JPS6167251A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6167251A JPS6167251A JP59188103A JP18810384A JPS6167251A JP S6167251 A JPS6167251 A JP S6167251A JP 59188103 A JP59188103 A JP 59188103A JP 18810384 A JP18810384 A JP 18810384A JP S6167251 A JPS6167251 A JP S6167251A
- Authority
- JP
- Japan
- Prior art keywords
- emitter
- diffusion region
- region
- oxide film
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 238000009792 diffusion process Methods 0.000 claims abstract description 58
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 16
- 239000011574 phosphorus Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 abstract description 16
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 5
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract description 2
- 239000005360 phosphosilicate glass Substances 0.000 abstract 3
- 239000012535 impurity Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8222—Bipolar technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/082—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
- H01L27/0823—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
- H01L27/0825—Combination of vertical direct transistors of the same conductivity type having different characteristics,(e.g. Darlington transistors)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、同一基板上に、同一形状でもhp’g(エ
ミッタ接地靜順方向電流増幅率)の異なる2種類のバイ
ポーラトランジスタを形成する半導体装置の製造方法に
関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a semiconductor device that forms two types of bipolar transistors on the same substrate with the same shape but different hp'g (grounded emitter forward current amplification factor). The present invention relates to a method for manufacturing a device.
(従来の技術)
バイポーラトランジスタにおいては、エミッタ拡散領域
の深さを変えることによシ、同一形状でもhrgを変え
ることができる。そこで、従来、向−基板上に、hFE
の異なる2種類のバイポーラトランジスタを形成する場
合は、エミッタ拡散領域を形成する際に、■ホトリソグ
ラフィ、■不純物ドープ、■ドライブインからなるエミ
ッタ拡散領域形成工程を2回くフ返すことによシ、2種
類の深さのエミッタ拡散領域、延いては2種類のhFE
のバイポーラトランジスタt−製造している。(Prior Art) In a bipolar transistor, hrg can be changed even with the same shape by changing the depth of the emitter diffusion region. Therefore, conventionally, hFE was used on the facing substrate.
When forming two types of bipolar transistors with different values, when forming the emitter diffusion region, the emitter diffusion region formation process consisting of ■photolithography, ■impurity doping, and ■drive-in is repeated twice. , two different depths of emitter diffusion region, and thus two types of hFE.
manufactures bipolar transistors.
(発明が解決しようとする問題点)
しかしながら、この方法では、エミッタ拡散領域形成工
程が一度のみの通常の製造方法に比較して工程数が3工
程も追加されるため、処8!時間が長くなる欠点があっ
た。また、2回目のドライブイン(熱処理)工程におい
て、既に形成されているエミッタ拡散領域の拡散プロフ
ァイルが乱れ、最終の特性値がバラツク欠点がある。(Problems to be Solved by the Invention) However, in this method, the number of steps is added by three compared to the normal manufacturing method in which the emitter diffusion region formation step is only performed once, so there is a problem with the problem. The disadvantage was that it took a long time. Furthermore, in the second drive-in (heat treatment) step, the diffusion profile of the emitter diffusion region that has already been formed is disturbed, resulting in a drawback that the final characteristic values vary.
これら欠点を改善するため、2回のエミッタ拡散領域形
成工程におけるドライブインを共通にすることが考えら
れた。その方法によれば、第1ホトリソグラフイ→第1
不純物ドープ→第2ホトリソグラフイ→第2不純物ドー
プ→ドライブインにより2種類の深さのエミッタ拡散領
域を形成することになる。そして、この方法によれば、
通常の製造方法に比較して2工程のみ追加されるだけで
あシ、ドライブインも共通に1回行われるだけで弊害を
防止できる。In order to improve these drawbacks, it has been considered to use a common drive-in in the two emitter diffusion region forming steps. According to the method, first photolithography → first photolithography
Emitter diffusion regions having two different depths are formed by impurity doping→second photolithography→second impurity doping→drive-in. And according to this method,
Only two steps are added compared to the normal manufacturing method, and the drive-in is also performed only once, thereby preventing any negative effects.
しかるに、この方法では、第2不純物ドープ時に、それ
以前の第1不純物ドー1によシネ細物がドープされた領
域にも不純物がドープされてしまうから、やけシエミツ
タ拡散領域の拡散プロファイルが乱れ、再現性よくエミ
ッタ拡散領域を形成できない欠点がある。また、第2ホ
トリソグラフィ時に、それ以前の第1不純物ドーグによ
シネ細物を多量に含んだ膜上にボトレジストヲ塗布する
ことになって、ホトレジストと膜との密着性か悪い結果
、サイドエツチングが生じるようになるので、エミッタ
拡散領域の寸法が設計直通シにならない欠点がある。However, in this method, when the second impurity is doped, the region that was previously doped with the first impurity dope 1 is also doped with the impurity, so the diffusion profile of the burnt film diffusion region is disturbed. There is a drawback that the emitter diffusion region cannot be formed with good reproducibility. In addition, during the second photolithography, the bottom resist is applied onto a film that contains a large amount of cine particles from the previous first impurity doping, resulting in poor adhesion between the photoresist and the film, resulting in side etching. Therefore, there is a drawback that the dimensions of the emitter diffusion region cannot be directly matched to the design.
そこで、この発明では、上述従来の欠点を丁べて解決し
て2種類の深さのエミッタ拡散領域、延いては、hFE
の異なる2種類のバイポーラトランジスタを製造する。Therefore, in the present invention, the above-mentioned conventional drawbacks are solved, and the emitter diffusion region with two different depths, and by extension, the hFE
Two types of bipolar transistors with different values are manufactured.
(問題点を解決するための手段)
この発明では、表面の酸化膜に開りたエミッタ用開孔部
からのリンドープとウェット02雰囲気での第1の熱処
理により、各ベース拡散領域内にエミッタ拡散領域を形
成するとともに、その表面に酸化膜を形成し、その後、
一部のエミッタ拡散領域上の酸化膜を除去した状態で酸
化性雰囲気で第2の熱処理を行う。(Means for Solving the Problems) In the present invention, the emitter is diffused into each base diffusion region by doping phosphorus through the emitter opening formed in the surface oxide film and by first heat treatment in a wet 02 atmosphere. At the same time as forming a region, an oxide film is formed on its surface, and then,
A second heat treatment is performed in an oxidizing atmosphere with the oxide film on part of the emitter diffusion region removed.
(作用)
すると、表面に酸化膜・を有するエミッタ拡散領域は、
前記酸化膜形成時にその酸化膜にとシ込まれたリンの再
拡散によシ、表面から酸、イヒ膜が除去されたエミッタ
拡散領域よシ深く再分布する。すなわち、深さの異なる
2種類のエミッタ拡散領域が形成される。(Function) Then, the emitter diffusion region having an oxide film on its surface is
Due to the re-diffusion of the phosphorus injected into the oxide film during the formation of the oxide film, the acid and phosphorus from the surface are redistributed deep into the emitter diffusion region from which the phosphorus film has been removed. That is, two types of emitter diffusion regions having different depths are formed.
(実施例) この発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described with reference to FIG.
第1図(alは、P型シリコン基板1上にN型エピタキ
シャル層2を形成し、そのエピタキシャル層2をP型分
離体域3によシ複数の領域に分離し、所望のエピタキシ
ャル領域21 、22 K各々P型ベース拡散領域4を
形成し、その後にエビメキシャル層20表面の5i02
膜(酸化膜)51/(エミッタ用開孔部6およびコレク
タ取出し領域用開孔部7をホトリソグラフィ(第1ホト
リソグラフイ)によシ形成した状態を示す。ここで、エ
ミッタ゛相開孔部6は各ベース拡散領域4上で開けられ
ておシ、コレクタ取出し領域用開孔部7はコレクタとじ
てのエピタキシャル領域21,2z各々の上罠おいて開
けられている。FIG. 1 (al) shows that an N-type epitaxial layer 2 is formed on a P-type silicon substrate 1, the epitaxial layer 2 is separated into a plurality of regions by a P-type isolation region 3, and a desired epitaxial region 21, 22K respectively to form a P-type base diffusion region 4, and then 5i02 on the surface of the evimexial layer 20.
A state in which the film (oxide film) 51/(emitter opening 6 and collector extraction region opening 7 are formed by photolithography (first photolithography) is shown. A hole 6 is opened above each base diffusion region 4, and a hole 7 for a collector extraction region is opened above each epitaxial region 21, 2z serving as a collector.
このような構造を製造した後、まず、エミッタ用開孔部
6およびコレクタ取出し領域用開孔部7を介して各ベー
ス拡散領域4およびエピタキシャル領域21,2zにリ
ンドープを行い、続いて、800℃〜1000℃のウェ
ット02雰囲気で第1ドライブイン(第1の熱処理)を
行う。すると、第1図(b)に示すように、各ベース拡
散領域4中にN+エミッタ拡散領域8が形成されるとと
もに、N+コレクタ取出し領域9がエピタキシャル領域
21゜22中に形成される。さらに、各エミッタ拡散領
域8と各コレクタ取出し領域9の表面部にリンガラス層
(リンがと9込まれた酸化膜)10が形成される。ここ
で、リンガラス層10の膜厚は、いま例として前記リン
ドープを950℃で10分POCLsを用いて行い、続
く第1ドライブインを950℃で15分ウつツ)Ozg
囲気で行った場合、3000Aとなる。After manufacturing such a structure, first, each base diffusion region 4 and epitaxial region 21, 2z is doped with phosphorus through the emitter opening 6 and the collector extraction region opening 7, and then heated at 800°C. First drive-in (first heat treatment) is performed in a wet 02 atmosphere at ~1000°C. Then, as shown in FIG. 1(b), an N+ emitter diffusion region 8 is formed in each base diffusion region 4, and an N+ collector extraction region 9 is formed in the epitaxial region 21-22. Furthermore, a phosphorus glass layer (an oxide film doped with phosphorus) 10 is formed on the surface of each emitter diffusion region 8 and each collector extraction region 9. Here, the film thickness of the phosphorus glass layer 10 is determined by performing the phosphorus doping at 950° C. for 10 minutes using POCLs, followed by the first drive-in at 950° C. for 15 minutes.
If it is done in an enclosed atmosphere, it will be 3000A.
次に、第1図(C)に示すように、ホトレジスト11を
用いたホトリソグラフィ(第2ホトリソグラフイ)で、
一方のエミッタ拡散領域8(エピタキシャル領域22内
のベース拡散領域4中く形成された。Next, as shown in FIG. 1(C), photolithography using photoresist 11 (second photolithography) is performed.
One emitter diffusion region 8 (formed in the base diffusion region 4 within the epitaxial region 22).
エミッタ拡散領域で、その深さを浅くすることによ’)
hrgを低く制御したいトランジスタのエミッタ拡散
領域)上のリンガラス層10をエツチング除去する。そ
の際、エツチング除去は、エミッタ拡散領域8の大きさ
よシーまわシ大きく行ってもよい。By making its depth shallow in the emitter diffusion region')
The phosphor glass layer 10 on the emitter diffusion region of the transistor whose hrg is to be controlled to be low is removed by etching. At this time, the etching removal may be performed to a size larger than the size of the emitter diffusion region 8.
その後、1000℃〜1】00℃例えば1000℃で1
00分01雰囲気(酸化性雰囲気)で第2ドライブイン
(第2の熱処理)を行う。すると、第1図(d)に示す
ように、先のホトリングラフィで表面からリンガラス層
が除去された前記一方のエミッタ拡散領域8では通常の
再分布(再拡散)が行われ、約1.7μmの深さのエミ
ッタ拡散領域8となる。一方、表面にリンガラス層10
を有する他方のエミッタ拡散領域8(エピタキシャル領
域21内のベース拡散領域4中に形成されたエミッタ拡
散領域)では、リンガラス/1110よシのリンの再拡
散によシ深く再分布(再拡散〕が行われ、約2.0μm
のエミッタ拡散領域8となる。その結果、例えば2.2
μmのベース拡散領域4を形成しておけば、hFg 2
00のトランジスタ(第1図(d、)でWBIのベース
幅をもつトランジスタ)と、hpi: 50のトランジ
スタ(第1図(d)でWB2のベース幅をもつトランジ
スタ)が同一基板1上に同時に形成される。After that, at 1000℃~1】00℃, for example, 1 at 1000℃
A second drive-in (second heat treatment) is performed in an atmosphere (oxidizing atmosphere). Then, as shown in FIG. 1(d), normal redistribution (rediffusion) occurs in the one emitter diffusion region 8 from which the phosphor glass layer was removed from the surface in the previous photolithography, and approximately 1 This results in an emitter diffusion region 8 with a depth of .7 μm. On the other hand, a phosphor glass layer 10 on the surface
In the other emitter diffusion region 8 (the emitter diffusion region formed in the base diffusion region 4 in the epitaxial region 21) having was carried out, and the thickness was approximately 2.0 μm.
becomes the emitter diffusion region 8. As a result, for example 2.2
If the base diffusion region 4 of μm is formed, hFg 2
A transistor with hpi: 00 (a transistor with a base width of WBI in Fig. 1(d)) and a transistor with hpi: 50 (a transistor with a base width of WB2 in Fig. 1(d)) are simultaneously mounted on the same substrate 1. It is formed.
なお、前記第2ドライブイン時に前記一方のエミッタ拡
散領域8の表面に5i(h膜12が形成される。また、
この第2ドライブインによシコレクタ取出し領域9がエ
ピタキシャル領域21.22中に深く再分布される。Note that during the second drive-in, a 5i(h film 12 is formed on the surface of the one emitter diffusion region 8.
This second drive-in redistributes the collector extraction region 9 deep into the epitaxial region 21,22.
なお、以上の一実施例では、シリコン基板1上のエピタ
キシャル領域2s r 2z ’f−互いに分離された
半導体領域としてバイポーラトランジスタを形成したが
、シリコン基板1自体に作られた複数の分離半導体領域
に各々トランジスタを形成することもできる。In the above embodiment, the bipolar transistor is formed as the epitaxial region 2s r 2z 'f - semiconductor region separated from each other on the silicon substrate 1, but the bipolar transistor is formed as the semiconductor region separated from each other on the silicon substrate 1 itself. Each of them can also form a transistor.
(発明の効果)
以上よ)明らかなようにこの発明の方法によれば、第1
ホトリソグラフイ→リンドープ→第1ドライブイン→第
2ホトリソグラフイ→第2ドライブインにより深さの異
なる2種類のエミッタ拡散領域を同一基板上に形成する
ことかでき、通常の製造方法に比較して僅か2工程の追
加だけで2種類の深さのエミッタ拡散領域を形成できる
。さらに、この発明の方法をアルミゲートBi −0M
O3の工程に用いると、アルミゲー) Bi−0MO8
の工程は元々エミッタホトリングラフィ→エミッタ不細
物ドープ→エミッタドライブイン→ゲートホトリングラ
フィ→ゲート酸化→配線工程となっていて、この発明の
前記工程フローが全くこれに当てはまるから、工程を増
加させることなくこの発明の方法を実施することができ
る。また、この発明の方法において、リンドープおよび
ドライブインの工程は、2種類の深芒のエミッタ拡散領
域の形成に共通に用いられるものでりるから、これら工
程がどちらか一方のエミッタ拡散領域にとっては害とな
ることを防止できる。さらに、リンドープのためのエミ
ッタ用開孔部は、リンドーデ工程以前の最初の工程で、
ホトレジストの密着性が良い状態で正確に開けることが
でき、その結果として設計値通りの大きさのエミッタ拡
散領域を形成することができる。(Effect of the invention) As is clear from the above, according to the method of this invention, the first
By photolithography → phosphorus doping → first drive-in → second photolithography → second drive-in, two types of emitter diffusion regions with different depths can be formed on the same substrate, compared to normal manufacturing methods. Emitter diffusion regions of two different depths can be formed with only two additional steps. Furthermore, the method of this invention is applied to aluminum gate Bi-0M
When used in the O3 process, it becomes aluminum (Aluminum) Bi-0MO8
The process originally consisted of emitter photolithography → emitter doping → emitter drive-in → gate photolithography → gate oxidation → wiring process, and since the process flow of this invention completely applies to this process, the number of steps was increased. The method of the present invention can be carried out without having to do so. In addition, in the method of the present invention, the phosphorus doping and drive-in steps are commonly used to form two types of deep emitter diffusion regions, so these steps are not suitable for either one of the emitter diffusion regions. Can prevent harm. Furthermore, the emitter hole for phosphorus doping is formed in the first step before the phosphorus doping process.
It is possible to accurately open the photoresist with good adhesion, and as a result, it is possible to form an emitter diffusion region of the designed size.
第1図はこの発明の半導体装置の製造方法の一実施例を
示す断面図である。
】・・・P型シリコン基板、2・・・N型エピタキシャ
ル層、2t+2z・・・エピタキシャル領域、3・・・
P型分離頭載、4・・・P型ベース拡散領域、5・・・
5i02膜、6・・・エミッタ用開孔部、8・・・N+
エミッタ拡散領域、10・・・リンガラス層、11・・
・ホトレジスト。FIG. 1 is a sectional view showing an embodiment of the method for manufacturing a semiconductor device according to the present invention. ]...P-type silicon substrate, 2...N-type epitaxial layer, 2t+2z...epitaxial region, 3...
P-type separated head, 4...P-type base diffusion region, 5...
5i02 film, 6... Emitter opening, 8... N+
Emitter diffusion region, 10... Phosphorous glass layer, 11...
・Photoresist.
Claims (1)
の半導体領域にベース拡散領域を形成した後、表面の酸
化膜に各ベース拡散領域上にてエミッタ用開孔部を形成
する工程と、この工程で形成されたエミッタ用開孔部を
介して各ベース拡散領域中にリンをドープし、さらにウ
ェットO_2雰囲気中で第1の熱処理を行うことにより
、前記各ベース拡散領域内にエミッタ拡散領域を形成し
、その表面に酸化膜を形成する工程と、次いで一部のエ
ミッタ拡散領域上の酸化膜を除去する工程と、その後に
酸化性の雰囲気で第2の熱処理を行うことにより、表面
に酸化膜を有するエミッタ拡散領域と、表面から酸化膜
が除去されたエミッタ拡散領域とで異なる深さにエミッ
タ拡散領域をベース拡散領域中に再分布させる工程とを
具備してなる半導体装置の製造方法。After forming base diffusion regions in a plurality of semiconductor regions separated from each other as collectors on the same substrate, a step of forming an opening for an emitter on each base diffusion region in the oxide film on the surface; An emitter diffusion region is formed in each base diffusion region by doping phosphorus into each base diffusion region through the formed emitter opening and further performing a first heat treatment in a wet O_2 atmosphere. , an oxide film is formed on the surface by forming an oxide film on the surface, then removing the oxide film on a part of the emitter diffusion region, and then performing a second heat treatment in an oxidizing atmosphere. 1. A method for manufacturing a semiconductor device, comprising the step of redistributing the emitter diffusion region in a base diffusion region to different depths for an emitter diffusion region having an oxide film removed from the surface thereof and an emitter diffusion region having an oxide film removed from the surface thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59188103A JPS6167251A (en) | 1984-09-10 | 1984-09-10 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59188103A JPS6167251A (en) | 1984-09-10 | 1984-09-10 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6167251A true JPS6167251A (en) | 1986-04-07 |
Family
ID=16217749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59188103A Pending JPS6167251A (en) | 1984-09-10 | 1984-09-10 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6167251A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701899A2 (en) | 1994-09-16 | 1996-03-20 | Seiko Epson Corporation | Ink jet printhead of the electric-field drive type and method of driving the same |
-
1984
- 1984-09-10 JP JP59188103A patent/JPS6167251A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701899A2 (en) | 1994-09-16 | 1996-03-20 | Seiko Epson Corporation | Ink jet printhead of the electric-field drive type and method of driving the same |
EP0701899B1 (en) * | 1994-09-16 | 2002-12-04 | Seiko Epson Corporation | Ink jet printhead of the electric-field drive type and method of driving the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3940288A (en) | Method of making a semiconductor device | |
JPS5929153B2 (en) | Method of forming low resistance interconnects in MOS n-channel silicon gate integrated circuits | |
KR940009361B1 (en) | Complicated type ic element | |
JPH073813B2 (en) | Field effect transistor and bipolar transistor structure manufacturing method, integrated circuit manufacturing method, semiconductor device manufacturing method, and semiconductor structure manufacturing method | |
US4231819A (en) | Dielectric isolation method using shallow oxide and polycrystalline silicon utilizing a preliminary etching step | |
US4885261A (en) | Method for isolating a semiconductor element | |
JPH0831543B2 (en) | Method for manufacturing BiCMOS semiconductor device | |
KR910000020B1 (en) | Manufacture of semiconductor device | |
JPS59217364A (en) | Manufacture of semiconductor device | |
JPS6167251A (en) | Manufacture of semiconductor device | |
JPS60241261A (en) | Semiconductor device and manufacture thereof | |
JPH0136710B2 (en) | ||
JPS6034063A (en) | Manufacture of semiconductor device | |
JPS5933271B2 (en) | Manufacturing method of semiconductor device | |
JPS5933270B2 (en) | Manufacturing method of semiconductor device | |
JPH0230124A (en) | Manufacture of semiconductor device | |
JPS6167266A (en) | Manufacture of semiconductor device | |
JPH0287622A (en) | Manufacture of semiconductor integrated circuit | |
JPH04168764A (en) | Manufacture of semiconductor device | |
JPS6064444A (en) | Manufacture of semiconductor device | |
JPS59144148A (en) | Manufacture of semiconductor device | |
JPS59200463A (en) | Manufacture of bipolar semiconductor device | |
JPS60251640A (en) | Semiconductor device and manufacture thereof | |
JPH0140502B2 (en) | ||
JPH0376140A (en) | Manufacture of semiconductor device |