JPS6167515A - Control method of plate thickness in width direction of rolling material - Google Patents

Control method of plate thickness in width direction of rolling material

Info

Publication number
JPS6167515A
JPS6167515A JP59187696A JP18769684A JPS6167515A JP S6167515 A JPS6167515 A JP S6167515A JP 59187696 A JP59187696 A JP 59187696A JP 18769684 A JP18769684 A JP 18769684A JP S6167515 A JPS6167515 A JP S6167515A
Authority
JP
Japan
Prior art keywords
thickness
plate thickness
width direction
control
bender
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59187696A
Other languages
Japanese (ja)
Other versions
JPH0312964B2 (en
Inventor
Kazuhiko Fukutani
和彦 福谷
Mikie Tokunaga
徳長 幹恵
Shigeo Watanabe
重雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59187696A priority Critical patent/JPS6167515A/en
Publication of JPS6167515A publication Critical patent/JPS6167515A/en
Publication of JPH0312964B2 publication Critical patent/JPH0312964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a uniform plate thickness in longitudinal direction and width direction by providing independently a bending device at work side and driving side and by performing an automatic plate thickness control and bender control successively at each stand with performing the load distribution control for each stand of the operation quantity. CONSTITUTION:The weight co-efficient of the bender operation quantity of a work side and driving side is determined with measuring the thickness of a rolling material 10 by the thickness gage 12 of the outlet side of the final stand 20 of a continuous rolling mill and a scanning type thickness gage 14 and with calculating a wedge rate and the plate thickness distribution curves in width direction by an arithmetic unit 28. The information of a rolling constant is fed to a subordinate computer 30 from a host computer 38 and the subordinate computer 30 takes in the signal transmitted from a reaction force gage 22 and pressure detectors 24, 26. The automatic plate thickness control and bender control are successively performed then with commanding to automatic plate thickness control system 32 and bending control system 34, 36 of the work side and driving side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、AGC付き圧延機により圧延される帯鋼等の
圧延材料の幅方向板厚制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling the thickness in the width direction of a rolled material such as a steel strip rolled by a rolling mill with AGC.

(従来の技術) ウオーキングビーム方式の加熱炉から抽出された圧延材
料(以下、単に材料と称する)は、加2X5炉内の材料
(般送用スキッドに当たる泣面にスキ。
(Prior Art) The rolled material (hereinafter simply referred to as "material") extracted from a walking beam type heating furnace is transferred to the rolling material (hereinafter simply referred to as "material") in the 2X5 furnace (on the surface of the material that hits the general delivery skid).

ドマークが発生し、該マーク部分にて材料の温度が低下
し、材料の温度分布が不均一となる。この不均一温度分
布の材料を連続圧延するにつれてスキッドマーク部か拡
大され、幅方向に不均一に分布するようになる。これに
より材料の幅方向に温度偏差が発生し、材料の変形抵抗
が幅方向に異なることとなり製品の幅方向の板厚が不均
一となる。
A mark is generated, the temperature of the material decreases at the mark portion, and the temperature distribution of the material becomes non-uniform. As this material with non-uniform temperature distribution is continuously rolled, the skid marks become enlarged and become non-uniformly distributed in the width direction. As a result, temperature deviation occurs in the width direction of the material, and the deformation resistance of the material differs in the width direction, resulting in uneven thickness of the product in the width direction.

また最近の省エネ圧延法では材料厚のを増加し加熱炉抽
出温度を低下しているが、この際業法によると材料の端
部での熟成11に千が増加し、更に幅7j向での温度偏
差が増加する傾向となり、製品の幅方向の板厚不均一性
が助長されるようになる。最近の需要家ニーズは製品品
質はもちろんのこと幅方向に均一な製品を強く要求して
おり、前記問題点を)W消する必要性は大なるものがあ
る。
In addition, recent energy-saving rolling methods have increased the material thickness and lowered the heating furnace extraction temperature, but according to the industrial law, the ripening temperature at the edge of the material has increased to 11, and the temperature in the width direction has also increased. The deviation tends to increase, and the non-uniformity of the thickness of the product in the width direction is promoted. Recent customer needs are demanding not only product quality but also products that are uniform in the width direction, and there is a great need to eliminate the above-mentioned problems.

連続圧延機においてはゲージメータ方式のAGC(自動
板厚制御)が広く採用されて、板厚制御の高槓度化に大
きな効果をあげている。一方、ロールヘンディング装置
についてはこれは採用されてはいるが圧延前のパススケ
ジュールによりヘンディング圧力を設定値にプリセント
させるのみであり、一本の材料内でベンディング圧力を
変更することはほとんどなされていなかったが、最近で
は七オ料の形状(フラットネス)問題が大きく取りあげ
られるようになり、そのための制御方法及び装置が種々
開発されてきている。その主たるものは、ロールヘンデ
ィング装置を使用して、材料の幅方向板厚偏差に応じて
一本の材料内でヘンディング圧力を変更させ、長手方向
全長に亘って幅方向に均一な板厚を実現しようとする方
法である。
Gauge meter-based AGC (automatic plate thickness control) is widely adopted in continuous rolling mills, and has been highly effective in increasing the degree of control of plate thickness. On the other hand, although roll bending equipment has been adopted, the bending pressure is only pre-centered to a set value according to the pass schedule before rolling, and the bending pressure within a single piece of material is rarely changed. However, recently, the problem of the shape (flatness) of seven-dimensional materials has been widely discussed, and various control methods and devices for this purpose have been developed. The main method is to use a roll hending device to change the hending pressure within a single material according to the thickness deviation of the material in the width direction, so that the thickness is uniform in the width direction over the entire length. This is a method that attempts to achieve this.

ところで板厚制御と形状制御は、互いに干渉し合うとい
う問題かある。即ら形状を制+JII シよ)として形
状制御系がロールヘンディング力を変えるとロール圧下
方(圧延反力)か変り、これはAGC系を動作させ、ま
たAGC系か動作してロール間隙を変えると圧延反力か
変り、これは1反形状(クラウン)を変えるので形状制
御系がりJ佳し、ということになる。このような相互干
渉を排除して各々が独立に動作できるようにする事が考
えられ・ており、特開昭58−138508がその例で
ある。これは、出側板厚変動をΔh、出側クラウン変動
をΔCr、圧下操作量をΔS、ヘンディングに修正すれ
ば(Eは単位マトリクス) となるから操作量ΔS、Δrは相互干渉しなくなる、と
いうものである。しかしこの方式ではヘンディング圧操
作量(Δr)が単一ループ(ワークサイドとドライブサ
イドが一体になっている)であり、もし圧延機の入側に
て材料のウェッジ率が異なった場合には圧延機のワーク
サイド、ドライブサイドでヘンディング圧操作量を変更
させる必要があるから、この方式では幅方向に均一な板
厚に制御することは不可能である。
However, there is a problem in that plate thickness control and shape control interfere with each other. In other words, when the shape control system changes the roll hedding force by controlling the shape, the roll downward direction (rolling reaction force) changes, which causes the AGC system to operate, and the AGC system also operates to close the roll gap. If you change it, the rolling reaction force will change, and this will change the shape (crown), so the shape control system will be improved. It has been considered to eliminate such mutual interference so that each device can operate independently, and Japanese Patent Laid-Open No. 58-138508 is an example of this. This means that if the thickness variation on the exit side is corrected to Δh, the variation in the crown on the exit side to ΔCr, the reduction operation amount to ΔS, and the heading is corrected (E is a unit matrix), the operation amounts ΔS and Δr will no longer interfere with each other. It is something. However, in this method, the hending pressure operation amount (Δr) is a single loop (work side and drive side are integrated), and if the wedge ratio of the material differs at the entrance side of the rolling mill, Since it is necessary to change the amount of hending pressure operation on the work side and drive side of the rolling mill, it is impossible to control the thickness to be uniform in the width direction with this method.

を反クラウンの帰還制御は、クラウンを検出し、目標ク
ラウンとの差がOになるように操作端、本例ではロール
ベンダーを操作して行なわれる。クラウンは板の中高の
程度を示すもので、板厚分布は左右対称を前提としてい
るから、クラウン測定は仮中央の板厚測定と板一端縁の
板厚測定で実施できる。しかしウェッジは板厚分布の左
右非対称性を示すものであるから、板の左右端の板厚を
測定する必要があり、ウェッジを考慮した形状制御をす
るには1反厚計力< (iiT+固も必要、ということ
になる。
Anti-crown feedback control is performed by detecting the crown and operating the operating end, in this example a roll bender, so that the difference from the target crown becomes O. The crown indicates the center height of the board, and the thickness distribution assumes left-right symmetry, so the crown measurement can be performed by measuring the thickness at the temporary center and at one edge of the board. However, since a wedge exhibits left-right asymmetry in thickness distribution, it is necessary to measure the thickness at the left and right ends of the sheet, and in order to control the shape by taking wedges into account, 1 inverse thickness measurement force < (iiT + hardness) This means that it is also necessary.

本発明はか\る点を改善し、ウェッジを含めた形状制御
を、AGCと非干渉で、かつ多数の板厚計を使用するこ
とな〈実施可能にしようとするものである。
The present invention aims to improve these points and make it possible to control the shape including the wedge without interfering with AGC and without using a large number of plate thickness gauges.

(発明の構成及び作用) 本発明は、自動板厚制御を行ない、ワークサイト−及び
ドライブサイドにロールベンダーを(iil′iえる連
続圧延機で圧延される材料の幅方向板厚側ia口方法に
おいて、材料の始端部で幅方向に移動し、その後材料の
一端縁邪に静止する板厚ilおよび+AI4の中心線上
に固定的に置かれる板厚Δ1て(オ料始、’7i!、’
部の幅方向板厚分布及び長さ方向クラウン分布を測定し
、この測定値により、ワークサ・イト、ドライブサイト
各ヘンダーの一方の片作量及び該操作量に対する他方の
ベンダーI桑作量に加える重み(糸数を求め、更に自動
t&I!7−制御とヘンター制御のトu互干渉を除く補
正を加えてその補正した操作量ヲワークサイド、ドライ
ブサイド各・〜、ンダーに入力し、材料の幅方向板厚分
布を長手方向≦ミ長に亘−ンて均一に制御することを特
徴とするか1次に実施例を参照しながらこれを説明する
(Structure and operation of the invention) The present invention performs automatic plate thickness control and installs a roll bender at the work site and drive side (ii). In , the plate thickness Δ1 is fixedly placed on the center line of the plate thickness il and +AI4 which moves in the width direction at the starting end of the material and then rests at one edge of the material (O starting, '7i!,'
Measure the thickness distribution in the width direction and the crown distribution in the length direction of the section, and add these measured values to the one-piece production amount of each hender at the work site and drive site and the mulberry production amount of the other bender I for the operation amount. Weight (calculate the number of threads, then add correction to remove the mutual interference between automatic T & I control and Henter control, input the corrected operation amount into the work side, drive side, etc., and calculate the width of the material. This is characterized in that the directional plate thickness distribution is uniformly controlled over the longitudinal direction≦mm length.First, this will be explained with reference to embodiments.

先ず板形状の測定法を説明する。これは単純には1反幅
方向に幅全体に亘って多数の板厚計を配置し、各板厚計
の直下の板厚を測定すればよく、板圧延中に連続してこ
れを行なえば板全長のクラウンおよびウェッジを測定で
きる。圧延中に板は蛇行するが、これを補正するには該
蛇行に合わせて板厚計群を往復動させればよい。しかし
この方式は設備費が大になる。この点本発明者が開発し
別途出願した方法は板厚計を2個使用するだけでよく、
甚だ有効である。
First, the method for measuring the plate shape will be explained. This can be done simply by arranging a large number of plate thickness gauges across the entire width in the opposite width direction and measuring the thickness directly under each plate thickness gauge.If this is done continuously during plate rolling, Capable of measuring the crown and wedge of the entire length of the board. The plate meanderes during rolling, and in order to correct this, the plate thickness gauge group can be reciprocated in accordance with the meandering. However, this method requires high equipment costs. In this regard, the method developed by the present inventor and filed separately requires only the use of two plate thickness gauges.
It is extremely effective.

第2図および第3図でこの形状測定法を説明するに、1
0は圧延材料であり、矢印はその移動方向である。12
は材料10の中心線10aを狙うように固定的に取付け
られた板厚計、14は走査型の板厚計で板幅方向に可動
である。材料10の移動に伴なって板厚計12は材料1
0の中心線の板厚をサンプリング測定しく黒点はそのサ
ンプリング点)、板厚計14は先ず幅全体を移動し次い
で若干戻った位置に固定されるので線14a、14b上
の板厚をサンプリング測定する。線1・1.〕上の板厚
測定で材料先端のクラウン及びウェッジが測定され、綿
14b上の板厚測定で材:l′410の長さ方向各点に
おけるクラウンかf、11定される((膜厚計12の出
力も利用して)。
To explain this shape measurement method with Figures 2 and 3, 1
0 is the rolled material and the arrow is its direction of movement. 12
1 is a plate thickness gauge fixedly attached so as to aim at the center line 10a of the material 10, and 14 is a scanning type plate thickness gauge that is movable in the width direction of the plate. As the material 10 moves, the plate thickness gauge 12 measures the material 1.
The thickness of the plate at the center line of 0 is sampled and measured (the black dots are the sampling points), and the plate thickness meter 14 first moves across the entire width and then is fixed at a slightly returned position, so the plate thickness on the lines 14a and 14b is sampled and measured. do. Line 1・1. ] By measuring the thickness of the material above, the crown and wedge at the tip of the material are measured, and by measuring the thickness of the material on the cotton 14b, the crown at each point in the length direction of the material: l'410 is determined (f, 11). (Also use the output of 12).

即ち材料10の先端部では幅方向各点の1膜厚1則定で
クラウン及びウェッジを求め、その後は+71料中央の
板厚と材料一端部(端縁から25 mm入った点で、−
4にはか−る点をクラウンi31.;I定点とする)の
板厚測定でクラウンが(オ料金長に亘って求められる。
That is, at the tip of the material 10, the crown and wedge are determined by one rule for one thickness at each point in the width direction, and then the thickness at the center of the +71 material and one end of the material (at a point 25 mm from the edge, -
Crown i31. The crown is determined over the length of the plate by measuring the plate thickness at the fixed point.

材料が蛇行すると、板厚測定は正しく性1料の中心線1
0a上および一端部14b上で行われることにはならな
くなる。材料先端部でのクラウン及びウェッジ測定はこ
の蛇行に対処するものてあり。
If the material is meandering, the plate thickness measurement will be incorrectly aligned with the center line of the material.
0a and one end portion 14b. Crown and wedge measurements at the leading edge of the material address this meandering.

材料端縁部分の幅方向板厚分布形状Hμち第3図の関数
f (X)の形は材料全長のどこでも変らないと仮定し
、かつ板厚に変化はないとすると、蛇行は単なる平行移
動と考えられ、第3図に示すように材料表面10bが1
0b′の位置へ移動した又はこの逆に移動したこととな
る。板厚計14の位置は変らないから蛇行すると測定点
はPlがP3となり、端縁から25龍入った正しい測定
点ではなくなる。蛇行後の正しい測定点はP2であり、
従って板厚計14を点P2上へ移動させればよいが、こ
れはサーボJa tRを要して厄介である。そこで、計
算により修正するという方法をとる。即ち最初の線14
a上での板厚測定で表面10bを表わす関数f (xi
が求まるから、測定点P1の幅方向位置をxoとする板
厚計14の測定値はf(xo)、bだけ蛇行した後の測
定値はf(xo  b)となる。実際には板厚変化があ
るから板厚計14の出力乙こは実際の板厚変化±Δと蛇
行による上記変化f(xo) −f(xo  b)が含
まれ、後者を板厚計出力から差引くと前者つまり実際の
板厚変化か求まる。
Assuming that the shape of the thickness distribution in the width direction at the edge of the material Hμ, the shape of the function f (X) in Figure 3, does not change throughout the entire length of the material, and that there is no change in the thickness, meandering is simply a parallel movement. It is considered that the material surface 10b is 1 as shown in FIG.
This means that it has moved to the position 0b' or vice versa. Since the position of the plate thickness gauge 14 does not change, if the plate meanderes, the measurement point Pl becomes P3, which is no longer the correct measurement point 25 degrees from the edge. The correct measurement point after meandering is P2,
Therefore, the plate thickness gage 14 can be moved to the point P2, but this requires the servo JatR and is troublesome. Therefore, we take a method of correcting it by calculation. i.e. the first line 14
The function f (xi
Therefore, the measured value of the plate thickness meter 14, where xo is the width direction position of the measuring point P1, is f(xo), and the measured value after meandering by b is f(xo b). In reality, since there is a change in the plate thickness, the output of the plate thickness meter 14 includes the actual plate thickness change ±Δ and the above change f(xo) −f(xo b) due to meandering, and the latter is the output of the plate thickness meter. By subtracting it from , you can find the former, that is, the actual thickness change.

蛇行すると板厚計12も正しく材料中心上の板厚を測定
するようにはならなくなるが、中心線近1労の1膜厚変
化は大きくな(、蛇行量も一般には5nmというような
微小値であるから、これは修正を省略してよい。またウ
ェッジも全長に亘って不変としてよい。
If the meandering occurs, the thickness gauge 12 will no longer be able to accurately measure the thickness at the center of the material, but the change in film thickness per stroke near the center line is not large (and the amount of meandering is generally a minute value such as 5 nm). Therefore, this modification may be omitted.Furthermore, the wedge may also be left unchanged over its entire length.

[オ料のウェッジ率hWDは次式で定義される。[The wedge rate hWD of the material is defined by the following formula.

こ\でhw、hDは板厚14の幅方向スキャンで得たワ
ークサイド、ドライブサイドのエノノ部α■点の板厚で
あり、αはやはり25.mである。
Here, hw and hD are the plate thicknesses at point α■ of the work side and drive side part of the work side obtained by scanning in the width direction of the plate thickness 14, and α is also 25. It is m.

hwD =hw/hD       −1+1ワークサ
イド、ドライブサイドのヘンディング圧操作量をΔb1
.2  ΔbDとすると、材料にウェッジがある場合ヘ
ンディング圧I=作量は、材料が幅方[i農こ対称性を
有して圧延されるので各々Δbw=w・ΔbD、  Δ
bD−=Δ1) D =−(2)となる。ここでWはワ
ークサイト、トラ・1″フ−4ノ゛イトのベンダー操作
Hに対するhwdに1刊当す7)重め係数である。hν
/Dは前記幅方向スキャンで得られるので、ワークサイ
ド、トライフ′サイトのへンディングカを各々に適した
値に連続的に制trill可11ヒとなる。
hwD = hw/hD -1+1 The amount of hending pressure operation on the work side and drive side is Δb1
.. 2 Assuming ΔbD, when the material has a wedge, the hending pressure I = yield is as follows: Since the material is rolled with symmetry in the width direction, Δbw = w・ΔbD, Δ
bD-=Δ1) D=-(2). Here, W is a weighting factor (7) that corresponds to hwd for the bender operation H of the work site, 1" foot 4 node. hv
Since /D is obtained by the width direction scan, it is possible to continuously control the bending forces of the work side and the trifle site to values suitable for each.

第4図は材料の長平方向での温度マ°lコツ(−ルであ
り、同図(イ)が幅中火部の温度プロフイ−ルであり、
(ロ)が幅端部での温度プロフィールを示す。これらの
(イ)、(ロ)より、幅方向に対して約50°C程度の
温度偏差が認められる。又(イ)の振幅は(ロ)に比較
して約2倍程度あり、これより材料のスキッドマークが
幅中央部で大きく、端部になるにつれて小さくなってい
ることが明らかである。
Figure 4 shows the temperature profile in the longitudinal direction of the material;
(b) shows the temperature profile at the width end. From these (a) and (b), a temperature deviation of about 50°C in the width direction is recognized. Furthermore, the amplitude of (a) is about twice that of (b), and it is clear from this that the skid marks of the material are large at the center of the width and become smaller toward the ends.

第5図は同一サイズの材料についてAGCを″オフ”し
た場合(a)と“オン”した場合tblの材料の長手方
向に対する板厚プロフィールを示すものである。同図に
て(イ)は幅中央部の板厚変動、(ロ)は幅端部の板厚
変動であり、(ハ)は(イ)−(ロ)、即ち材料の幅方
向板厚偏差の変動量(クラウン量)を示す。A、 G 
Cを“オフ”した場合fa)には第4図にて示したよう
に中央部に比較し、端部での温度変動量が小さいので端
部での板厚変動は中央部に比較してかなり小さくなって
おり管理限界内に入っている。しかるに幅中央部では長
手方向温度変動口が大きいことから板厚変動量も大きく
端部に比較し約2倍程度ある。AGCはこの変動量を低
減するに有効なものである。同図山)はAGCを“オン
”した場合であり明らかに中火部の板厚変動は減少し、
制御効果は現われてい春・。
FIG. 5 shows the thickness profile of the material in the longitudinal direction of tbl when the AGC is "off" (a) and when it is "on" for the same size material. In the same figure, (a) is the plate thickness variation at the center of the width, (b) is the plate thickness variation at the width end, and (c) is (a) - (b), that is, the thickness deviation in the width direction of the material. shows the amount of variation (crown amount). A, G
When C is turned off (fa), as shown in Figure 4, the amount of temperature variation at the edges is smaller than that at the center, so the plate thickness variation at the edges is smaller than that at the center. It has become considerably smaller and is within the control limits. However, since the temperature variation opening in the longitudinal direction is large at the center of the width, the amount of plate thickness variation is also large, about twice as much as at the ends. AGC is effective in reducing this amount of variation. Figure 2) shows the case when AGC is turned on, and the variation in plate thickness in the medium heat area is clearly reduced.
The control effect appears in spring.

しかし逆に端部での板厚変動量がA G Cを“′オフ
”した場合(a+に比較し約2倍程度増加している。こ
のことよりAGCが端部の板厚に干渉しているごとが明
らかである。
However, on the other hand, when AGC is turned off (it increases by about twice compared to a+), the amount of plate thickness variation at the edge is approximately twice that of AGC.This indicates that AGC interferes with the plate thickness at the edge. It is clear that this is the case.

制御対象を中央部出側板厚変動ΔhC,ワークザイト側
θj;1部出側板厚変動Δh 、、、、 、  l□シ
ライブ1゛イト側端部出側板厚変動ΔhDとし、操作■
を圧下位置操作量ΔS、ワークサイドへ、ンティング原
作量Δト〃、ドライブサイトヘンディング操作MΔbD
とし、相互干渉がないように補正すると、制ここで f
(ΔS、ΔbD)、  g(ΔS、Δbツノ)はワーク
ザイド、ドライブサイト各々のヘンディング操作口に対
する非干渉項である。幅方向に均一な板厚にするために
は、 Δhc−Δhw−Δhc−ΔhDZO・・・・・・(4
)なる関係が必要であり、(4)式より Δhw−ΔhD=Δhc        ・・・・・・
(5)AGCによりΔhcをOにしたとすれば(31,
(51式%式%) 前記(2)式のΔbw=W・ΔbDなる関係を用いると g(ΔS、Δbw)  −g  (ΔS、W−ΔbD)
・・・・・・(7) よって(6)式より (8)式のΔb(すは(2)式を用いるとΔbw=−w
−g(ΔS、W−ΔbD)・・・・・・(9)これらの
(8)、 (91式よりAGCを“′オン“した場合の
ワークサイド、ドライブサイドの各々のヘンディング操
作口は001式で与えられる。
The control target is the plate thickness variation ΔhC on the exit side at the central part, the plate thickness variation ΔhD on the exit side at the worksite side θj;
Lowering position operation amount ΔS, moving to work side, turning original amount Δto〃, drive site heading operation MΔbD
and corrected so that there is no mutual interference, the control becomes f
(ΔS, ΔbD) and g(ΔS, Δb horn) are non-interference terms with respect to the respective hending operation ports of the work site and drive site. In order to make the board thickness uniform in the width direction, Δhc - Δhw - Δhc - ΔhDZO (4
), and from equation (4), Δhw-ΔhD=Δhc...
(5) If Δhc is set to O by AGC, (31,
(Formula 51 %Formula %) Using the relationship Δbw=W・ΔbD in equation (2) above, g(ΔS, Δbw) −g (ΔS, W−ΔbD)
・・・・・・(7) Therefore, from equation (6), Δb in equation (8) becomes Δbw=-w using equation (2).
-g(ΔS, W-ΔbD)...(9) These (8), (From type 91, when AGC is turned on, the work side and drive side hending operation ports are It is given by the formula 001.

第1図に本発明の実施例を示す。連続圧延1浅の最終ス
タンド20の出側に配置された圧延+7(10の幅方向
中央部板厚を測定する厚め計12と少/Jくとも1回全
幅をスキャンして幅方向板厚プロフィールを検出した後
端部片方から中心方向・〜、一定距離入った点の板厚を
測定するスキャン型厚み計14とにより板厚を測定し、
t′A算装置n 81:二て(オ料のウェッジ率と幅方
向板厚分布曲線を算出し、ワークサイド、ドライブサイ
ドの−・ノダー操作量の重み係数Wを決定する。圧延定
数(ミル特性。
FIG. 1 shows an embodiment of the present invention. A thickness gauge 12 and a thickness gauge 12 placed on the exit side of the final stand 20 in the shallow end of the continuous rolling mill +7 (10) scan the entire width at least once to measure the thickness profile in the width direction. The thickness of the plate is measured using a scan type thickness gauge 14 that measures the thickness of the plate at a point a certain distance away from one of the rear ends toward the center,
t'A calculation device n 81: Calculates the wedge ratio and width direction plate thickness distribution curve of the rolling material, and determines the weighting coefficient W of the nodder operation amount on the work side and drive side.Rolling constant (mill Characteristic.

材料特性等)の情報は上位計算機38より下位61算機
(DDC計算機)30に送られ、下位計W(渥30は又
反力計22.ワークサイト及びI・フイブサイトのヘン
ディング制御系内の圧力検出器24゜26の信号を連続
的に取り込み、/’I G C制1111千32ヘロー
ルギャノプ[旨令信号を出力すると共己こ、AGCとベ
ンダー制御の相互干渉を1)1すもだめの関数g (Δ
S 、A b D) (!: mミ(15W ト!: 
=L リ(to)式で与えちれるベンディング操作ヱ詣
令Δbジノ。
The information on the material properties, etc.) is sent from the upper computer 38 to the lower 61 computer (DDC computer) 30, and the information on the lower-order meter W (Cut 30 is also the reaction force meter 22. Continuously captures the signals from the pressure detectors 24 and 26, and outputs the command signal to prevent mutual interference between the AGC and bender control. Function g (Δ
S , A b D) (!: m mi (15W to!:
=L The bending operation order Δb is given by the equation.

ΔbDをワークサイド(WS)及びドライブサイト (
DS)のヘンディング制御系34.36へ送り、AGC
とベンダー制御を連続的に行なうことにより材料の長さ
方向及び幅方向に均一な板厚を生産するものである。
ΔbD is defined as work side (WS) and drive site (
DS) to the steering control system 34.36, and the AGC
By continuously controlling the bender and bending, it is possible to produce a plate with uniform thickness in the length and width directions of the material.

7ト)列では最終段スタンドに着目し、このスタンドの
制御を説明したが実際には後段数スタンドあるいは全ス
タンドにてワークサイト、ドライブサイトにヘンディン
グ装置を独立して配置し操作量の各スタンドへの負荷配
分制御を行なうことにより、AGCとベンダー制御を各
スタンドにて連続的に行なうことにより材料の幅方向に
均一な板厚を生産するものである。
In column 7), we focused on the final stage stand and explained the control of this stand, but in reality, the hending device is placed independently at the work site and drive site in the last few stands or all the stands, and each of the operation amount is By controlling the load distribution to the stands, AGC and bender control are performed continuously at each stand, thereby producing a uniform plate thickness in the width direction of the material.

[発明の効果] 以上説明したように本発明によれば圧延材料の長さ方向
及び幅方向に亘って均一な板厚を実現でき、またこの制
御に必要な板厚計も2台で済み、甚だ有益である。
[Effects of the Invention] As explained above, according to the present invention, uniform plate thickness can be achieved in the length direction and width direction of the rolled material, and only two plate thickness gauges are required for this control. It's extremely beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示ずブ0/クロ 第2図及び
第3図は板形状の説明回、5第・1図は1及長さ方向の
温度分布を示すグラフ、第5図は(反長さ方向の板厚変
化及びクラウン変化を示すグラフである。 図面で、32は自動板厚制御(AGC)装置、20は圧
延機、10は圧延+]料、34.36うよ“ノークサイ
ド、ドライブサイド各ヘンディング制1llll系、1
2.14は板厚計である。 出 願 人   新日本製鐵株式会社 代理人弁理士  青  (卯    稔第1図 「I羊−一 第2図 第3図 l
Figure 1 does not show an embodiment of the present invention; Figures 2 and 3 illustrate the plate shape; Figures 5 and 1 are graphs showing the temperature distribution in the length direction; The figure is a graph showing plate thickness changes and crown changes in the opposite longitudinal direction. In the drawing, 32 is an automatic plate thickness control (AGC) device, 20 is a rolling mill, 10 is a rolling material, Yo” Noke side, drive side each heading system 1llll system, 1
2.14 is a plate thickness gauge. Applicant Nippon Steel Corporation Representative Patent Attorney Ao (Minoru U)

Claims (1)

【特許請求の範囲】[Claims] 自動板厚制御を行ない、ワークサイド及びドライブサイ
ドにロールベンダーを備える連続圧延機で圧延される材
料の幅方向板厚制御方法において、材料の始端部で幅方
向に移動し、その後材料の一端縁部上に静止する板厚計
および材料の中心線上に固定的に置かれる板厚計で材料
始端部の幅方向板厚分布及び長さ方向クラウン分布を測
定し、この測定値により、ワークサイド、ドライブサイ
ド各ベンダーの一方の操作量及び該操作量に対する他方
のベンダー操作量に加える重み係数を求め、更に自動板
厚制御とベンダー制御の相互干渉を除く補正を加えてそ
の補正した操作量をワークサイド、ドライブサイド各ベ
ンダーに入力し、材料の幅方向板厚分布を長手方向全長
に亘って均一に制御することを特徴とした圧延材料の幅
方向板厚制御方法。
In a method for controlling the thickness in the width direction of a material rolled in a continuous rolling mill that performs automatic thickness control and is equipped with a roll bender on the work side and drive side, the thickness is moved in the width direction at the starting end of the material, and then one end edge of the material is rolled. The thickness distribution in the width direction and the crown distribution in the length direction at the starting end of the material are measured using a plate thickness gauge that is stationary on the part and a plate thickness gauge that is fixedly placed on the center line of the material. Drive side: Find the manipulated variable of each bender and the weighting coefficient to be added to the manipulated variable of the other bender, and then add correction to remove the mutual interference between automatic plate thickness control and bender control, and apply the corrected manipulated variable to the workpiece. A method for controlling the thickness in the width direction of a rolled material, characterized by inputting information to each bender on the side and drive side to uniformly control the thickness distribution in the width direction of the material over the entire length in the longitudinal direction.
JP59187696A 1984-09-07 1984-09-07 Control method of plate thickness in width direction of rolling material Granted JPS6167515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59187696A JPS6167515A (en) 1984-09-07 1984-09-07 Control method of plate thickness in width direction of rolling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59187696A JPS6167515A (en) 1984-09-07 1984-09-07 Control method of plate thickness in width direction of rolling material

Publications (2)

Publication Number Publication Date
JPS6167515A true JPS6167515A (en) 1986-04-07
JPH0312964B2 JPH0312964B2 (en) 1991-02-21

Family

ID=16210548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59187696A Granted JPS6167515A (en) 1984-09-07 1984-09-07 Control method of plate thickness in width direction of rolling material

Country Status (1)

Country Link
JP (1) JPS6167515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107812787A (en) * 2017-11-14 2018-03-20 东北大学 A kind of method and apparatus for controlling mill milling finished steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943180A (en) * 1972-06-28 1974-04-23
JPS5413445A (en) * 1977-07-01 1979-01-31 Hitachi Ltd Bending method for roll of rolling mill
JPS58138508A (en) * 1982-02-15 1983-08-17 Mitsubishi Heavy Ind Ltd Device for controlling thickness and shape of rolling mill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943180A (en) * 1972-06-28 1974-04-23
JPS5413445A (en) * 1977-07-01 1979-01-31 Hitachi Ltd Bending method for roll of rolling mill
JPS58138508A (en) * 1982-02-15 1983-08-17 Mitsubishi Heavy Ind Ltd Device for controlling thickness and shape of rolling mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107812787A (en) * 2017-11-14 2018-03-20 东北大学 A kind of method and apparatus for controlling mill milling finished steel
CN107812787B (en) * 2017-11-14 2019-06-28 东北大学 A kind of method and apparatus controlling mill milling finished steel

Also Published As

Publication number Publication date
JPH0312964B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
US4537050A (en) Method of controlling a stand for rolling strip material
JPH04167910A (en) Method and apparatus for controlling rolling mill
JPS6167515A (en) Control method of plate thickness in width direction of rolling material
JPH04313415A (en) Head part plate thickness control method for finish rolling mill
JPS62168607A (en) Shape controlling method for sheet rolling
JP4470667B2 (en) Shape control method in temper rolling mill
JP3281593B2 (en) Steel sheet thickness control method
JP2826167B2 (en) Method and apparatus for correcting plate shape asymmetry
JP3142186B2 (en) Rolling control method for sheet rolling mill
JPS6245002B2 (en)
JP2550267B2 (en) Camber control method in plate rolling
JP3205130B2 (en) Strip width control method in hot rolling
JP3142187B2 (en) Rolling control method for sheet rolling mill
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPH10225708A (en) Method for controlling warping in shape steel rolling
JPS623818A (en) Rolling control method
JP3414878B2 (en) Rolling method of sheet rolling mill
JP2978058B2 (en) Mill elongation prediction method for rolling mill
JPH10225701A (en) Method for automatically controlling dimension in universal rolling of shape
KR20010103234A (en) Apparatus for regulating thickness of strip
JPH0234241B2 (en)
JP2774070B2 (en) Method for controlling dimensions and shape of section steel
JPH10175007A (en) Method for controlling roll gap in rolling mill
JPH01293913A (en) Shape control method for sheet rolling
JPH0638962B2 (en) Shape control method of rolled material in rolling mill