JPS6167511A - Rolling method of seamless pipe - Google Patents

Rolling method of seamless pipe

Info

Publication number
JPS6167511A
JPS6167511A JP18625884A JP18625884A JPS6167511A JP S6167511 A JPS6167511 A JP S6167511A JP 18625884 A JP18625884 A JP 18625884A JP 18625884 A JP18625884 A JP 18625884A JP S6167511 A JPS6167511 A JP S6167511A
Authority
JP
Japan
Prior art keywords
roll
rolling
diameter
rolled
diameter shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18625884A
Other languages
Japanese (ja)
Inventor
Fusao Togashi
冨樫 房夫
Shohei Kanari
金成 昌平
Isao Takada
高田 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18625884A priority Critical patent/JPS6167511A/en
Publication of JPS6167511A publication Critical patent/JPS6167511A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills

Abstract

PURPOSE:To elevate the dimensional accuracy of a product and pipe making efficiency by making the number of rolling reduction times for diameter shrinkage within the specified range in the rolling stage equipping a thickness deviation correcting function as well to a piercing and extension function. CONSTITUTION:The number of rolling reduction times for diameter shrinkage is set within the range of 1-15 times in case of rolling a seamless pipe with placing a diameter shrinkage rolling reduction by the rear half part of a roll 11 on the stock 13 to be rolled by plural inclined rolls 11 and a plug 12. Since it is the case of the number of the diameter shrinkage rolling reduction times N being >=1 that the thickness deviation correcting effect is realized on the practical level by the diameter shrinkage rolling reduction work, the low limit value of the number of times N is taken as one. On the other hand the more the number of times N is increased the more the thickness deviation improvement rate is increased and for instance it is necessary to elongate the body length of the roll part III of the roll II so as to make the number of times N in twenty or more in order to secure the thickness deviation improvement rate of >=90%. Also since there is a fear of the reduction in the roll strength against the rolling load it is practical to set an upper limit value on the number of times N and the upper limit value is taken as fifteen based on the fact that the product of high accuracy of never been before can be offered.

Description

【発明の詳細な説明】 C技術分野] 本発明は書目S管の圧延方法に関する。[Detailed description of the invention] C technical field] The present invention relates to a method for rolling S-shaped pipes.

[背景技術] 圧送方式による継目無管の製造方法としては。[Background technology] As a method of manufacturing seamless pipes using the pressure feeding method.

一般に小径サイズを主体としたマンネスマン・マンドレ
ルミル方式および中径サイズを主体としたマンネスマン
・プラグミル方式が代表的である。
Typical examples are the Mannesmann mandrel mill system mainly for small-diameter sizes and the Mannesmann plug mill system mainly for medium-diameter sizes.

宙目%管の寸法精度は、それらの方式における各工程で
の圧延条件の設定、工具の芯出し、摩耗管理あるいは素
材の均熱性等の影響によって大きく左右される。−例と
してピアサによる穿孔[程を第2図および第3図に示す
、一対のバレル形ロール1が左右または上下に配置され
、穿孔用プラグ2がバレル形ロール1の中間位置にセッ
トされる。3はガイドシュー、4は穿孔された素管、5
は穿孔前の丸ビレット、6はプラグ2を支持するマンド
レル、<−である、マンドレルパー6は、その一端がス
ラストブロック7側に辻結され、他端でプラグ2を支持
する状態にあり、一種の片持梁となっている。そのため
、穿孔用プラグ2は穿孔中にロール間の中心位lから偏
倚しやすく、結果として圧延素管4の肉厚に不均等(偏
肉)を生じ易い、これはマンネスマン式製管法の不OT
避的現象ではあるものの、偏肉量が所定の基準値以上に
なると管材は格落ちとなり、製品歩出りを著しく損ねる
こととなる。これに対して、最近、ホローレジューサ−
あるいはエコアライザーと称して穿孔工程の次工程で偏
肉矯正をも目的とする圧IA 「程を増設する圧延方法
が提案されている(例えば特開昭57−88207号)
、この方法は寸法精度の向tに−役を担うものであるが
、従来の製管工程に比較して工程の増加による不利益が
ある。
The dimensional accuracy of the pipe is greatly influenced by the settings of rolling conditions in each process in those methods, centering of tools, wear management, heat uniformity of the material, etc. - For example, a pair of barrel-shaped rolls 1 are arranged left and right or above and below, and a piercing plug 2 is set at an intermediate position of the barrel-shaped rolls 1, as shown in FIGS. 2 and 3. 3 is a guide shoe, 4 is a perforated raw pipe, 5
is a round billet before drilling, 6 is a mandrel that supports the plug 2, <-, the mandrel par 6 has one end tied to the thrust block 7 side, and the other end supports the plug 2, It is a kind of cantilever beam. Therefore, the drilling plug 2 tends to deviate from the center position l between the rolls during drilling, resulting in uneven wall thickness of the rolled blank pipe 4. O.T.
Although this is an inevitable phenomenon, if the amount of uneven thickness exceeds a predetermined standard value, the quality of the pipe material will be degraded, and the yield of the product will be significantly impaired. On the other hand, recently, hollow reducers
Alternatively, a rolling method called an eco-alyzer has been proposed in which a rolling IA process is added for the purpose of correcting uneven thickness in the next step of the drilling process (for example, JP-A-57-88207).
Although this method plays a role in improving dimensional accuracy, it has the disadvantage of increasing the number of steps compared to the conventional pipe manufacturing process.

一方、一台の傾斜圧延機の中に前記ホローレジューサ−
等に相巴する圧延工程を設けてなる圧延方法も古くから
知られている1例えば載置の塑性加工(鈴木弘編、昭和
3B年7月裳華房発行)の128頁には、マンネスマン
型穿孔方式の一つとしてバレル形ロールの出側にいま一
つの円錐部を設けて外径を絞る製管方式のある旨の説明
が明記されている。また、最近の特許出願例としては特
開昭57−81908号にも上記製管方式と同等の傾斜
圧延方法が堤案されている。こうした前記引用の2例に
見る圧延方法は、その具体的実施において以下の点で問
題がある。すなわち(a)適正な管材外径圧下量の選定
、(b)螺線状に回転しながら前進する管材の外径圧下
時に受ける加工回数の適正な設定、(C)管材外径圧下
の為のロール部の適正形状、等が明確でなく、より安定
した操業改善効果を得るのに困難がある。
On the other hand, the hollow reducer is installed in one inclined rolling mill.
For example, on page 128 of ``Mounted Plastic Working'' (edited by Hiroshi Suzuki, published by Shokabo in July 1929), there is a rolling method that includes a rolling process similar to that of Mannesmann type. It is clearly stated that one of the perforation methods is a pipe-making method in which another conical portion is provided on the exit side of a barrel-shaped roll to reduce the outer diameter. Further, as a recent patent application example, Japanese Patent Laid-Open No. 57-81908 also proposes an inclined rolling method equivalent to the above-mentioned pipe manufacturing method. The rolling methods shown in the two examples cited above have the following problems in their specific implementation. In other words, (a) selection of an appropriate amount of reduction in the outer diameter of the pipe material, (b) appropriate setting of the number of machining operations to be applied when reducing the outer diameter of the pipe material as it moves forward while rotating in a spiral pattern, and (C) selection of the appropriate amount of reduction in the outer diameter of the pipe material. The proper shape of the roll part, etc. is not clear, making it difficult to obtain more stable operational improvement effects.

すなわち、傾斜圧延方法において管材は回転しなから錦
イ加りを受けるので 外(イ用ト;:のみではねらいと
する所望の効果を正しく把握することができず、後述す
るように、所定の外経圧ドiItの下でも、コール形状
、圧延設定等の違いでU)的とする改善効果が異なった
ものになっている。、に発明者は、上記のような傾斜ロ
ールの後゛ト部でざらに縮径圧下加工を施すことにおい
て寸法精度向上、圧延効率の向上等に顕著な効果が具現
される適正な実施範囲のあることを見い出したものであ
る。
In other words, in the inclined rolling method, the pipe material is not rotated but is subjected to crimping. Even under the external pressure iIt, the improvement effect targeted in U) differs depending on the coal shape, rolling settings, etc. The inventor has discovered an appropriate range of implementation in which the rough reduction in diameter at the rear end of the inclined roll as described above brings about significant effects such as improvement in dimensional accuracy and improvement in rolling efficiency. I have discovered something.

[発明の目的] 本発明は、穿孔、延伸機部に偏肉矯正機能を兼備した圧
延工程において1寸法j+?度およびW答能率に優れた
琳目無管の圧延方法を提供することを目的とする。
[Object of the Invention] The present invention provides a rolling process in which the perforation and stretching machine parts have a thickness correction function. It is an object of the present invention to provide a method for rolling a meshless tube with excellent rolling strength and W-response efficiency.

[発明の構成] 上記目的を達成するために、未発明は複数の傾斜ロール
とプラグによって圧延される被圧延材に、傾斜ロールの
後半部分で縮径圧下を加える琳目無管の圧延方法におい
て、縮径圧下回数を1回〜15回の範囲内に設定するよ
うにしたものである。
[Structure of the Invention] In order to achieve the above object, the present invention provides a method for rolling a wireless pipe in which a material to be rolled that is rolled by a plurality of inclined rolls and plugs is subjected to diameter reduction in the latter half of the inclined rolls. , the number of reductions in diameter is set within the range of 1 to 15 times.

〔発明の詳細な説明] 第1図は本発明による圧延状態を一部破断して示す側面
図であり、複数の傾斜ロール11とプラグ12によって
、被圧延材13に、傾斜ロールLLの後半部分で縮径圧
下を加えることを可能としている。14はマンドレルバ
−である、傾斜ロール11は、従来のバレル形ピアサ−
やエロンゲータ−ロールと異なり、主としてロール部(
1)〜ロール部([V’)の4つの部分からなる。
[Detailed Description of the Invention] FIG. 1 is a partially cutaway side view showing the rolling state according to the present invention. This makes it possible to apply diameter reduction reduction. 14 is a mandrel bar, and the inclined roll 11 is a conventional barrel-shaped piercer.
Unlike Elongator Roll and Elongator Roll, mainly the roll part (
It consists of four parts: 1) to the roll part ([V').

本発明が適用される圧延機は、2個もしくは3個以との
n個の傾斜ロール11を備える。また、被圧延材13と
しては、中実丸ビレット、中空丸ビレットのいずれでも
良い。
The rolling mill to which the present invention is applied is equipped with n inclined rolls 11 of two or three or more. Further, the material to be rolled 13 may be either a solid round billet or a hollow round billet.

以下、上記#4護ロール11とプラグ12による圧壊方
法について説明する。まず、被圧延材13(中実丸ビレ
−7)13Aもしくは中空丸ビレット13B)は傾斜ロ
ール11のロール部CI)の間に噛み込まれると同時に
螺線状に回転#進し、中実丸ビレッ)13Bでは穿孔が
始まり、中空丸ビレ、)13Bでは減肉加工が始まる0
次に被圧延材13は、#i斜ロール11のロール部([
1)とプラグ12どの間で減肉延伸されると同時に径大
化(拡管)加工を施される。従来のピアサ−あるいはエ
ロンゲータ−は(20一ル式でも30一ル式でも)、こ
の2つの穿孔、延伸加工過程で圧延が終了する0本発明
の傾斜ロール11は ト記穿孔、延伸工程の中の後半に
更にWJI返し外径圧下加工を施すことを可能としてい
る。すなわち、穿孔、延伸を経た管材は#lI斜ロール
11のコール部(III)で外径絞り(1ii径圧下)
を受ける。この1■斜ロール11のロール部(III)
による材料の変形挙動について説明すると、ロールとプ
ラグとによる穿孔およびあるいは減肉加工を経た被圧延
材15は螺線状に回転前進するため、被圧延材15の一
回転当りn回の一種の扁モ加圧を受けながら、ロール間
隔の挟まりに応じて外径絞り加−[すなわち、縮径圧下
加工を受ける。ここでnは複ごタロール群の一式を構成
するロール数であり K 、に■20−ル式ピアサーで
はn=2となる。この縮径圧下加工を通じ、被圧延材1
5の肉厚は増加する傾向を付与されるのであるが、もし
も被圧延材15の円周方向断面に偏肉があればそのうち
の薄肉部が優先的に降伏し、厚肉部からこの薄肉部へ材
料の塑性流動が生ず゛る。その結果として1被圧延材1
5の肉厚の均等化が図られる。
The crushing method using the #4 protection roll 11 and the plug 12 will be explained below. First, the material to be rolled 13 (solid round billet 7) 13A or hollow round billet 13B) is bitten between the roll portions CI) of the inclined rolls 11, and at the same time rotates in a spiral manner. Hollowing begins at billet ) 13B, hollow round fin, and thinning begins at ) 13B 0
Next, the rolled material 13 is rolled at the roll portion ([
1) and the plug 12, the pipe is stretched to reduce its thickness and at the same time undergo a diameter-increasing (tube expansion) process. Conventional piercers or elongators (both 20-1 type and 30-1 type) finish rolling during these two perforation and stretching processes. In the latter half of the process, it is possible to further perform WJI return outer diameter reduction. That is, the tube material that has undergone perforation and stretching is reduced in outer diameter (1ii diameter reduction) at the call part (III) of the #lI oblique roll 11.
receive. This 1■ Roll part (III) of the oblique roll 11
To explain the deformation behavior of the material, the rolled material 15 that has been perforated and/or thinned by the rolls and plugs rotates forward in a spiral, so that a type of deformation occurs n times per rotation of the rolled material 15. While being pressurized, the outer diameter is reduced according to the gap between the rolls (that is, the diameter is reduced). Here, n is the number of rolls constituting a set of multiple rolls, and in the case of a 20-hole type piercer, n=2. Through this diameter reduction process, the rolled material 1
5 has a tendency to increase, but if there is an uneven thickness in the circumferential cross section of the rolled material 15, the thinner part will yield preferentially, and this thinner part will be separated from the thicker part. Plastic flow of the material occurs. As a result, 1 rolled material 1
The thickness of the parts 5 and 5 can be made equal.

以上のように、傾斜ロール11とプラグ12による偏肉
強ル1のメカニズムは、被圧延材15が回中云111■
進する際に繰返し圧縮を受けながら縮径する過程におい
て、偏肉している被圧延材15の薄肉部が優先的に増肉
する現象による0本発明者は、このような偏肉矯正メカ
ニズムを十分効果的に発揮させるだめの適正な圧延条件
について検討した結果、下記の′#宮因子が重要な役割
を持つことを見出した。すなわち、 (1)縮径前後の被圧延材の寸法(外径りあるい看 はD ) (2)縮径用ロール部(III)のテーパー角(ロール
傾斜角α) (3)縮径用ロール部(III)のIH長(X)(4)
縮径後の出側ロール部(rV)における顛小ロール間隔
(E) (5) 1lii径加工ロールの傾斜角(β)上記(1
)については被圧延材15の寸法として考慮されるへき
は当然として、(2)および(3)は縮径加工部のロー
ル形状を決定するものであり、(4)は縮径量に直接関
係するものである。(5)は被圧延材の圧tUff1度
特に被圧延材の一回転当りの前進距離に関係するもので
あり(4)とともにミルセツティングの内容に含まれる
As described above, the mechanism of uneven thickness rolling 1 by the inclined roll 11 and the plug 12 is that the rolled material 15 is rotated during rotation.
In the process of reducing the diameter while being repeatedly compressed during rolling, the thin wall portion of the rolled material 15 with uneven thickness increases preferentially. As a result of studying the appropriate rolling conditions for achieving sufficient effectiveness, it was found that the following factors play an important role. That is, (1) Dimensions of the rolled material before and after diameter reduction (outer diameter or diameter is D) (2) Taper angle of diameter reduction roll part (III) (roll inclination angle α) (3) For diameter reduction IH length (X) of roll part (III) (4)
Smaller roll spacing (E) at the exit roll portion (rV) after diameter reduction (5) Inclination angle (β) of 1lii diameter processing rolls (1)
) are naturally considered as the dimensions of the rolled material 15, (2) and (3) determine the roll shape of the diameter-reduced part, and (4) is directly related to the amount of diameter reduction. It is something to do. (5) is related to the pressure tUff of the rolled material per degree, particularly the forward distance per rotation of the rolled material, and is included in the mill setting along with (4).

次に、各種要因を包含し、それぞれの効果の度合を統一
的にコントロールしうるパラメーターの活用について説
明する。前記第1図において被圧延材15が縮径圧下加
工のために傾斜ロール11と接触する長手方向の接触長
さをLとし、これを被圧延材15の外径り、ロール間隔
E、ロール面角αと関連付けると、(1)式および(2
)式のようになる。
Next, we will explain the use of parameters that encompass various factors and can uniformly control the degree of each effect. In FIG. 1, the contact length in the longitudinal direction of the rolled material 15 in contact with the inclined roll 11 for diameter reduction processing is defined as L, and this is defined as the outer diameter of the rolled material 15, the roll spacing E, and the roll surface. When associated with the angle α, equations (1) and (2
) is as follows.

D−E ÷ 2 Ltan  a          
   −(1)L’=D  (1−E/D)/  [2
tan  a]  −・−(2)次に被圧延材15が一
回転で前進する距#xLは ロール傾斜角β、圧延(前
a)効率η(%)として 、(3)式で与えられる。
D-E ÷ 2 Ltan a
-(1)L'=D (1-E/D)/[2
tan a] - - (2) Next, the distance #xL that the rolled material 15 advances in one rotation is given by equation (3) where the roll inclination angle β and the rolling (pre-a) efficiency η (%) are given.

XI  = (η/ 100) πDsinβ−(3)
ここで、デ は被圧延材15の出側外径である。
XI = (η/100) πDsinβ−(3)
Here, D is the exit outer diameter of the rolled material 15.

(2)式および(3)式より、縮径圧下のためのロール
接触&Lの範囲を、被圧延材15が回転前ルする時の回
転回数Nタ  を求めると〕 となる、前述したようにn個のロール群からなる傾斜圧
延では、被圧延材15の1回転昌り1回の圧下回数とな
るから、上記(4)式から被圧延材15の受ける縮径圧
下の全回数Nは(4)式のnイ8すなわち、下記(5)
式によって表わされる。
From equations (2) and (3), the range of roll contact &L for diameter reduction is determined by the number of rotations Nta when the rolled material 15 is rotated. As mentioned above, In inclined rolling consisting of n roll groups, the number of rolling reductions is one per revolution of the material to be rolled 15, so from the above equation (4), the total number of reductions N that the material to be rolled 15 undergoes is ( 4) n-8 in formula, that is, the following (5)
It is expressed by the formula.

・・・(5) なお、傾斜ロール11のロール部([II)が上記(1
)式のロール面角αを持たない曲面ロール形状である一
般的な場合にも、縮径圧下前の被圧延材15の外径りと
ロール形状との幾何学的関係からロール接触長りを求め
ることが可能であるので、所定の外径絞りψすなわち縮
径圧ドj、j、 (t −E/D)と(2)式とから見
掛は上のロール面角αを採用すれば、上記の取扱いはそ
のまま適用可能である。
...(5) Note that the roll portion ([II) of the inclined roll 11 is the same as the above (1)
Even in the general case of a curved roll shape that does not have the roll face angle α of the formula ), the roll contact length can be calculated from the geometric relationship between the outer diameter of the rolled material 15 before diameter reduction and the roll shape. Since it is possible to obtain the above apparent roll face angle α from the predetermined outer diameter diaphragm ψ, i.e. diameter reduction pressure j, j, (t − E/D) and equation (2), , the above handling can be applied as is.

次に、以下の実施例における偏肉率あるいは偏肉改善率
について説明する。まず、偏肉率は各断面における偏肉
率(断面偏肉率)の被圧延材長手方向における平均値で
ある。
Next, the thickness unevenness rate or thickness unevenness improvement rate in the following examples will be explained. First, the thickness unevenness ratio is the average value of the thickness unevenness ratio (cross-sectional thickness unevenness ratio) in each cross section in the longitudinal direction of the rolled material.

偏肉率(%) ここで、()内は断面偏肉率で、肉厚tの最大値(1I
ax)と最小値(トn)との差を断面平均肉厚taマで
除した百分率である。jは被圧延材長手方向に411定
した断面偏肉率の個数である3次に、偏肉改善率は、傾
斜ロール11のロール部(I)。
Thickness unevenness rate (%) Here, the value in parentheses is the cross-sectional thickness unevenness rate, and the maximum value of wall thickness t (1I
ax) and the minimum value (tn) divided by the average cross-sectional wall thickness ta. j is the number of cross-sectional thickness unevenness ratios determined by 411 in the longitudinal direction of the rolled material. Thirdly, the thickness unevenness improvement rate is the roll portion (I) of the inclined roll 11.

(II)のみにより圧延された被圧延材15の偏肉十人
0 を改善前とし、ロール部(m)(IV)において縮
径圧下加工を受けた被圧延材の偏肉書入を改善後として
 下記(7)式によって定義する。
The uneven thickness of the rolled material 15 rolled only by (II) is before improvement, and the uneven thickness of the rolled material subjected to diameter reduction processing in roll parts (m) and (IV) is after improvement. is defined by the following equation (7).

偏肉改善率(%)=−X100・・・(7)入O したがって、穿孔、延伸後のままの被圧延材の偏肉率を
入0 とすると、これが縮径圧下加工を経て偏肉率が半
分の入=O,SX入。になったとすれば、偏肉改善率は
(7)式より50%となる。
Improving rate of thickness unevenness (%) = - is half in = O, SX in. If so, the uneven thickness improvement rate will be 50% from equation (7).

以下、20一ル方式による実施結果について説明する。The results of implementation using the 20-1 method will be explained below.

第4図は、外径絞りすなわち縮径圧下のための設定トラ
フト率(1−E/D)X100 (%)の影けを示すも
のであり、ドラフト率の大きいはど偏肉改善が大きい、
第5図は、ロール面角αおよびロール傾斜角βの影響を
示すものであり、いずれも角度を小さくすることによる
偏肉改善の効果が認められる。なお、ドラフト率が0で
ある場合の偏肉率は[素管偏肉率]である。こうしたド
ラフト率、ロール面角、ロール傾斜角の影響は前記(5
)式にンバされるところであり、第4図および第5図の
データを(5)式に準じて整理し直すと、第6図の各記
号によって示されるとおりとなり、はぼ統一的な傾向を
示すことが認められる。
Figure 4 shows the shadow of the set draft ratio (1-E/D) x 100 (%) for outer diameter drawing, that is, diameter reduction reduction, and the larger the draft ratio, the greater the improvement in uneven thickness.
FIG. 5 shows the influence of the roll surface angle α and the roll inclination angle β, and it can be seen that reducing both angles has the effect of improving uneven thickness. Note that the thickness unevenness rate when the draft rate is 0 is the [raw pipe thickness unevenness rate]. The effects of draft rate, roll face angle, and roll inclination angle are
), and when the data in Figures 4 and 5 are rearranged according to Formula (5), the results are as shown by the symbols in Figure 6, which shows a fairly uniform trend. It is allowed to show.

第6図■の斜線部は、傾斜ロール11のロール部(m)
の終端部を十分に滑らかな曲線でロール傾斜角(rV)
へ移行させた場合であり、この場合にはロール部(II
I)  (IV)の間の屈曲慨が無くなり、被圧延材1
5の表面にスパイラルマークの段・ 差の発生が防Ll
二されることにより 偏肉−Vの改りも一層良好となる
。なお、傾斜ロール11のロール配置を20一ル以上と
し、30一ル方式あるいは40一ル方式で圧延した場合
でも 偏肉矯正効果は以上におけると全く同様であり、
統一的ノくラメ−ターNで整理すると、第6図の実線の
内部■の範囲で表示されることが見出された。
The shaded part in Fig. 6 (■) is the roll part (m) of the inclined roll 11.
Roll inclination angle (rV) with a sufficiently smooth curve at the end of
In this case, the roll part (II
The bending between I) and (IV) is eliminated, and the rolled material 1
Prevents the occurrence of steps and differences in spiral marks on the surface of 5.
By doing so, the deviation of uneven thickness -V becomes even better. Note that even when the roll arrangement of the inclined rolls 11 is set to 20 mm or more and rolling is performed using a 30 mm method or a 40 mm method, the uneven thickness correction effect is exactly the same as described above.
It has been found that when sorted using the uniform parameter N, the values are displayed within the range ``■'' inside the solid line in FIG.

第6図から明らかなように外径絞り加工すなわち縮径圧
下加工によって偏肉矯正効果が実用りのレベルで具現さ
れるのは、縮径圧下回数Nが1以上の場合であるから、
本発明における縮径圧下回数の下限値を1とした。一方
、偏肉改善率はm径圧下回数が増加するほど増加するの
であるが、例えば90%以上の偏肉改善率を確保するた
めには、縮径圧下回数が約20回以上になるように傾斜
ロール11のロール部(DI)の胴長も長くしなければ
ならず、圧延荷重に対するロール強度の低下が懸念され
るので、縮径圧下回数には上限値を設けることが実用的
である1本発明では、上記ロールの強度上の問題から、
また現用のピアサ−やエロンゲータ−の圧延における被
圧延材寸法精度に関する情報も参考として、偏肉改善率
80%を確保でさるようであれば、現行の各種製管プロ
セスにおいて従来にない高精度の製品を提供できること
に基づき、縮径圧下回数の上限値を15回としたもので
ある。
As is clear from FIG. 6, the effect of correcting uneven thickness by the outer diameter drawing process, that is, the diameter reduction process, is achieved at a practical level when the number N of diameter reduction reductions is 1 or more.
The lower limit of the diameter reduction reduction number in the present invention was set to 1. On the other hand, the rate of improvement in thickness unevenness increases as the number of m-diameter reductions increases. For example, in order to secure an improvement rate of thickness unevenness of 90% or more, the number of reductions in diameter should be approximately 20 or more. The body length of the roll portion (DI) of the inclined roll 11 must also be made longer, and there is a concern that the roll strength against the rolling load will decrease, so it is practical to set an upper limit on the number of reductions in diameter. In the present invention, due to the problem of the strength of the roll,
Also, with reference to information on the dimensional accuracy of rolled materials in rolling with current piercers and elongators, if it is possible to achieve an 80% improvement in thickness unevenness, it is possible to achieve unprecedented high precision in various current pipe manufacturing processes. Based on the ability to provide the product, the upper limit of the number of reductions in diameter was set at 15 times.

したがって1本発明によれば偏肉率の史イどの著しいと
されている管端部においても該偏肉率が高々20%程度
であるから、80%の偏肉改善率のもとで、管フルボデ
ィで約4%以下の偏肉レベルまで改善された被圧延材を
次の圧延工程へ送ることが可能となり、寸法精度の著し
い向ヒを図ることが可能になると同時に、従来の管端ク
ロップ長を大幅に短縮し、歩留りを著しく向−Lするこ
とがII)能となるという効果を有する。
Therefore, according to the present invention, since the wall thickness unevenness rate is about 20% at most at the end of the pipe, which is said to have a significant history of wall thickness unevenness, it is possible to improve the wall thickness unevenness by 80%. It is now possible to send the rolled material, which has been improved to a full-body thickness unevenness level of approximately 4% or less, to the next rolling process, making it possible to significantly improve dimensional accuracy, and at the same time, it is possible to improve the dimensional accuracy of the rolled material by reducing the conventional tube end cropping. II) It has the effect of significantly shortening the length and significantly improving the yield.

また、本発明によれば、上記効果に加えて、以下の効果
(a)、(b)、(C)を得ることが可能である。
Further, according to the present invention, in addition to the above effects, the following effects (a), (b), and (C) can be obtained.

(a)2点支持により、圧延中の被圧延材の振れ等に対
する安定性が著しく向丘する。すなわち、従来の穿孔、
延伸過程ではロール部(I)からロール部(■)にかけ
てのボーン部(ロール径極大部)近傍の一個所でのみ被
圧延材をグリ、プしていたのであるが、本発明ではさら
にロール部(II[)から(IT)にかけても被圧延材
をグリシジ↑ることとなり、被圧延材の振れの軽減とそ
れによる偏肉の防止効果を得ることがム「歳となる。
(a) Two-point support significantly improves stability against runout of the rolled material during rolling. i.e. conventional drilling,
In the stretching process, the material to be rolled was gripped only at one point near the bone section (maximum roll diameter section) from the roll section (I) to the roll section (■); From (II[) to (IT), the material to be rolled is also subject to grinding, and it is important to reduce the run-out of the material to be rolled and thereby to obtain the effect of preventing uneven thickness.

(b)出側ロール径の径大化による+iii方張力EE
E )、4の状況を具現している。すなわち、傾斜ロー
ル11のロール部(m)〜(rV)にかけてロール径を
大きくしているため、ロール周速はロール部(1)(I
I)より速くなる。これは、被圧延材に対して出側から
引張り力を付加するのと同等であり、圧延速度や効率の
向とに有効である。なお、この目的からはロール形状を
従来のバレル形よりもコーン型にするほうが出側ロール
径を大きくでき、ロール周速を早くできるために有利で
ある。
(b) +iii direction tension EE due to enlargement of exit roll diameter
E), embodying the situation in 4. That is, since the roll diameter is increased over the roll portions (m) to (rV) of the inclined roll 11, the roll circumferential speed is greater than the roll portion (1) (I
I) Become faster. This is equivalent to applying a tensile force to the rolled material from the exit side, and is effective in improving rolling speed and efficiency. Note that, for this purpose, it is advantageous to make the roll shape cone-shaped rather than the conventional barrel-shaped roll because the exit roll diameter can be increased and the roll circumferential speed can be increased.

(C) #4斜el−ルlLノel−ル部(II) と
(m)との接合部がなすロール表面は、被圧延材と若干
のクリアランスを有し、減肉延伸後の被圧延材と縮径後
の被圧延材との間のマスバランスを調整する一種のルー
バーの機能を果たす。
(C) #4 oblique el-ru lL noel el-ru The roll surface formed by the joint between (II) and (m) has a slight clearance with the rolled material, and the rolled material after thinning drawing It functions as a kind of louver that adjusts the mass balance between the material and the material to be rolled after diameter reduction.

[発明の効果コ 以上のように本発明は、複数の傾斜ロールとプラグによ
って圧延される被圧延材に、傾斜ロールの後半部分で縮
径圧下を加える継目無管の圧延方法において、縮径圧下
回数を1回〜15回の範囲内に設定するようにしたもの
である。したがって、穿孔、延伸機能に偏肉矯正機能を
兼備した圧延工程において、寸法精度および造管能率を
向上することが可能となる。
[Effects of the Invention] As described above, the present invention provides a seamless pipe rolling method in which a material to be rolled that is rolled by a plurality of inclined rolls and a plug is subjected to diameter reduction in the latter half of the inclined rolls. The number of times is set within the range of 1 to 15 times. Therefore, it is possible to improve dimensional accuracy and pipe-making efficiency in a rolling process that has a punching and stretching function as well as a thickness correction function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による圧延状態の一例を一部破断して示
す側面図、第2図は従来の圧延状態を示す側面図、第3
図は第2図のm−m線に沿う断面図、第4図はドラフト
率と偏肉率との関係を示す線図、第5図はドラフト率と
偏肉率との関係を示す他の線図、第6図は偏肉矯正率と
縮径圧下回数との関係を示す線図である。 11・・・傾斜ロール、12・・・プラグ、13・・・
被圧延材。 代理人  弁理士  塩 川 修 治 第1図 □−一一二 第2図 第3図 第4図 ドラフト率、 (1−E/D)x 100 (’/、 
)第5図
FIG. 1 is a partially cutaway side view showing an example of a rolling state according to the present invention, FIG. 2 is a side view showing a conventional rolling state, and FIG.
The figure is a cross-sectional view taken along line m-m in Figure 2, Figure 4 is a line diagram showing the relationship between draft rate and thickness unevenness rate, and Figure 5 is a diagram showing the relationship between draft rate and thickness unevenness rate. FIG. 6 is a diagram showing the relationship between the uneven thickness correction rate and the number of diameter reduction reductions. 11... Inclined roll, 12... Plug, 13...
Rolled material. Agent Patent Attorney Osamu Shiokawa Figure 1 □-112 Figure 2 Figure 3 Figure 4 Draft rate, (1-E/D) x 100 ('/,
) Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)複数の傾斜ロールとプラグによって圧延される被
圧延材に、傾斜ロールの後半部分で縮径圧下を加える継
目無管の圧延方法において、縮径圧下回数を1回〜15
回の範囲内に設定することを特徴とする継目無管の圧延
方法。
(1) In a seamless pipe rolling method in which the material to be rolled is rolled by a plurality of inclined rolls and plugs, the diameter reduction is applied in the latter half of the inclined rolls, and the number of diameter reduction reductions is 1 to 15 times.
A method for rolling a seamless pipe, characterized in that the rolling method is set within a range of times.
JP18625884A 1984-09-07 1984-09-07 Rolling method of seamless pipe Pending JPS6167511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18625884A JPS6167511A (en) 1984-09-07 1984-09-07 Rolling method of seamless pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18625884A JPS6167511A (en) 1984-09-07 1984-09-07 Rolling method of seamless pipe

Publications (1)

Publication Number Publication Date
JPS6167511A true JPS6167511A (en) 1986-04-07

Family

ID=16185124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18625884A Pending JPS6167511A (en) 1984-09-07 1984-09-07 Rolling method of seamless pipe

Country Status (1)

Country Link
JP (1) JPS6167511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112007A (en) * 1986-10-28 1988-05-17 Kawasaki Steel Corp Cross helical rolling method for seamless pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781908A (en) * 1980-11-11 1982-05-22 Nippon Kokan Kk <Nkk> Rolling method with inclined roll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781908A (en) * 1980-11-11 1982-05-22 Nippon Kokan Kk <Nkk> Rolling method with inclined roll

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112007A (en) * 1986-10-28 1988-05-17 Kawasaki Steel Corp Cross helical rolling method for seamless pipe

Similar Documents

Publication Publication Date Title
JPS6167511A (en) Rolling method of seamless pipe
EP2281641A1 (en) Method for producing seamless pipe
JP2973851B2 (en) Tube continuous rolling method and three-roll mandrel mill
JP2582705B2 (en) Mandrel mill
JPH01245914A (en) Manufacture of metallic pipe excellent in out-of-roundness of outer diameter
CN217095005U (en) Periodic roll and roll device
JPS61144204A (en) Skew rolling method of seamless pipe
JPH11347680A (en) Method for roll-forging shaft with step
JPH0586287B2 (en)
JP2696718B2 (en) Tilt rolling method for seamless pipe
JPH105820A (en) Manufacture of seamless metallic tube
JPS61137612A (en) Skew rolling method of metallic pipe and plug used for rolling
JPH0377004B2 (en)
JPH09159776A (en) Manufacture for zirconium alloy-made thimble tube for pressurized water reactor control rod guide tube
JP3076700B2 (en) Row of cold drawing mills for circular pipes
JPH0957328A (en) Manufacture of heat-transfer tube with internal groove and apparatus therefor
JP2692524B2 (en) Inclined elongation rolling method of hot seamless steel pipe
JP3085256B2 (en) Manufacturing method of seamless pipe
JPH07265910A (en) Production of seamless tube
JP2001246405A (en) Method for cutting grooved rolling roll
JPS6111122B2 (en)
JPH0455005A (en) Clad pipe rolling roll
JPH0787929B2 (en) Rolling method for pipes with inclined roll mill
JPH05212403A (en) Method for rolling bar steel by four rolling mills
JPS59197327A (en) Working method of thin walled cylinder