A (en) Rotating electric high power machine with super-conducting stator
EP0135185B1 (en) Cryostat for nmr magnet
US4277768A (en) Superconducting magnetic coil
US4781034A (en) Cryogenic support system
JPH0559567B2 (en)
JPH0330312B2 (en)
JPS6167973A (en) Cryogenic container
US20040108925A1 (en) Support member for a superconducting magnet assembly
JP3701985B2 (en) Oxide superconducting current lead
US4543449A (en) Superconducting wire and method of producing the same
Da Silva et al. Mechanical design and analysis of the Baby-IAXO magnet cold mass, cryostat and support system
Niemann et al. Superconducting magnet system U-25 MHD facility
JPS61248403A (en) Cryostat
JPS6236261Y2 (en)
JPS6254982A (en) Cryostat
Sharma et al. Building Laboratory Superconducting Magnets and Present Status of High-Field Magnets
Niemann et al. Superconducting Super Collider second generation dipole magnet cryostat design
JPS63274117A (en) Very low temperature heat-insulating supporting member
Mess et al. Superconducting accelerator magnets
JPS61231705A (en) Superconductive device
JPS59132690A (en) Cryogenic supporting structure
Nishijima et al. Gas permeation and performance of a fibre reinforced plastic cryostat
JPS61208205A (en) Cryostat